Applied Accelerated Artificial Intelligence
Dr. Satyajit Das
Department of Computer Science and Engineering
Indian Institute of Technology, Palakkad

Introduction to Deep Learning
Lecture - 22
Profiling with DLProf PyTorch Catalyst Part - 1

Good evening everybody. So, today we will start with Profiling with DLProf and then
we will look into the PyTorch Catalyst. So, far what we have done? So far we have
looked into how to make the pipeline for training in deep neural networks. So, deep
learning algorithms that we have developed so far mostly in the domain of a

classification, but the same pipeline will be followed for other kind of problems also.

So, but in tensor board in the last class that we whatever we have seen is how we can
actually track or how we can see the performance metrics and maybe in the graphs for
the computational graph for the algorithm and so. But here in DLProf what we will see is
that we will profile the resource usage, the utilization, the recommendation from the
from the profiler. So, all these things we will see in DLProf.

So, this is our new dimension of profiling that we will see today. And data scientists
must be aware of such profiling because this will help essentially to improve the training
performance in the end. So, in today’s session, we will see one of such customization
which will improve our performance of training module that we will run, ok. And we
will see how much performance gain we are achieving or what are the improvements we

are doing. So, all these things we will analyze.

And also in the next session, we will see the PyTorch catalyst. So, this is as name
suggests, it is accelerated framework for PyTorch. This will give you the flexibility to
efficiently wrap up everything whatever you want to do it in PyTorch in very simple
terms, ok. So, that also we will see. So, that way we will get the enhancement of the
training modules. So, all these things will be very modular and it will be easy to define

the entire pipeline and also reproducibility will be very very high.

444

(Refer Slide Time: 02:54)

O PyTorch AAA %
&

~

7y

-

FW Support: TF, PyT, and TRT Lib Support: DAL,

NCCL Visualize Analysis and Recommendations

So, we will start with DLProf. So, let me; so as | was mentioning the DLProf will help
you to visualize, analyze and recommend, ok. So, what kind of recommendations that we
will see, as well as we will see what kind of profile that are coming from let us say the

CPU usage the GPU usage. Also, inside the GPUs what are the cores that are being used

how much time they are being used, and how you can improve the performance.

I mean the framework point of view this DLProf supports also by tensor flow you can
work with TensorFlow and DLProf, you can work with PyTorch, TRT, also several
libraries supported by it because you need to improve some performance and support

some background as well. So, DALI and NCCL, so all these libraries are also supported.

So, today we will see how to use PyTorch modules to be profiled with the DLProf
profile, ok.

445

(Refer Slide Time: 04:06)

Deep Learning Profiler

* DLProf (CLI & Viewer)
+ Helps data scientists understand and improve performance of their DL models by
analyzing text reports or visualizing the profiling data
* DLProf CLI

+ Uses Nsight Systems profiler under the hood

+ Aggregates and correlates CPU and GPU profiling data from a training run to DL
model

* Provides accurate Tensor Core usage detection for operations and kernels
* [dentifies performance issues and provides recommendations via Expert Systems

Praf Viewer
* DLProf Viewer

* Uses the results from DLProf CLI and provides visualization of the data
+ Currently exists as a TensorBoard plugin

Credit: NVIDIA ﬁ

And so, before that we will need to understand and a few things basically what is DLProf

it helps us to understand and improve the performance of the DL pipeline. And mostly
the trained pipeline because it will be iterated several times as you have seen loop or

several loops will be running based on your target one or target achievement.

Now, it will also generate reports or visualize the profile profiles. Now, DLProf CLI
what it uses the Nsight systems profiler. So, we will enable this profiler to input the
profiling data and it will make the database. Also, it will correlate the CPU usage and the
GPU usage, because the both will be working in tandem and some data, it will be shared
from or accessed from you and it will be shared through your GPU and GPU will

aggregate or train your model depending on the data which is available.

So, the correlation between the CPU and GPU will be important and that we will directly
get the data from here. As well as, it provides to track your tensor cores usage. Now, this
is very very important because finally, we are talking about the deep learning modules
for deep learning, training in particular. So, that means, like tensor cores must be used,

right because tensor cores are specifically designed for your deep learning computational
acceleration, right.

So, usage of tensor cores how it is being monitored or how it is being used by your
algorithm that usage detection must be there. So, we will see how to track this. As well

as, so some library that we will be using or enabling the tensor core usage.

446

Now, to profile or to see the recommendations you need to have one recommended
system, right. So, the expert system provided by DLProf CLI will provide the
recommendations. So, if let us say your tensor cores are underutilized based on the other

course that are being utilized inside your GPU.

So, this expert recommended system will tell you that this these are not utilized. So, you
can use this libraries to use to enhance the usage or maybe let us say you have some data
bottleneck or memory bottleneck, so what kind of library you can use to remove that or
eradicate the bottleneck. So, all these expert suggestions that also will be given by the

recommended system.

And the viewer will essentially help you to visualize profiles and also you can log the
reports and save them for your later analysis. And also, currently tensor board plugin is
also available, so you can use tensor board assume to see or visualize the profiles, ok. So,

either you use DLProf viewer or you use tensor board plugin, ok.

So, we will help you to see more, but I mean there will be some instructions to how the
how you can get the profiles in tensor board and how you can create the profiles in

viewer. So, all these things we will, ok.

(Refer Slide Time: 08:08)

GETTING STARTED

) f‘ :—;@f_ O PyTorch

1. TensorFlow and TRT require no additional code 1. Add few lines of code to your training script to

modification enable nvidia_dlprof_pytorch_nvtx module
°
2. Profile using DLProf CLI - prepend with dlprof 2. Profile using DLProf CLI - prepend with diprof

3. Visualize results with DLProf Viewer 3. Visualize with DLProf Viewer

Credit: NVIDIA

447

So, as | was mentioning that it supports tensor flow tensor RTs for these two
frameworks, you do not take any additional code for modification to be used in DLProf.

So, it will directly profile you the program and it will help you to visualize.

For PyTorch, you need to activate this module because this NVIDIAs profiler will be
written. So, basically you will enable first and then you use your training pipeline or your

multi-stage pipeline or whatever you want to use for your deep learning training.

Now, as | was mentioning in the previous slide the CLI will process this with DLProf

and that will help you to visualize.

So, very simple few lines of code you need to add for PyTorch, but that is very minimal.

Just one minute, ok.

(Refer Slide Time: 09:09)

AUTOMATIC MIXED PRECISION

TRAINING LAYER AUTOMATIC MIXED PRECISION ACCELERATED BY GPU

°y

Now, in the previous section | was mentioning that DLProf, the relationship between
DLProf and this automatic precision, mix precision library is very impact because the
proper tensor cores. So, the profiler actually tracks the usage or utilization of your tensor

cores that are available inside your GPU.

So, that means, you want to have some computations to be offloaded into the tensor
cores and automatic precision library will help you to do that, ok. So, that is why if you
are not using automatic mixed precision library, then the tensor cores will be

underutilized.

448

So, your tip training layer will have this pipeline. Let us say | have 2 convolution layers,
3 convolution layers here and normalization, pooling and so on. So, all these layers up

there from input 1. So, this is one forward pass and this will be iterated several times.

Now, what | want to do? | want to convert or skills some of the parameters into some
into some data types that is supported inside the tensor because all the data types which
are let us say floating point single precision data type which are supported in the CUDA

cores that are not supported in your tensor cores, ok.

So, for the tensor cores you need to scale your data which you use inside your training
model 2 FP16, ok. So, basically, makes precision you will do a computing, ok. You will
use both the data types inside your training to be able to optimize and also gets better

results, in that right.

So, some of the data will be processed in the rest of the course and the scaled data which
is FP16 will be run on the tensor cores. So, that is the purpose of your automatic mixed

precision library.

Now, automatic mixed precision library has two sources. If you are using NVIDIA, so
basically you will be using NVIDIA apex and for generalized use of mixed precision
library you can use native PyTorch amp also. So, there are two sources you can use

either you can use NVIDIA apex or native PyTorch amp, ok.

So, this is going to be interesting because you will see that some of the | mean most of
the computations which will be run on your tensor cores to convert them or to skill them,
you will need very minimal product. So, for use of automatic mixed precision library, it

is also very easy.

449

(Refer Slide Time: 12:13)

BEFORE YOU PROFILE

Do:

* make sure your code runs without an issue

+ make a habit of using profiler when you make changes to your code
* Observe if changes you made improve the training performance

+ get familiar with the optional arguments DLProf provides

* Iteration range, delay, duration and etc,,

Don't:
+ profile for extended periods of time. It will take very long to profile
* DL training is repetitive and you only need a couple minutes to profile to learn
* try to open DLProf database with your TensorBoard
* You need NVIDIA TB GPU plugin to visualize DLProf event files
o

Credit: NVIDIA ﬁ

Before going into profiler you need to know certain things to do and to follow, not to

follow because people often spin or some resources because once you start profiling

many resources will be used, ok.

So, what to do? Make sure that your code runs without an issue because we just check it
before running into the into the DLprofiler. We just check it whether your training
module is working perfectly or not. Just one run will be will suffice that without any

error it is trained.

And also you need to make a habit of using profiler when you make changes in it
because each change can replicate or it can offer you a cascading effect which will

enhance the either the performance or it can degrade the performance, ok.

So, several order of magnitude of your performance can increase or decrease. So, how
your change in the code helps either increasing or decreasing the performance that you
need to check everything, and this is just one rule. If you know that this is going to

increase your performance that is good.

But in several cases you will see when you are working with a big pipeline, you will see
maintaining certain aspects of speedup will not be actually happening as prescribed by
the library. So, they will say that this library will help you to enhance the performance,

but in some cases it will not happen because of that where you have defined the

450

performance. So, basically, you need to check every time whether each change is giving

you other than your desired performance training.

And also you need to get familiarized with some arguments in the DLProf which we
provided. And of course, the iteration range, delay, duration etc also you need to get
familiar because all these aspects; so basically iteration range, how this will affect your
training, how delay, how much duration you are you are actually spending for making
certain modules run. So, all these things you need to be, at least in some abstract way
you need to do, ok.

And of course, you should not profile for extended period of time because you should
not train the entire thing to get correct profile for your training because training module

is essentially one iterative process, right. And the same thing will be repeated every time.

So, few iterations if you check for your training model that will give you overall idea that
how it is going to perform. You do not need to go through the entire training process for
all the epochs or for all the iterations you do not go. So, few of iterations will help you
understand that, to be frank it is going to be it makes some modifications or needs an
update.

DL training is repetitive as | was mentioning, and that is why you need to spend a couple
of minutes to profile it and that will suffice. Also, try to open DLProf database with your

tensor board or DLProf viewer.

And so, basically this the logs will be saved as database and the recommended systems
are tensor board and profiler. So, you can use other yeah. So, it will help to visualize the
DL profiler event files. So, basically NVIDIA test bench GPU plugin you need to use,
ok.

451

(Refer Slide Time: 16:20)

NPTEL

DEMO

So, let us go to the demo section now.

(Refer Slide Time: 16:25)

VNE

NPTEL

CATALYST

I

An

To demonstrate the DLProf, how to do that and then we will come to explanation, ok.

452

(Refer Slide Time: 16:32)

(Refer Slide Time: 16:44)

. c :

—] -~ -
= — Jupyter DLPROF Last Checipoint adayago (sutosaved) L NPTEL
5] Tuses £ |Pyhon3 O

g 2B+ ¥2308 4% PR B C MW co v a

IA available

?
A

— Ipip install nvidia-diprof

q # install just DLProf and the immediate dependencies

- Ipip install nvidia-diprof[pytorch]

1 ackage (<
»
@ NVIDIA Nsi 3

Defaulting to user installation because normal site-packages is not writeable
Looking in indexes: https://pypi.org/sisple, https://pypt.ngc.nvidia.con

So, now let me do this. Let me explain. So, basically there are two methods to run
DLProf, one is through your notebook and through the command. So, if you have
installed any you know or if you have not installed it or if you have to use the DLProf in
Jupyter notebook or any other notebook you can use.

453

(Refer Slide Time: 17:17)

S,
F0N
g 3
[l Jupyter DLPROF Lastchecigan: adeyago (asosaies) [NOAEL
‘\ Fle Edt Vew nset Cel Kemel Hep NotTnsted /| Python3 O

Pytorch does nges around operations
s such, DLProf has to rely on a python pip package called nvidia dlprof pytorch nvtx

The WVIDIA Tools Extension Library (WTX) - Applications which integrate NVIX can use WIDIA Nsight VSE to captur
" # visualize these events and ranges

@ ©

Ipip install nvidia-diprofviever
4 # To view the results

| Defaulting to user installation because normal site-packages is not writeable

Looking in indexes: https://pypi.org/simple, https://pypi.ngc.nvidia.com
Q Requirement already satisfied: nvidia-pyindex in /home/user/.local/lib/python3.6/site-packages (1.6.9)

Defaulting to user installation because normal site-packages is not umeable

Looking in indexes: https://pypi.org/sisple, https://pypi.ngc.nvidia
o] Requiresent already satisfied: nvidia-dlprof in /home/user/. la:al/uh/uymonz 6/site-packages (1.8.8)
Requirement already satisfied: nvidia-nsys-c1i>=2621.3.2.12 in /home/user/.local/lib/python3.6/site-packages (from
nvidia-dlprof) (2621.3.2.12)
9 Defaulting to user installation because normal site-packages is not writeable

Looking in indexes: https://pypi.org/sisple, https://pypi.ngc.nvidia.com

Requirement already satisfied: nvidia-dlprof[pytorch] in /hone/user/.local/Lib/python3.6/site-packages (1.8.8)

Requirement already satisfied: nvidia-nsys-c11>=2021.3.2.12 in /home/user/.local/lib/python3.6/site-packages (from

nvidia-dlprof [pytorch]) (2621.3.2.12)
» Requirement already satisfied: nvidia-dlprof-pytorch-nvtx in /home/user/.local/lib/python3.6/site-packages (from n
vidia-dlprof [pytorch]) (1.8.8)
Requirement already satisfied: torch>=1.2. in /home/user/.local/lib/python3.6/site-packages (from nvidia-dlprof-p
ytorch-nvtx->nvidia-dlprof [pytorch]) (1.18.1) - =
Requirement already satisfied: numpy>=1.17.2 in /home/user/.local/lib/python3.6/site-packages (from nvidia-dlp
pytorch-nvtx->nvidia-dlprof [pytorch]) (1.19.5) ' N
Requirement already satisfied: dataclasses in /hone/user/.local/lib/python3.6/site-packages (from torch>=1.2.8
1dia-d\prof -pytorch-nvtx->nvidia-dlprof [pytorch]) (6.8)
qurm(alreaoy sanshed typm] -extensions in /home/user/.local/1ib/python3.6/site-packages (from torch><

prof (pytorch]) (4.6.1)

&

So, the method 1 is essentially the first method which is used in the notebook. We will

not go into details. You can see the same details in the next section as well.

(Refer Slide Time: 17:26)

&
§
q 1%
— - X
8 — Jupyter DLPROF astCheckpoint 2 dayago (aosaved) Lt NPTEL
*) Fie Vew et C Kenel Hep NaTuses 4 [Pypon3 O
8 + X208 4V PR B C W o v a
ytorch-nvtx->nvidia-glprof [pytorch]) (1.16.1)
5 Requirement already satisfied: numpy>=1.17.2 in /home/user/.local/Lib/python3.6/site-packages (fron nvidia-dlprof-
pytorch-nvtx->nvidia-dlprof [pytorch]) (1.19.5)
Requiresent already satisfied: dataclasses in /home/user/.local/lib/python3.6/site-packages (from torch>=1.2.8->nv
A idia-dlprof-pytorch-nvtx->nvidia-dlprof [pytorch]) (6.8)
Requlrm! already satistied: typing-extensions in /hone/user/.Local/Lid/python3.6/site-packges (fron torcho=l.
% dia-dlprof -pyt prof [pytorch]) (4.6.1)
v De'aulung to user ms!allaum because normal site- na:kages 1s not umeable

Looking in indexes: https://pypi.org/sisple, https://pypi.ngc.nvidia.c
Requirement already satisfied: nvidia-dlprofviever in /hme/use!/.lo(al/lxb/pytmni.ﬁlsne'pa(kaqes (1.8.8)
Requirement already satisfied: setuptools in /home/user/.local/lib/python3.6/site-packages (from nvidia-dlprofview

B
g er) (59.6.8)
F

Requirement already satisfied: gunicorn in /home/user/.local/lib/python3.6/site-packages (from nvidia-diprofviewe
.1.8)

1) (20.1
Requirenent already satistied: whitenoise in /hone/user/.local/lib/python3.6/site-packages (from nvidia-dlprofview
b er) (5.3.0)
) Requirement already satisfied: django==3.2.6 in /home/user/.local/lib/python3.6/site-packages (fron nvidia-dlprofv
iever) (3.2.6)

Requirement already satisfied: uvicorn[standard] in /home/user/.local/lib/python3.6/site-packages (from nvidia-dlp
rofviewer) (8.16..
Requirement already satisfied: asgirefed,;
2.6->nvidia-dlprofviewer) (3.4.1)
» Requirement already satisfied: pytz in /usr/Lib/python3/dist-packages (fron djang
018.3)
Requirement already satisfied: sqlparse>=8.2.2 in /home/user/.local/lib/python3.6/site-packages (from django==3.2.
6->nvidia-dlprofviever) (6.4.2)

Requirenent already satistied: hl1>=0.8 in /hone/user/.local/Lib/pythond.6/site-packages (from uvicorn[standa
nvidia-dlprofviewer) (9.13.0)

3.3.2 in /home/user/.local/1ib/python3.6/site-packages (from django==3.

3.2.6->nvidia-dlprofviever) (2

Requirement already satisfied: click>=7.8 in /home/user/.local/lib/python3.6/site-packages (from uvicorn[stand
->nvidia-dlprofviewer) (8.0.4)
e Requirement already satisfied: typing-extensions in /home/user/.local/lib/python3.6/site-packages (from uvicors
andard] ->nvidia-diprofviewer) (4.0.1)

454

(Refer Slide Time: 17:27)

e

=)

0 b v >4

UpYter DLPROF Las Checkpoin: adeyago (atosaved [

Edt Vew st Cel Kemel Hep

NaTnses £ | Pydon3 O

+ Q0B 4% RO ECH
Requirement already satisfied: dataclasses in /home/user/.local/lib/python3.6/site-packages (from h11>=8.8->uvicor
nistandard] ->nvidia-diprofviener) (0.8)

Requirement already satisfied: zipp>=8.5 in /home/user/.local/lib/python3.6/site-packages (from importlib-metadata
->click>=7.08->uvicorn[standard] ->nvidia-dlprofviewer) (3.6.8)

In [4): # Profile the required Python script saved as .py file
1dlprof --force=true --node='pytorch’ python3 /home/user/1 VIDHYA/DLPROF/DEMO/train.py
forcestrue - to overwrite the previous event fil
train.py is sase as the notebook file we created in Pytorch Catalyst with few sodifications
r MO URCS T o

train loss: 6.8371158838272695
train loss: 8.7992148399353627
train loss: 6.763414264120636

I train loss: 6.8113858103752136
train loss: 6.7225855588912964
train loss: 6.46916428208351135
train loss: 6.6547088623846875
train loss: 6.7326627756968933
train loss: 6.777737621446228
train loss: 6.6623698449134827
train loss: 6.7424428462982178
train loss: 6.5118435625215149

train loss: ©.6416926383972168

train loss: 0.6444294452667236
train loss: 6.6980605562766886
train loss: 6.6955747688323669
train loss: 6.5945144295692444
train loss: 6.5660998476668276
train loss: 0.5392546653747559

(Refer Slide Time: 17:28)

q
]
)

e

=)
Fle

0 b v >4

UpYter DLPROF Las Checkpoin: adeyago (atosaved [

View Cel Kemel Hep NaTnses £ | Pydon3 O
+ %208 4% PR BCH co va
train loss: §.b4442944320b/230
train loss: 6.698080055027068886
train loss: 0.6955747888323669
train loss: 8.5945144295692444
train loss: 6.5660998476668276
train loss: 8.5392546653747559

: # View the Rsults
‘dlprofviewer diprof didb.sqlite
dlprof dldb.sqlite - Filenase - check with s command

[dprofviever-10:62:28 A UTC] dlprofvieer running at http://localhost:8808

[2622-62-20 15:33:22 +8530) [10876] [WARNING] Worker with pid 18879 was terminated due to signal 3

In [2]: # METHOD2 - Have to use command line Terminal

Docker prevents probless related to installatio
B 2o nore fighting with Cuda versions and GCC compilers

Welcose o the docker era. ALl you need is a Unix Systes with updated Cuda drivers

And you need is to download a docker from MGC cloud that cor the environsent you need with all the Cud

Deep Learning environment

code

Steps

#9 Ensure you have access and are logged into NGC
Create Account if new user from REF4

#1 Docker Engine
docker - Check if Docker already installed and
Docker version 20.10.11, b 0ead3%

If not, install docker

455

(Refer Slide Time: 17:30)

 Jupyter DLPROF wast Checkpaint adsyago (stosaved)

8 + X208 4V PREBCH v @

'distribution ‘etc/os-release;echo SISV
& curl -5 -L https://nvidia.github. io/nvidia-docker/gpgkey | sudo apt-key add - \

dia-dock nvidia-docker. list | sudo tee /etc/apt/source

f a software package before installation b

I A EN N XY T

(

83

sudo apt-get update
sudo apt-get install -y nvidia-docker2

[©)]

Isudo systemctl re:

sudo docker run --rm --gpus all nvidia/cuda:11.6-base nvidia-smi
!nvidia-docker version
2.3 wiriing caton’can he taciad b iscian 3 Rice g caataton

So, in the method 2, we will discuss about how to use in command line. So, basically you

need to make sure that you may have access in NGC. You need to create one account for

that and you need to have Docker Engine installed.

And if you do not have you can check these commands to install it. And then you can
install the container toolkit and you can start using the check the whether necessary
drivers are there or not and then we install the NVIDIA Docker for the. So, this is the
distribution that we want to make available inside my Docker. So, basically you just

install it with this command.

456

(Refer Slide Time: 18:22)

e DR8P0 s;

 Jupyter DLPROF wast Checkpaint adsyago (stosaved) A
Tuses ¢ |Pyton3 O
8+ %208 4% PrnBCH v
15000 QOCKer run --rm -~ ! 111,6-0ase MW1012-5m1

!nvidia-docker ver:

[sudo] password for user:

nver.jo/nvidia/pytorch:21.62-py3
quired Container

!docker inages ‘
View the pulled inage

And then once it is installed, so basically, you need to install this package for your use

and then you restart the Docker, and then you start it and just check the version. So, this

is the complete installation of your Docker and check the version. And once it is

successfully installed, then using this NGC Docker then we will start using that.

(Refer Slide Time: 18:46)

" Jupyter DLPROF Las Crespont adayago (atosae) [

Aot A KR N AR K

xTuses # |Pyton3 O

8+ X200 4% PR B C W cox v a
In [4]: # Launching the NGC Container

!docker run --gpus -it --rm --network=host -v /home/user/1 VIDHYA/DLPROF/DEMO: /workspace/DEMO nvcr.io/nvidia/py

1
pip install nvidia-dlprof [pytorch]

jorkspace/DENO/train.py
nt files

tensorboard --port 8606 --logdir=event files # We v

So, basically you need to pull the Docker image, ok. So, this is the NGC Docker

container or usage. So, once it is pulled then we can just run this comment to launch the

NGC container now.

457

And once container is launched then you can install the necessary pack. So, what are the
necessary packages for here? So, basically, | need to install nvidia-pyindex, nvidia-dlprof

with pytorch. You can this also tensor flow as | was mentioning.

(Refer Slide Time: 19:30)

_ Jupyter DLPROF Last Checkpoint adayago (ssosaved)

pip install nvidia-diprofviever

dlprof python /workspace/DEMO/train.py

logdirzevent files # We will get a Link which can be pasted in browser and the profiling

FELCDLEI T CEYT

tensorby

Kt

£3

dlprofvieer dlprof dldb.sqlite

[©)]

[sudo] password for user:

So, here we are using PyTorch and also you need to install nvidia-dlprofviewer because

we are using dlprofviewer to visualize the profiles, ok.

Now, once you have successfully completed up to this. So, basically you have installed
all the packages, now you can use your dlprof in the next column. But before that you
need to have the training.py because the training module that | want to profile using this

dlprof just targeted prospects.

Now, once you have this training.py, so basically let us see what is in the training.py.

458

(Refer Slide Time: 20:13)

— Jupyter train.pyv vas sundaya 1515

Fe Edt Vew Language

import matplotlib.pyplot as plt
from PIL isport Inage as in
inport nuspy as np

isport nvidia dlprof pytorch nvtx as nvtx
nvx.init(enable_function stack=True)

e

from torch.utils.data isport Dataloader
from torchvision.datasets inport MNIST
from torchvision.transforas isport ToTensor
import torch

device = torch.device("cuda® if torch.cuda.is available() else “cpu”)

sl AN N Y

train dataset = MNIST("./mnist", train=True, download=True, transform=ToTensor())
valid dataset = MNIST("./mnist", train=False, download=True, transform=ToTensor())

train loader = Dataloader(train dataset, batch size=32)
» valid_loader = Dataloader(valid dataset, batch size=32)

loader)
labels = dataiter. next_()
ype(inages))

pri mages. shape)
print(labels. shape)

So, training.py is essentially the pipeline for training learning models. Now, the some of

the packages that you have seen so far because we have used them, so basically these
imports for your torch, torchvision that you have seen, few others that we need some
libraries for images and plots, so numpy, PIL and matplotlib.

And also you need to import the nvtx, so because this will enable this stack tracers for
the profiles that will generate from PyTorch training run, ok. So, this is the only one line

you need to add to re-enable the profile from this training model, ok.

(Refer Slide Time: 21:04)

— Jupyter train.pyv Lasi sundayat 1515

print{inages. shape)
print(labels. shape)

pIt. inshow{ inages 2] .numpy() . squeeze(), caap="gray r')

fron torch inport nn

model = nn.Sequential(

nn.Linear(28

FECLLEL N CEYL S

optinizer = torch.optin.Adan(nodel.paraneters(), lrsle-3)

criterion = nn.CrossEntropyLoss()
wi rad.

nun_epochs = 1

for epoch in range(nun epochs):

459

So, now, once we have all the necessary packages imported, you just specify the device.
These are as usual, nothing to nothing new. So, all the PyTorch things, train set data set,
valid data set, so here we are doing training and validation. So, we are just using the train
loader and valid loader with it this number of batch size.

Now, notice that we have not enabled the number of workers here, ok. So, we want to
see what happens, ok. Now, once you have defined the train loader and data loader, you
just you can print some images, you can see, ok. So, these are the things that we want to
do before going into the training part.

(Refer Slide Time: 21:56)

_ Jupyter train.pyv Las sindayat 1515

backward()

optinizer.step()
ptinizer.zero_grad()

BEEE AN Y L

with torch.no_grad()

e

(€]

0ss = torch.mean(torch. tensor{valid loss))

(v)
o , valid loss.itea()) E

So, this is the class where we are defining the model. So, this is the model definition and

we are transferring the model to the device. We are defining the optimizer, the criterion

for the loss and then this is the training loop that we have defined, ok.

And with torch.autograd.profiler, now we are starting the profiling or emitting the
stresses from here because. Before that we do not need all this. So, for this loop only |

need to profile, because this is the loop for your train.

Now, how many epochs? You just define it. So, for as | was mentioning you do not need
to run the training for all the loops, just only one single run will suffice or maybe 2, 3

runs. If you want to have some more satisfaction you can do 2, 3 runs of inter loop and

460

you will get the idea. And this is the validation, ok. So, this is the entire training module

which | have written.

So, now we will go to the code. So, basically, here to view the results you need to run
dlprof with this training dot. So, this is the comment to export the process into your

databases.

Then, once you run that you will see that you have, so basically what we have done this
we have; yeah. So, we have mentioned stack, function stack equal to true and it will
write all these data into this current directory, and so from the event files you can see
inside the tensor board, ok. And if you have mentioned the targeted files in any

elsewhere you can mention the directory path here, ok.

Now, if you are using dlprof, so in our case we are using dlprof. So, the database we
have to create in to the current directory which is dlprop underscore dldb. So, our
deployment database dot sqlite. So, this sqlite database has been created and it is
recommended that you open this using DL profile viewer only, ok. So, because all the

necessary encoding and decoding is supporting the dlprofviewer.

(Refer Slide Time: 24:30)

OQ DRSS DPDOSH:

£

[©)]

So, once you open this, open opening your profiler into dlprof, then you will see the
window, ok. So, basically, you can see that this is loaded from your DLProf profiler into

your local host and now this is the dashboard for your profile.

461

So, you can see GPU utilization and resource usage breakdown and total kernel time
GPUs in milliseconds, and total core kernel efficiency, so how much percentage of core

kernel has been used.

(Refer Slide Time: 24:56)

:xio:;q‘- .)
. e
e
[— []
L N GPY

Time T Using
- (s) OpMName ODrecton OpType Cais Bighe TC

&

So, now as | was mentioning that these are the usage and let us say let us take this

resource usage background breakdown. So, 20 percent resources were been used from
elsewhere and data loader is using 65.81 percentage of resources. CPU is using 13.23
and your GPU is very narrow. So, not using tensor cores, because we have not actually
used the amp library for enabling the tensor cores, ok.

462

(Refer Slide Time: 25:45)

5 m &

@ ©

sttty
sy,
M 4

Wl Cock i

Op Name

Tensor CoreKee

ot

Py Ustston (%) © 0 c s B b
mocSequmrat_ca |
LeRp—

B T s TP
e

o heations @

et taccns @

S teaton]
moddySequersal-_ca |
[R—

by e
el piLnetova
ey

wrassocures cabencry o
Ao 20 e

180

" o Sequernal-_ca

rolSeqtl sl =
e ol mplnerfova

e

Imoode/Secuersal-_cal |
iSequertat

s ™ ——
ol gLt
e

oo Sequersal- ca
molSequertal fowd
ear-_cal mpiLnear-forsa
ey

“%
4
)

g

=
3¢
o

g CrossErtpytos:
o meRZ)CrossEreepr. by
oss rwantirnss erropy

16165

Imoddraspesho_rad-d
93378 acoue coneaidanse Bxop aax
pidemadiay

(o T i il |

Ungersarcing GPU uskzanon and tmng detas of 20
Operators s e st sep g your model

System Config

GPU Caut 1

Recommendation

GPU Naros) T LT e e p— + Tolln mere s Tosar ores i Mnd
devetoe ——— Precsor vareg wst
PNl o ursomads
+ Yot Wt rescutces on ow s £ et

TheGPYs Dutalcader hs thefighest (o GPU) ssage a 65 3W. Investigare e
undenizad Orty 0% daaboading ppeine 25 s oien ndcates 1 Tich e s e
dthepotiedsme’s tene

seston
operamcns wrye

e e srecrsen s mabe 8 use of
9 spert Teesax cores for Tensoriow et bee

GPU Dt Verson

Feameserk

e e are mulghe Kemets bey
chserves on singe . hese are i
perorming daa taesposes
for eficet use by ensorcres. S
Hansprses Pemsees woud et
s

65.8% o the aggregated.Focus o reducng S
nnwesspetahe cokdbe sme spey
datondr whve nct
smatweusy nenng
ontheGPU

e speet 1 the tinieg Gt poces: This:
the readng preprocessig and wpmeraion o

NSy Version .
— e vanstr St um_workers > 0 o e datoade 1o natle

asyachvnoss duts badg Setpr_ memory
enabietaster Ry cperators Consce s
Pt 5 2 bigh perormance
seratrs. Learn more e

us 1 e caloade
g NVIDUA DAL a oy
e 1ot ot s i ot

OLPro! CU Verstn

OLPo! DB Versor

DUPro Viewss Veesion

463

(Refer Slide Time: 25:47)

L]
B
8}

=] p
"

°

1

z]

a

9

£

[©)]

So, if you go to the recommended system, so expert system in the bottom you will see
expert system, and here some recommendations you can see now. So, the
recommendations are 945 operations were eligible to use tensor core, but are none are
using FP16 because you have not used amp library. So, the recommendation is try

enabling amp library for more information improvements.

And GPU is underutilized, only 5 percent, 0.5 percent is profiled that is fine. And also, it
has recommended that 65.8 percent of your aggregated run was spent in the data loader
while not simultaneously running on the GPU, right because it is waiting for the data

because you are not using multiple cores for loading the data, right.

So, you can either use num code greater than 0, ok. So, these are the recommendations
that you are getting or use NVIDIA DALI which is the data loader library for from
NVIDIA itself. So, you can use either of them. So, we will see one of them and to you.
So, and also what kind of systems you are using, and what are their versions, and so on

and so forth, all the information we keep. The guidance here.

Since, average iteration time is 42 milliseconds, this I mean you cannot see the graph
here, but if you run from for more time like duration in seconds you can see. So, if you
run in seconds, you will see what are the use of tensor cores, not using tensor cores, how

much memory is being used, dataloader, 10 and CPU others.

464

So, this is these are the performance summary you will get. And | want to improve the
average iteration time in the end because with some performance tweaking and
introducing the amp library, | want to use the tensor cores and in the end | want to use or

| want to enhance the average time.

(Refer Slide Time: 27:55)

~ Jupyter train_amp.pyv adyago Logout
Fe Edt
import matplotlib.pyplot as plt

from PIL isport Inage as in
import numpy as np

#Profiling
import nvidia dlprof pytorch nvtx as nvig
nvtx.init(enable function stack=True)

from torch.utils.data import DataLoader
from torchvision.datasets import MNIST
from torchvision.transforas import ToTensor
isport torch

FEr A E I Y X1k

device = torch.device("cuda® if torch.cuda.is_available() else “cpu”)

train dataset = MNIST(*./mist", train=True, download=True, transform=ToTensor())
» valid dataset = WNIST(*./mnist", train=False, download=True, transforn=ToTensor(})
0 train loader = Dataloader(train dataset, batch si; n_workers=4)
< valid_loader = Dataloader(valid_dataset, batch_si: n_workers=4)

dataiter = 1
images, labe!

rain_loader)
dataiter. next_()

So, next we will use the train_amp.py. So, this training module is using now the amp
library which is from the apex. So, automatically expression now we are using from

apex, right in media apex. So, you can go to this reference, ok.

(Refer Slide Time: 28:17)

~ Jupyter train_amp.pyv adeyago Logout

print(type(inages))
print(inages. shape)
print(labels. shape)

#Sanple data fron the Training Dataset
pLt. inshow(inages(8] .numpy() .squeeze(), crap='gray r')
from torch isport an

model = nn.Sequential (
nn.Linear(28 * 28, 128)

nn.RelU(),
nn.Lineal
an.ReLU(
nn. Linear (12
)
model = model.. to(device)

el LN N Y

odel)
» optimizer = torch.optin.Adan(model.parameters(), lr=le-3)
A P
S model, optimizer = amp.initialize(model, optimizer, opt level="01", loss_scale="dynamic")

4

criterion = nn.CrossEntropyLoss()

465

So, the usual python imports and then defining the device, defining the data loader, train
loader and everything is same. Only thing is that you need to define this model and
optimizer for your from your amp because now the model should be compatible to use
the scaled database, ok and also optimizer. Because optimizer is essentially computing

the gradients and then it is being updated with the gradients.

So, optimizer and model initialization with the amp that is important to use amp library.

So, we have imported that before just one more time. So, that import was done before.

(Refer Slide Time: 29:05)

_ Jupyter train_amp.pyv adayage

with torch.autograd.profiler.emit_nvtx():
num_epochs = 1

for epoch in range(nun_epochs)

for x,y in train loader
x = x.to{device)
¥ = y.to(device)
X = x.view(len(x), -1)

logits = model (x)
loss = criterion(logits, y)

print(*train loss: *, loss.itea())
A

with amp.scale loss(loss, optinizer) as scaled loss
scaled_loss. backward()

optimizer.step() 1
optinizer.zero grad()

BEEE A EY Y XY e

83

with torch.no grad()
valid loss = []
for x,y in valid loader:

[©)]

x = x.to(device)
¥ = y-to(device)

x=x)i -1
Logits = model (x)
valid loss.append(criterion(logits, y).itea())

And next we will go to the defining of the criterion, the training loop, now this is where

we are starting the profiler and then number of epochs we are defining as 1. The same
criterion we are keeping to see what kind of improvement we are getting with the profile,
ok.

So, x.to(device), so data we are transferring to your device, levels we are transferring to
your device, the modules, and it and then we are computing the loss. So, basically, while
computing the loss we are now scaling the losses and optimize gradients to your amp

library. So, basically, now we are using the mixed precision computer.

466

(Refer Slide Time: 29:59)

_ Jupyter train_amp.pyv adeyap

with loss(loss, of
scaled_loss. backward()

optinizer.step() 1
optinizer.zero grad()

Rl A EN N N3 K3

with torch.no_grad()
valid loss =

8}

(

for

£3

@

(criterion(logits, y).itea())

rch.mean(torch. tensor (v:
» valid loss.item(

Now, the mixed precision computing uses, so basically if you see here after the scaled
loss and optimizer definition, we will just do the backward pass which will compute the
gradients and then we will update that and initialize then to 0. So, that is the entire
pipeline that we have defined now, ok.

So, this is the entire definition. We just give you one more explanation of this
optimization level, ok. So, when we are optimizing, ok there are several data types that
we have mentioned, right. So, we mentioned that we can use either FP32, FP16 or mixed
up the two. Now, what will be used inside your training that will be defined by this

optimization level inside the initializer.

Now, what will be the criterion? | want to have mixed precision computing. So, so there

are 4 levels of optimizationo0,01,02,0 3.

Now, 0 0 is for use 0 0 and o 3 is without mixed precision. So, o 0 is with FP32 and o0 3
is with FP16 and o 1 and o 2 is with FP32 and FP16. And based on their usage in
framing you will have two models of mix position, so one and more. So, which will be
better for your training that you need to actually analyze by maybe 1 or 2 dots, ok. So,
you use ol first then see the profile, and you use o 2 and see the profile which model of

mixed precision computing is helping your case that you can see from the book.

467

(Refer Slide Time: 32:08)

Total Kemei GPU Time (ms) @ ks m

Il

Zoom: enabied (5.01x), toolp: enabled

Sup herasen
Aesage e T () ©

g

So, that is all about from the profiler, and let us go to the profiles after using the amp, ok.

sy,
y. ,

(Refer Slide Time: 32:15)

Zoom: enabled (3.281), looiip: enabled

=

468

(Refer Slide Time: 32:17)

L]
F
8}
B
W
i &
1
2]
a
9

So, after using the amp you can see that go to the recommended system. Now, it is not
saying the previous message, right. So, it was showing that tensor cores were not being
used, now tensor cores are being utilized and it has increased the utilization from 0.5 to
0.6 percent. So, basically this was just one run, right not multiple runs.

And data loader has the highest usage, still power data loader has highest usage. So, still
we have run that with without any workers and that is why you can see here the data
loader is using most of the resources and also tensor cores are being used. So, using GPU
1; because we are now using tensor cores using the amp library. So, the usage of GPU

utilization has been increased.

But you can see that average utilization time also have increased and that is only because
your data loader, because of this data loader bottleneck you are actually increasing the
average iteration time and though you are using amp library. So, after introducing the in
inside your train dot train dot underscore amp dot py; so here now after introducing the
number of workers equal to 4 in the data loader and valid loader, we will see that so this

was the profiler after that.

469

(Refer Slide Time: 33:52)

9

6 Dashboard v

)

= I I 1]
B o D

FA . 21 '. 7, ¢
= i B

9 .

[=

B

E\

9

Zooms: enabled (1.02x), toolip: enabled

So, now you will see that data loader is now 13 percent only where others and CPU

usage has increased, ok.

(Refer Slide Time: 34:03)

o 3 ma:

=

e > m 3

And now if you see the average iteration time, it has been decreased | mean almost half.
So, just introducing one trick, it has increased the performance by 2 times.

470

(Refer Slide Time: 34:17)

R A N ¥ XY

And you can see that GPU is underutilized, but it has almost doubled the utilization
because now it is getting data simultaneously. So, basically 1.2 percent is the double of

0.6 which was before.

But still we have some bottleneck still because this is a very small network. And so, this
is how actually you will try to assess, analyze, after visualizing you change your code
with some other libraries, what is recommended by your recommended system and you

increase the usage of your tensor cores that are available inside your GPU.

So, let us go back to our slide now. So, that is all about from DLProf today.

471

