

Applied Accelerated Artificial Intelligence

Dr. Satyajit Das

Department of Computer Science and Engineering

Indian Institute of Technology, Palakkad

Introduction to Deep Learning

Lecture - 22

Profiling with DLProf PyTorch Catalyst Part - 1

Good evening everybody. So, today we will start with Profiling with DLProf and then

we will look into the PyTorch Catalyst. So, far what we have done? So far we have

looked into how to make the pipeline for training in deep neural networks. So, deep

learning algorithms that we have developed so far mostly in the domain of a

classification, but the same pipeline will be followed for other kind of problems also.

So, but in tensor board in the last class that we whatever we have seen is how we can

actually track or how we can see the performance metrics and maybe in the graphs for

the computational graph for the algorithm and so. But here in DLProf what we will see is

that we will profile the resource usage, the utilization, the recommendation from the

from the profiler. So, all these things we will see in DLProf.

So, this is our new dimension of profiling that we will see today. And data scientists

must be aware of such profiling because this will help essentially to improve the training

performance in the end. So, in today’s session, we will see one of such customization

which will improve our performance of training module that we will run, ok. And we

will see how much performance gain we are achieving or what are the improvements we

are doing. So, all these things we will analyze.

And also in the next session, we will see the PyTorch catalyst. So, this is as name

suggests, it is accelerated framework for PyTorch. This will give you the flexibility to

efficiently wrap up everything whatever you want to do it in PyTorch in very simple

terms, ok. So, that also we will see. So, that way we will get the enhancement of the

training modules. So, all these things will be very modular and it will be easy to define

the entire pipeline and also reproducibility will be very very high.

444

(Refer Slide Time: 02:54)

So, we will start with DLProf. So, let me; so as I was mentioning the DLProf will help

you to visualize, analyze and recommend, ok. So, what kind of recommendations that we

will see, as well as we will see what kind of profile that are coming from let us say the

CPU usage the GPU usage. Also, inside the GPUs what are the cores that are being used

how much time they are being used, and how you can improve the performance.

I mean the framework point of view this DLProf supports also by tensor flow you can

work with TensorFlow and DLProf, you can work with PyTorch, TRT, also several

libraries supported by it because you need to improve some performance and support

some background as well. So, DALI and NCCL, so all these libraries are also supported.

So, today we will see how to use PyTorch modules to be profiled with the DLProf

profile, ok.

445

(Refer Slide Time: 04:06)

And so, before that we will need to understand and a few things basically what is DLProf

it helps us to understand and improve the performance of the DL pipeline. And mostly

the trained pipeline because it will be iterated several times as you have seen loop or

several loops will be running based on your target one or target achievement.

Now, it will also generate reports or visualize the profile profiles. Now, DLProf CLI

what it uses the Nsight systems profiler. So, we will enable this profiler to input the

profiling data and it will make the database. Also, it will correlate the CPU usage and the

GPU usage, because the both will be working in tandem and some data, it will be shared

from or accessed from you and it will be shared through your GPU and GPU will

aggregate or train your model depending on the data which is available.

So, the correlation between the CPU and GPU will be important and that we will directly

get the data from here. As well as, it provides to track your tensor cores usage. Now, this

is very very important because finally, we are talking about the deep learning modules

for deep learning, training in particular. So, that means, like tensor cores must be used,

right because tensor cores are specifically designed for your deep learning computational

acceleration, right.

So, usage of tensor cores how it is being monitored or how it is being used by your

algorithm that usage detection must be there. So, we will see how to track this. As well

as, so some library that we will be using or enabling the tensor core usage.

446

Now, to profile or to see the recommendations you need to have one recommended

system, right. So, the expert system provided by DLProf CLI will provide the

recommendations. So, if let us say your tensor cores are underutilized based on the other

course that are being utilized inside your GPU.

So, this expert recommended system will tell you that this these are not utilized. So, you

can use this libraries to use to enhance the usage or maybe let us say you have some data

bottleneck or memory bottleneck, so what kind of library you can use to remove that or

eradicate the bottleneck. So, all these expert suggestions that also will be given by the

recommended system.

And the viewer will essentially help you to visualize profiles and also you can log the

reports and save them for your later analysis. And also, currently tensor board plugin is

also available, so you can use tensor board assume to see or visualize the profiles, ok. So,

either you use DLProf viewer or you use tensor board plugin, ok.

So, we will help you to see more, but I mean there will be some instructions to how the

how you can get the profiles in tensor board and how you can create the profiles in

viewer. So, all these things we will, ok.

(Refer Slide Time: 08:08)

447

So, as I was mentioning that it supports tensor flow tensor RTs for these two

frameworks, you do not take any additional code for modification to be used in DLProf.

So, it will directly profile you the program and it will help you to visualize.

For PyTorch, you need to activate this module because this NVIDIAs profiler will be

written. So, basically you will enable first and then you use your training pipeline or your

multi-stage pipeline or whatever you want to use for your deep learning training.

Now, as I was mentioning in the previous slide the CLI will process this with DLProf

and that will help you to visualize.

So, very simple few lines of code you need to add for PyTorch, but that is very minimal.

Just one minute, ok.

(Refer Slide Time: 09:09)

Now, in the previous section I was mentioning that DLProf, the relationship between

DLProf and this automatic precision, mix precision library is very impact because the

proper tensor cores. So, the profiler actually tracks the usage or utilization of your tensor

cores that are available inside your GPU.

So, that means, you want to have some computations to be offloaded into the tensor

cores and automatic precision library will help you to do that, ok. So, that is why if you

are not using automatic mixed precision library, then the tensor cores will be

underutilized.

448

So, your tip training layer will have this pipeline. Let us say I have 2 convolution layers,

3 convolution layers here and normalization, pooling and so on. So, all these layers up

there from input 1. So, this is one forward pass and this will be iterated several times.

Now, what I want to do? I want to convert or skills some of the parameters into some

into some data types that is supported inside the tensor because all the data types which

are let us say floating point single precision data type which are supported in the CUDA

cores that are not supported in your tensor cores, ok.

So, for the tensor cores you need to scale your data which you use inside your training

model 2 FP16, ok. So, basically, makes precision you will do a computing, ok. You will

use both the data types inside your training to be able to optimize and also gets better

results, in that right.

So, some of the data will be processed in the rest of the course and the scaled data which

is FP16 will be run on the tensor cores. So, that is the purpose of your automatic mixed

precision library.

Now, automatic mixed precision library has two sources. If you are using NVIDIA, so

basically you will be using NVIDIA apex and for generalized use of mixed precision

library you can use native PyTorch amp also. So, there are two sources you can use

either you can use NVIDIA apex or native PyTorch amp, ok.

So, this is going to be interesting because you will see that some of the I mean most of

the computations which will be run on your tensor cores to convert them or to skill them,

you will need very minimal product. So, for use of automatic mixed precision library, it

is also very easy.

449

(Refer Slide Time: 12:13)

Before going into profiler you need to know certain things to do and to follow, not to

follow because people often spin or some resources because once you start profiling

many resources will be used, ok.

So, what to do? Make sure that your code runs without an issue because we just check it

before running into the into the DLprofiler. We just check it whether your training

module is working perfectly or not. Just one run will be will suffice that without any

error it is trained.

And also you need to make a habit of using profiler when you make changes in it

because each change can replicate or it can offer you a cascading effect which will

enhance the either the performance or it can degrade the performance, ok.

So, several order of magnitude of your performance can increase or decrease. So, how

your change in the code helps either increasing or decreasing the performance that you

need to check everything, and this is just one rule. If you know that this is going to

increase your performance that is good.

But in several cases you will see when you are working with a big pipeline, you will see

maintaining certain aspects of speedup will not be actually happening as prescribed by

the library. So, they will say that this library will help you to enhance the performance,

but in some cases it will not happen because of that where you have defined the

450

performance. So, basically, you need to check every time whether each change is giving

you other than your desired performance training.

And also you need to get familiarized with some arguments in the DLProf which we

provided. And of course, the iteration range, delay, duration etc also you need to get

familiar because all these aspects; so basically iteration range, how this will affect your

training, how delay, how much duration you are you are actually spending for making

certain modules run. So, all these things you need to be, at least in some abstract way

you need to do, ok.

And of course, you should not profile for extended period of time because you should

not train the entire thing to get correct profile for your training because training module

is essentially one iterative process, right. And the same thing will be repeated every time.

So, few iterations if you check for your training model that will give you overall idea that

how it is going to perform. You do not need to go through the entire training process for

all the epochs or for all the iterations you do not go. So, few of iterations will help you

understand that, to be frank it is going to be it makes some modifications or needs an

update.

DL training is repetitive as I was mentioning, and that is why you need to spend a couple

of minutes to profile it and that will suffice. Also, try to open DLProf database with your

tensor board or DLProf viewer.

And so, basically this the logs will be saved as database and the recommended systems

are tensor board and profiler. So, you can use other yeah. So, it will help to visualize the

DL profiler event files. So, basically NVIDIA test bench GPU plugin you need to use,

ok.

451

(Refer Slide Time: 16:20)

So, let us go to the demo section now.

(Refer Slide Time: 16:25)

To demonstrate the DLProf, how to do that and then we will come to explanation, ok.

452

(Refer Slide Time: 16:32)

(Refer Slide Time: 16:44)

So, now let me do this. Let me explain. So, basically there are two methods to run

DLProf, one is through your notebook and through the command. So, if you have

installed any you know or if you have not installed it or if you have to use the DLProf in

Jupyter notebook or any other notebook you can use.

453

(Refer Slide Time: 17:17)

So, the method 1 is essentially the first method which is used in the notebook. We will

not go into details. You can see the same details in the next section as well.

(Refer Slide Time: 17:26)

454

(Refer Slide Time: 17:27)

(Refer Slide Time: 17:28)

455

(Refer Slide Time: 17:30)

So, in the method 2, we will discuss about how to use in command line. So, basically you

need to make sure that you may have access in NGC. You need to create one account for

that and you need to have Docker Engine installed.

And if you do not have you can check these commands to install it. And then you can

install the container toolkit and you can start using the check the whether necessary

drivers are there or not and then we install the NVIDIA Docker for the. So, this is the

distribution that we want to make available inside my Docker. So, basically you just

install it with this command.

456

(Refer Slide Time: 18:22)

And then once it is installed, so basically, you need to install this package for your use

and then you restart the Docker, and then you start it and just check the version. So, this

is the complete installation of your Docker and check the version. And once it is

successfully installed, then using this NGC Docker then we will start using that.

(Refer Slide Time: 18:46)

So, basically you need to pull the Docker image, ok. So, this is the NGC Docker

container or usage. So, once it is pulled then we can just run this comment to launch the

NGC container now.

457

And once container is launched then you can install the necessary pack. So, what are the

necessary packages for here? So, basically, I need to install nvidia-pyindex, nvidia-dlprof

with pytorch. You can this also tensor flow as I was mentioning.

(Refer Slide Time: 19:30)

So, here we are using PyTorch and also you need to install nvidia-dlprofviewer because

we are using dlprofviewer to visualize the profiles, ok.

Now, once you have successfully completed up to this. So, basically you have installed

all the packages, now you can use your dlprof in the next column. But before that you

need to have the training.py because the training module that I want to profile using this

dlprof just targeted prospects.

Now, once you have this training.py, so basically let us see what is in the training.py.

458

(Refer Slide Time: 20:13)

So, training.py is essentially the pipeline for training learning models. Now, the some of

the packages that you have seen so far because we have used them, so basically these

imports for your torch, torchvision that you have seen, few others that we need some

libraries for images and plots, so numpy, PIL and matplotlib.

And also you need to import the nvtx, so because this will enable this stack tracers for

the profiles that will generate from PyTorch training run, ok. So, this is the only one line

you need to add to re-enable the profile from this training model, ok.

(Refer Slide Time: 21:04)

459

So, now, once we have all the necessary packages imported, you just specify the device.

These are as usual, nothing to nothing new. So, all the PyTorch things, train set data set,

valid data set, so here we are doing training and validation. So, we are just using the train

loader and valid loader with it this number of batch size.

Now, notice that we have not enabled the number of workers here, ok. So, we want to

see what happens, ok. Now, once you have defined the train loader and data loader, you

just you can print some images, you can see, ok. So, these are the things that we want to

do before going into the training part.

(Refer Slide Time: 21:56)

So, this is the class where we are defining the model. So, this is the model definition and

we are transferring the model to the device. We are defining the optimizer, the criterion

for the loss and then this is the training loop that we have defined, ok.

And with torch.autograd.profiler, now we are starting the profiling or emitting the

stresses from here because. Before that we do not need all this. So, for this loop only I

need to profile, because this is the loop for your train.

Now, how many epochs? You just define it. So, for as I was mentioning you do not need

to run the training for all the loops, just only one single run will suffice or maybe 2, 3

runs. If you want to have some more satisfaction you can do 2, 3 runs of inter loop and

460

you will get the idea. And this is the validation, ok. So, this is the entire training module

which I have written.

So, now we will go to the code. So, basically, here to view the results you need to run

dlprof with this training dot. So, this is the comment to export the process into your

databases.

Then, once you run that you will see that you have, so basically what we have done this

we have; yeah. So, we have mentioned stack, function stack equal to true and it will

write all these data into this current directory, and so from the event files you can see

inside the tensor board, ok. And if you have mentioned the targeted files in any

elsewhere you can mention the directory path here, ok.

Now, if you are using dlprof, so in our case we are using dlprof. So, the database we

have to create in to the current directory which is dlprop underscore dldb. So, our

deployment database dot sqlite. So, this sqlite database has been created and it is

recommended that you open this using DL profile viewer only, ok. So, because all the

necessary encoding and decoding is supporting the dlprofviewer.

(Refer Slide Time: 24:30)

So, once you open this, open opening your profiler into dlprof, then you will see the

window, ok. So, basically, you can see that this is loaded from your DLProf profiler into

your local host and now this is the dashboard for your profile.

461

So, you can see GPU utilization and resource usage breakdown and total kernel time

GPUs in milliseconds, and total core kernel efficiency, so how much percentage of core

kernel has been used.

(Refer Slide Time: 24:56)

So, now as I was mentioning that these are the usage and let us say let us take this

resource usage background breakdown. So, 20 percent resources were been used from

elsewhere and data loader is using 65.81 percentage of resources. CPU is using 13.23

and your GPU is very narrow. So, not using tensor cores, because we have not actually

used the amp library for enabling the tensor cores, ok.

462

(Refer Slide Time: 25:45)

(Refer Slide Time: 25:45)

463

(Refer Slide Time: 25:47)

So, if you go to the recommended system, so expert system in the bottom you will see

expert system, and here some recommendations you can see now. So, the

recommendations are 945 operations were eligible to use tensor core, but are none are

using FP16 because you have not used amp library. So, the recommendation is try

enabling amp library for more information improvements.

And GPU is underutilized, only 5 percent, 0.5 percent is profiled that is fine. And also, it

has recommended that 65.8 percent of your aggregated run was spent in the data loader

while not simultaneously running on the GPU, right because it is waiting for the data

because you are not using multiple cores for loading the data, right.

So, you can either use num code greater than 0, ok. So, these are the recommendations

that you are getting or use NVIDIA DALI which is the data loader library for from

NVIDIA itself. So, you can use either of them. So, we will see one of them and to you.

So, and also what kind of systems you are using, and what are their versions, and so on

and so forth, all the information we keep. The guidance here.

Since, average iteration time is 42 milliseconds, this I mean you cannot see the graph

here, but if you run from for more time like duration in seconds you can see. So, if you

run in seconds, you will see what are the use of tensor cores, not using tensor cores, how

much memory is being used, dataloader, IO and CPU others.

464

So, this is these are the performance summary you will get. And I want to improve the

average iteration time in the end because with some performance tweaking and

introducing the amp library, I want to use the tensor cores and in the end I want to use or

I want to enhance the average time.

(Refer Slide Time: 27:55)

So, next we will use the train_amp.py. So, this training module is using now the amp

library which is from the apex. So, automatically expression now we are using from

apex, right in media apex. So, you can go to this reference, ok.

(Refer Slide Time: 28:17)

465

So, the usual python imports and then defining the device, defining the data loader, train

loader and everything is same. Only thing is that you need to define this model and

optimizer for your from your amp because now the model should be compatible to use

the scaled database, ok and also optimizer. Because optimizer is essentially computing

the gradients and then it is being updated with the gradients.

So, optimizer and model initialization with the amp that is important to use amp library.

So, we have imported that before just one more time. So, that import was done before.

(Refer Slide Time: 29:05)

And next we will go to the defining of the criterion, the training loop, now this is where

we are starting the profiler and then number of epochs we are defining as 1. The same

criterion we are keeping to see what kind of improvement we are getting with the profile,

ok.

So, x.to(device), so data we are transferring to your device, levels we are transferring to

your device, the modules, and it and then we are computing the loss. So, basically, while

computing the loss we are now scaling the losses and optimize gradients to your amp

library. So, basically, now we are using the mixed precision computer.

466

(Refer Slide Time: 29:59)

Now, the mixed precision computing uses, so basically if you see here after the scaled

loss and optimizer definition, we will just do the backward pass which will compute the

gradients and then we will update that and initialize then to 0. So, that is the entire

pipeline that we have defined now, ok.

So, this is the entire definition. We just give you one more explanation of this

optimization level, ok. So, when we are optimizing, ok there are several data types that

we have mentioned, right. So, we mentioned that we can use either FP32, FP16 or mixed

up the two. Now, what will be used inside your training that will be defined by this

optimization level inside the initializer.

Now, what will be the criterion? I want to have mixed precision computing. So, so there

are 4 levels of optimization o 0, o 1, o 2, o 3.

Now, o 0 is for use o 0 and o 3 is without mixed precision. So, o 0 is with FP32 and o 3

is with FP16 and o 1 and o 2 is with FP32 and FP16. And based on their usage in

framing you will have two models of mix position, so one and more. So, which will be

better for your training that you need to actually analyze by maybe 1 or 2 dots, ok. So,

you use o1 first then see the profile, and you use o 2 and see the profile which model of

mixed precision computing is helping your case that you can see from the book.

467

(Refer Slide Time: 32:08)

So, that is all about from the profiler, and let us go to the profiles after using the amp, ok.

(Refer Slide Time: 32:15)

468

(Refer Slide Time: 32:17)

So, after using the amp you can see that go to the recommended system. Now, it is not

saying the previous message, right. So, it was showing that tensor cores were not being

used, now tensor cores are being utilized and it has increased the utilization from 0.5 to

0.6 percent. So, basically this was just one run, right not multiple runs.

And data loader has the highest usage, still power data loader has highest usage. So, still

we have run that with without any workers and that is why you can see here the data

loader is using most of the resources and also tensor cores are being used. So, using GPU

1; because we are now using tensor cores using the amp library. So, the usage of GPU

utilization has been increased.

But you can see that average utilization time also have increased and that is only because

your data loader, because of this data loader bottleneck you are actually increasing the

average iteration time and though you are using amp library. So, after introducing the in

inside your train dot train dot underscore amp dot py; so here now after introducing the

number of workers equal to 4 in the data loader and valid loader, we will see that so this

was the profiler after that.

469

(Refer Slide Time: 33:52)

So, now you will see that data loader is now 13 percent only where others and CPU

usage has increased, ok.

(Refer Slide Time: 34:03)

And now if you see the average iteration time, it has been decreased I mean almost half.

So, just introducing one trick, it has increased the performance by 2 times.

470

(Refer Slide Time: 34:17)

And you can see that GPU is underutilized, but it has almost doubled the utilization

because now it is getting data simultaneously. So, basically 1.2 percent is the double of

0.6 which was before.

But still we have some bottleneck still because this is a very small network. And so, this

is how actually you will try to assess, analyze, after visualizing you change your code

with some other libraries, what is recommended by your recommended system and you

increase the usage of your tensor cores that are available inside your GPU.

So, let us go back to our slide now. So, that is all about from DLProf today.

471

