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So, let us go through this demo pytorch tensor board. So, here for tensorboard you use 

you need to use this tensorboard which is torch.utils.tensorboard toolkit ok. Now all 
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these imports that you have seen so, far ok and these are again some a functional from 

torch and torch vision. So, these are the two important packages that we will use in this 

section of demo. 
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Now, the helper function this is doing nothing, but predicting the max value ok. So, that 

we will use. Now the CNN model is very very simple and you have seen such CNN 

model previously convolution1 convolution2 and fully connected 1 2 and last one which 

is also one fully connected layer and giving out features as 10 which is for your cifar 10 

data set we are using that same training module ok. 

So; that means, the 10 output feature it will actually predict and among them for which 

class it is giving your maximum prediction that will be your predicted points ok. So, we 

have defined the forward function as you have seen in so, far in this previous demo and 

we are returning the x now this x is actually not the prediction, but output of the network 

ok. 
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So, when you are applying the cross entropy loss onto your output of this network 

output, then one softmax activation will be actually added. So, you do not need to add 

any other activations after the last layer it will automatically be added inside your cross 

entropy loss or particular loss you are using depending on that loss that PyTorch will 

decide which activations to use you know. 

And you also can define in the in defining while defining the losses ok which activations 

treatments. Now we are downloading the data set defining the device ok and again. So, 

this is just the device which we will take this is just one for one GPU we are talking 

about for now and then the hyper parameters. 

So, as I was mentioning that tensorboard that we use for see or tune the network 

parameters ok. So, or hyper parameters which will improve the training of or training 

outcome or prediction of your neural network. Now here you can see what are the hyper 

parameters we are using. We are using learning rate. So, one range we have defined. 

So, basically we want to see among these range which learning rate will give me better 

result ok. So, this is just some definition we are using you can use your own definition 

for initializing this value. So, here we are actually getting this inside this list of 

parameters which is kind of a dictionary where we have this key and value pairs. So, key 

value key is the hyper parameter name itself and the values of the tuples for these things. 
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Now, batch size for again if you remember we have talked about different batch size will 

have different impact on the training outcome as well as the performance ok. So, for 

different batch size what kind of outcome we are getting that we want to see ok and then 

for the shuffle True and False. So, for training we mention before when we are loading 

the training data set ok. So, training data set we mentioned that training data set you need 

to use a shuffle equal to True. 

But here we are actually explicitly saying that for both we want to see for True and False 

we want to see what kind of performance we will get because that way you will be 

satisfied that yes this is these are the parameters that can give me better results right. 

Now parameter values we are defining the parameter values in this taking all the values 

and storing in the parameter values. So, this we will use for training loop ok. 
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So, for each combination of this ok. So, for this lr for this batch size for this shuffle for 

this lr for this batch size, for this shuffling what is the outcome ok. So, for all these 

combinations we will see what is the outcome. 

So, now we are downloading the data set. So, we are actually using FashionMNIST data 

set not cifar ten data set. So, this is also another data set. So, you can see this is also 

available in torchvision. So, torchvision.datasets or dot if you put dot you can see what 

are the data sets available we are using FashionMNIST dataset. So, all the 

FashionMNIST data set that we have downloaded. 
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And then in the training loop we are defining the loop for the all the combinations now 

right. 

So, now for run id. So, the for which run id. So, basically for each run it will influence. 

Now for each lr ok for this from this param values that we have defined previously well. 

So, for this lr for the each batch size for shuffle ok. So, what will be the performance? 

So, this model is defined to device. So, it will the CNN will get transferred to the device 

which is the gpu here then train loader will now training loading the train loader using 

the shuffle value either True or False depending on the value we are getting from param 

values. 

Now, the criterion and optimizer that we have defined comment just for giving output 

like what kind of batch size and shuffle we are doing test bench summary now tb is 

essentially the SummaryWriter which is the tensorboard writer we are defining. So, 

SummaryWriter we have imported the tensorboard board as ok. 

So, from the tensorboard we have imported this SummaryWriter a package which will 

actually give you the interface to write the different images different scalar values 

different graphs ok. So, tb is the object here now we are adding the images add images 

add graph function will add the graph. So, which add graph the model and with the 

images ok. 
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Now, we are starting the epoch. So, this for loop is essentially inside this for loop. So, for 

each combination we are now running this training right. So, train loss is 0 correct 0 now 

we have for each images batch size of images we are doing the forward pass then 

optimizing and doing the backward pass updating the parameters and after all the batches 

are processed in the forward once then we are actually adding what kind of loss we have 

gone with this. 

So, now adding scalar will give you the. So, for each epoch. So, basically we are trying 

to plot this inside one line graph. So, that scalar will add to the scalar tab inside your 

tensorboard with all these parameter graphs. So, total loss versus epoch total correct 

versus epoch. So, with each epoch how the loss is improving with each epoch how the 

accuracy is improving ok correctness accuracy all these we are calculating and updating 

inside the tensorboard which is the tb. 
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Then we are printing the batch size shuffle value the lr value which is the learning rate in 

the stochastic gradient descent optimizer and then just adding the hyper parameters to 

operate this. So, basically after running the entire loop we will just close this tb which is 

the tensor board. 
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So, you can see that for each run id 1 2 3 . So, we are running actually for 12 times ok for 

each time how many batch size have been processed with each lr value shuffle? So, this 

is just entire loop. 
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Now, from this you can see that tracking the performance right. So, which we want to 

track it is very hard. So, tensor flow will come in handy. So, for tensor flow load. So, 

load extension tensorboard and to improve to include the logs which is inside the runs 

directory. 
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So, when you will run this module you will see that one runs directory has been found 

here ok inside your current directory and the runs directory actually having all the logs 

which you have written from your tb ok. 

So, all these logs for each run will be written and we are actually loading all the logs 

from runs directory. So, we are log we are. So, this comment will block all the logs from 

your runs directory or any other directory you are using if you are using other directories 

you just rename it, but the important thing is that we can also define which run you want 

to log ok. Here we are loading all the runs ok. 
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So, now after running this you will get this tensorboard view here. So, this display will 

have these images. So, as you can see the images we have loaded. So, this is the a 

FashionMnist load images that we have loaded from the tabulator. So, just to show you, 

but from we loaded the images right. 

So, when we have written the images the grid we have formed the grid first right with 

this it wills make grid function in the torchvision and then this grid is added to this as 

images and then the graph is also added as graph. So, we will see the training module 

graph right. 
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So, for the graphs you can go to the graphs tab and you can see the graphs are essentially 

compressed here. 

So, the input is the input to your module you can click into any module and you can see 

what kind of layer it is ok and what is the dimension you can click on to it and it will 

actually enlarge ok. 
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So, basically it will focus on to each layers specifications wise graph ok. So, this is the 

computational graph that we are talking about. So, in the first class we have talked about 
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the computational graph. So, basically the input vectors the weights biases now you are 

if you are doing convolution operation or linear operation which is the fully connected 

operation that you can do. So, what kind of operation you are doing ok? 
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So, you can see for each layer convolution1 then linear fully connected layer fully 

connected layer2 linear output and also you can see the dimensions ok. So, at the output 

we are giving 10 and 10 batches ok. So, 10 by 10 is the. 

426



(Refer Slide Time: 13:13) 

 

So, in the output we have linear output ok. So, the entire graph you can see as the graph 

here. 
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So, once you can analyze from the network definition and the graph actually outcome 

what is you are getting. So, all the attributes you can see here as well as like whether you 

are what kind of device I mean in which device it is transferred. So, all these structure 

you can see now in this scalars. So, as I was mentioning that the graphs are essentially 
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loss versus your epoch your correctness versus your epoch the accuracy versus epoch. 

So, all these are added inside your scalars tb dot add scalars. 
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So, now you can see the accuracy versus epoch graph. So, how for each run ok. So, you 

can select also this run. So, these are the runs. So, we have renamed it with the date the 

batch size the shuffle value and error value ok. So, as I was mentioning that for each 

combination you will get one such profile ok. So, all these profilers we are giving output 

here ok. 

So, that is why we have different logs here you can see ok. 
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So, you can also write some like expression to filter the runs also ok. So, this is just some 

functionality added here now the hyper parameter. So, the important thing I wanted to 

show here is that the analysis that you are seeing here is not very feasible to or not very 

feasible to analyze properly right. 

So, if you have let us say hundreds of runs using multiple GPUs you actually will get 

lost. So, that HPARAMS will have the entire parameters a table view ok. 
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So, table view will have parallel coordinates view will have which is very important 

scatter plot matrix view also view will have. So, basically in the table view for each run 

how many parameters batch size accuracy you can see in the one place ok. 

So, this is also how you can analyze or better way to analyze is to see the parallel 

coordinates view. 
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So, now in the parallel coordinates view we can see that loss is essentially increasing and 

here the accuracy. So, lower accuracy to higher accuracy you are going right. So, this is 

the highest accuracy you are getting. 

Now, for this highest accuracy what is the shuffle value? What is your batch size you can 

track everything right. What is your batch size and what is the inner value you can track. 

So, for actually shuffle called True or False ok. So, that those were two definitions for 

your shuffle and for all the two shuffle have we see that I mean you are getting very less 

accuracy. 

So, for higher accuracy we will go for shuffle equal to two batch size minimum is 

actually good here you can see the minimum with minimum batch size you are getting 

good results and the lr is 0.001 for your highest accuracy for this training ok. So, this is 

just the simple analysis that you can do with tensorboard. 
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So, there are many other features that you will like to explore inside this go to 

TensorFlow TensorBoard and you can explore more about this we will see for a few 

more features of this tensorboard in the coming classes. In the next session we would 

like to go towards multi GPU training. So, we would we have seen that if you want to 

include your training or transfer your training into your device you are actually defining 

this part right. 
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So, you are defining the device which is the device here. So, you are actually transferring 

the model to your device and transferring the data to your device now we want to run. 

So, this device is only a single GPU here ok. Now we will talk about how we can scale 

our training for multiple GPUs ok. So, this is this is very interesting this is very simple as 

well in PyTorch ok. 
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So, we have data parallel approach we have model parallel. So, data parallel approach is 

essentially you want to keep the model ok replicated into let us say several GPUs, but 

data you want to set it right and model parallel is the entire model you want to distribute 

across devices now they are. So, as mean suggests you have actually two such libraries 

available in PyTorch two data parallel and model parallel plus data parallel ok. 

So, when you are doing model parallel you can do data parallel as well right because 

since you are distributing the model you can distribute the data also ok. So, this is just 

the one wrapper up to your data parallel. 
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Now, there may be different combinations of configurations that you might have put 

right. So, you can have single machine data parallel you can have single machine model 

parallel because in multiple GPUs you want to pipeline several models parallel execution 

ok several models parallel execution one single model will be actually executed 

parallelly. 

You can pipeline several models training in the same pattern because we will show you 

like how this is happening inside multiple device single model parallelly and that way 

you will understand like how it will be you know pipelined. So, this is very simple, but 

you just if you see the figure it will be very easy to understand distributed data parallel 

again data parallel in the distributed configuration set up. 

So, where you have multiple nodes. So, single node multiple GPUs you can have or 

multiple node multiple GPUs you can have; that means, multiple node and each node 

may have multiple GPUs that is how the distributed data parallel set up or distributed set 

up rather defines. 

Now, distributed data parallel with model parallel also we can write. Now distributed 

model parallel will. So, as I was mentioning that distributed essentially is one wrapper up 

on the data parallel. So, basically you can have data parallel in the distributed both the 

data parallel and model parallel and single model parallel. 
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So, now we talk about the single machine data parallel. 

So, now you have multiple GPUs available inside your single node ok. So, single node 

here means single machine ok now how your. So, now, we are talking about the data 

parallel; that means, each GPU will be operating on multiple sets I mean different sets of 

data right. So, that is why the i 0, i 1, i 2, i 3. So, all these data that you are seeing. So, 

basically your data is coming in batches. 

Now, depending on the number of GPUs are available you can scatter the data to your 

multiple GPUs then you can replicate your model to several GPUs, you can clean all this 

data parallel you will get some loss at the end of the. So, remember the pipeline that we 

have talked about at the end of the training we will get the loss and all these losses you 

will gather in the master node master GPU node or let us say GPU0 ok if you define at 

GPU0. So, GPU0 node and you will calculate the mean of these and then actually we 

will compute the final nodes and then again this process will be repeated right. 

So, this loop will go on depending on how many data you have and how many epochs 

doing this in. So, you have seen the training pipeline this modification only will do your 

data parallel activation. So, basically now we are transferring the model into let us say 

cuda 0 ok. So, we have let us say cuda 0 and 1, 2, 3, 4 ok or 5, 6, 7. So, total 8 GPUs you 

might have or 4 GPUs in this case. 
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So, cuda 0. So, first model you are trying to I mean which model you are trying to 

replicate that model you are transferring to only single GPU first and then you are 

applying data parallel model and when you apply this data parallel nn dot data parallel a 

function automatically your model will be replicated from the GPU0 to all the other GPU 

GPUs and depending on the number of GPUs available and the batches you have 

fetching it will actually segregate or scatter the data into your GPUs right. So, this is very 

simple. 
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Now, single machine multiple model parallel. So, sorry single machine single model 

parallel ok we are not here talking about multiple models ok. So, just stay with single 

model now. So, we have several stages of pipeline I mean several stages of the training 

pipeline we have seen that right. So, what are the pipelines you want to let us say execute 

in which GPU can define that and depending on that your data synchronization will 

happen and the in the end of all the sequences are happening then we can actually 

compute the loss. 

Now, when this sequence is happening at that point of time you can actually feed 

through a different layer of different model into the first GPU while it is doing the 

second sequence of the first model ok. So, this is how you can pipeline it, but basically 

this is the code what will parallelize the model execution into different GPUs that you 

might have. 
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So, here let us say we have two gpus. So, we are gathering those gpu ids into gpu0 and 

gpu1 and then we are actually transferring these models defining this layers. So, this is 

just the simple definition of the layer that we want to execute in which gpu. So, 

transferring the sequences of the training into the gpus ok then we are doing the forward 

pass now which in the a net will be executed in which device you can just transfer it into 

that gpu and that is it. So, one you once you have defined like this model is essentially 

running in let us say two gpus ok. 

So, this is very simple. So, this is these are the update; upgradation of the entire training 

pipeline that you have seen that needs to do that to enable this model parallels you can 

also distribute data parallel. So, basically now we are talking about distributed data 

parallel ok. 
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So; that means, you have several nodes with multiple GPUs right. So, machine 0 has let 

us say two GPUs machine 1 has 2 GPUs GPU 2 and GPU 3. 

Now, what we are doing here? So, in the data parallel we have seen that the model will 

be actually replicated into several GPUs and all the data will be scattered and feed to the 

GPUs and losses will be computed. So, this data parallel approach is again very simple to 

parallelize because once you have defined multiple gpus in multiple nodes. So, let us say 

we have two nodes here 0 and 1 and with 0 and 1 and 2 and 3 which is the definition or 

ids of the gpus for each machine we are creating this list here ok. 

439



So, one. So, basically you need to define the rank also because the number of rank will 

define how many processes will be created or the replicas will be created. So, basically 

to avoid GIL. So, which is the global interrupt lock because actually you need to 

synchronize in each round of loss computation ok. So, that is why how many number of 

gpus you have those many number of ranks definition is the tumble. 

So, then you can define the model into the gpu 0 because from the gpu 0 actually it will 

be replicated to other gpus when you will define this nn.parallel.DDP. So, DDP is 

essentially the data distributed data parallel library ok. So, then we can actually use this 

model and this devices ok. 

So, this is just the same as data parallel you can see one wrapper up of data parallel 

approach ok and then you have training loop and for each machine rank in the world 

size. So, world size is essentially the total number of processes in all the machines and 

rank is the total number of processes in each machine ok and depending on that it will 

actually create multiple threads and the. So, this is just to for conjoin your processes. But 

ultimately your code for training will differ this much only ok. 
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So, next which is the distributed data parallel with model parallel ok. So, again multiple 

nodes we have. So, this multiple nodes having multiple GPUs we have seen and if you 

remember the model parallel in a single GPU ok single machine multiple gpu. 
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So, you have defined which layer actually. So, let us say sub net1 and sub net2 are the 2 

main sequences in your training ok in your training module and let us say the they are 

simply fully connected layer ok for simplicity we are taking fully connected layer. Now 

which layer will go to which device that we have defined. So, basically gpu0 and 1 we 

have defined, but we have made available these sequences to those gpus. 

Because you want to parallelize the model execution to the gpus and also when you are 

doing the forward pass you need to also get the data available for that because you can 

see the output of the this layer is going to the input of this layer. So, if you do not give y 

as the input to the second layer which is the gpu1 because your next layer is they being 

executed in the gpu1. So, this pipeline you need to set up. 

So, this is what I was talking about when you are trying to replicate sorry when you are 

trying to parallelize the model execution in accordance with defining which layer will go 

to which gpu which data also will go to which gpu it will you need to define it properly 

otherwise you will have wrong loss computation ok. 

Now, we are talking about the data parallel as well as model parallel ok. So, in multiple 

nodes you have multiple GPUs in one node you are trying I mean in all the nodes I mean 

basically you are trying to parallelize the model execution with parallel datas ok. So, that 

is why again you can see the data parallel is always there with distributed model parallel 

ok. 

So, this is the inherent functionality the that distributed data parallel we will use. Now 

when you are trying to define this because let us say you have gpus in 0 and 1 node you 

haves in 0 node 0 and 1 and 1 node 2 and 3 with these machine rank. Now we have I 

mean converted a model into this parallel and this is the training loop which will run ok. 

Now, once you have you are working with DDP ok not the data parallel right. So, again 

just to make sure that you remember this part. So, this is actually we are not using the 

distributed data parallel ok. So, this is just we are transferring which model sequence will 

go to which gpu ok. So, we are not using any defined library ok. 

Now, here once we are using DDP you when you are. So, that time we needed to define 

which sequence will go and how the output and input will make the connection between 

different gpus outputs and inputs, but here since you are using DDP 
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torch.nn.parallel.DDP you do not need to define that we just it will just take care of all 

the data parallel scatter. 

So, basically what it will do? It will scatter the data according to different replicas of the 

model and different replicas of the model will have different sequences are repeated to 

different GPUs inside one node ok. And then how many process these are the standard 

process falling ok. So, this is this will be used. So, this is how you can just scale your 

training entire pipeline that you have seen so, far with the use of these two libraries one 

is the data parallel library and one is distributed data parallel library in PyTorch. 

There are also other libraries and other packages available you can use. So, once you 

know actually the basics of these two libraries there is also RPC which is remote 

procedure call from from PyTorch. So, basically we will not have the bandwidth to 

discuss that package, but we can go to pytorch.org to get details of that package as well. 

But apart from the standard packages that is available with PyTorch. So, all these are 

developed by Facebook and also the development is continuously getting updated there 

might be few bugs in the previous versions next version will come up with the fixes. So, 

all these things you will see, but there is a strong community available for that and you 

can actually also contribute if you want for developing these libraries. 

So, this is completely open source project and apart from that I was talking about there is 

also some perpetual libraries that is using wrapped PyTorch modules to abstract more of 

these tasks even in fancier ways. So, that also you can see in many other libraries. 
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So, few of them maybe we will discuss in the next class, but this class we will conclude 

here and for the code you can go to this link for getting access to one very very intuitive 

implementation of that data parallel. So, basically we have seen how to actually tweak 

your entire frame with just few lines upward to make it available to multiple gpus. So, so 

one such example is there in this for which is available in this link. 

Thank you for today we will now go towards the questions essentially. 
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