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Good evening everybody. So, in the last session we started with the entire training 

pipeline for implementation in PyTorch for different neural networks. So, the pipeline is 

almost similar. So, if we just recap, if you can see here. 

(Refer Slide Time: 00:38) 

 

That first we have to define the neural network then, iterate over the data set of inputs 

and then process the inputs through the network, because you have to do the forward 

pass. And then after that, after the prediction output from the network you need to 

compute the loss and depending on that loss you need to update the gradients with for the 

parameters and then, you need to update the weights and again you do the forward pass. 
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(Refer Slide Time: 01:21) 

  

So, this is the entire pipeline that we talked about. And also we have seen how to 

implement that pipeline with PyTorch. So, first we have to define this network, then the 

data loaders for training and which different parameters that we have seen and then we 

have to define the optimizer. So the what kind of loss we are trying to compute in the end 

of the forward pass then, we need to compute the what kind of optimizer that we are 

trying to use for the network training. 

So, several other optimizer are also there and with these certain parameters that you need 

to set the learning rate, momentum for stochastic gradient descent that you can see here. 
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(Refer Slide Time: 02:07) 

 

So, this is the step for defining your optimizer and loss function and once you have set 

up the training epoch so, basically where you will try to iterate through the entire data set 

of full training, ok. So now, you can take the data in batches. So, you can see that in this 

epoch, we are taking the data as batches from this training loader. So, a once entire 

training for the entire data is done which is the training data here, then we will go again 

for the second epoch and so on and so forth.  

After the end of the epochs, all the epochs that you have defined, then you will just finish 

the training. So, this is essentially the loop for the training. So, defining the network and 

then you need to write the loop for the training. So, if you are iterating the training data 

set multiple times so that means, you are trying to improve the data performance you 

want to see the data set from several angle and that is why you will iterate through it 

several times.  

And you will see that the loss which will we will start with some random parameters. So, 

the loss will get updated and eventually we will get a minimized loss. So, that is the 

objective function. 
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(Refer Slide Time: 03:38) 

 

So, after completing the loss and everything we need to optimize with the optimizer for 

the upgradation or computation of the gradient. 

(Refer Slide Time: 03:52) 
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(Refer Slide Time: 03:56) 

 

Upgradation of the parameters will happen in the next step optimizer pass dot step. So, 

this all this we have seen and we have also seen that you can write some statistics so, that 

you can see how the loss is getting improved or maybe how your accuracy is enhanced. 

(Refer Slide Time: 04:12) 

 

So the inter training pipeline we have talked about, but after the training what you will 

do is that you will try to save the parameters. So, for this you need to save in one path, 

defined by this path variable. After saving this parameter, so basically you are saving the 

network plus the weight parameters.  
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Because, when we load the network model, we load the inter parameter set that we have 

already stored and those parameters will be used for your inference or testing or 

validation. So, depending on what kind of problem you are targeting, you can if you 

want to validate your model with some validation data set you can do that using this 

model; you want to test some data set with this model that you can do also. 

(Refer Slide Time: 05:10) 

 

So, all this is the next step when you have already saved the more. So, for testing you 

need to load the test data which is from test loader that we have seen defining previously. 

And in the images and labels we will just load the images and labels. So, these labels are 

not mandatory because, for training you will compare the training output to these labels, 

but for testing you do not need test labels because, network will predict the labels. So, we 

are trying to target one classifier model, so that is why different labels will be there for 

different classes. 

Now, defining the network so, initially initializing this network as net and then, you can 

actually load the model from this path where we have defined and saved it and then you 

will output. So, basically when you call this net with the images that you have taken 

here, you are doing one forward pass and you will get some predictions.  

So, these predictions we are actually storing it in the predicted. And if you want to 

compute the prediction with the actual truth which is the labels then you can do that. You 
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can see how much whether the prediction is accurate or not comparing the labels that you 

have here. 

(Refer Slide Time: 06:33) 

 

So, this is very typical testing set environment very simple to implement in PyTorch. 

Now, we will see how to define our model which will run for GPU and CPU, ok so, that 

we will see. So, you need to define one device variable, where you want to keep whether 

you want to run your model inside the cpu or inside the GPU. So, if you have GPU 

available this code torch dot cuda dot is available will be true then, you will get the cuda 

code as let us say cuda 0 if you have one GPU and if you have multiple GPUs then it will 

take one list of ids.  

So, basically 1, 2, 3, 4, 5, 6, 7, 8 depending on the how many number of GPUs you will 

have on your system. Or else so, if this returns false then you will take it as cpu because, 

then you would like to run your entire model inside the cpu. Now, as I have mentioned in 

the previous class that tensors are compatible for both GPUs and cpus. So, if you are not 

having GPUs then also you will be able to run your code inside or tensor codes inside the 

cpu as well. Now, once you have defined this device then you have to transfer your 

model to the device, because the model will run in the device. 

So, now we are talking about running in one GPU ok, because you can see cuda 0, 0 is 

the device id. So, cuda core which is the GPU one GPU which is available for this 

system. If multiple GPUs are available then also we are taking the first indexed GPU 
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which is cuda 0. And we are transferring the model into the device which is net.(to 

device).  

So, anything you want to transfer your device, you can call this to function. So, I also 

want to transfer our data and labels to the GPU calls because, if the GPU is running the 

model; that means, the GPU will need the data and the labels to make the count for your 

loss and then it will actually update the parameters depending on the loss and computed 

gradients. 

So, you need to transfer the data[0].(to device) and data[1].(to device), because here we 

have two sets of data 1 is for your input original data and for your labels. So, both we are 

sending to the device. So, this is how you can transfer your inter model and data to your 

device and it will run the training that you want to run in the GPU, right. So now, we will 

go directly to our code where we will see how to actually run. 

(Refer Slide Time: 09:41) 

 

So, you can, for details of the materials that we are using here you can go to pytorch.org 

for the details of all these functionalities that we have discussed, ok. So, we will just now 

go towards the actual training where what is happening let us see. 

398



(Refer Slide Time: 10:00) 

 

So, we are running this training in colab. So, everybody who are attending this course 

you can actually take this piece of notebook file which is .ipynb and you can run that in 

any colab account, ok. 

(Refer Slide Time: 10:37) 

 

Now, if you want to enable the GPU access for your colab you can go to your run time 

and you can change the runtime type to GPU or TPU depending on what kind of 

architecture you are targeting. If you select none then, automatically only cpu will be 
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selected for running your training modules and if you select GPU your network will be 

done on GPU and if you select TPU it will run on TPU. 

So, TPU is the tensor processing unit, ok. So, in this course we will also see how to 

accelerate our training with using TPU as well. So, today we will see how to do that with 

GPU for single GPU and multiple GPUs how to scale our training also we will see, but 

for your running you can see you can select either GPU or TPU. So, for now you can 

select GPU. 

(Refer Slide Time: 11:29) 

 

Now, you can see in this section of code we have imported the required libraries and 

packages torch vision as I was mentioning that once you are working with images and 

videos torch vision is very very handy and for different transformations. So, that for that 

we are importing those libraries. Matplotlib for matplotlib and numpy these are two 

stand up libraries for plotting and working with different data sets like array and so, 

right. 

Now, we are defining one helper function for displaying the images into one corridor. 

So, basically this function will show some images. So that, whatever image that we will 

download from the data set that is available already inside the torch vision library that we 

will try to visualize with this function, ok. 
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(Refer Slide Time: 12:33) 

 

Now, next as I was mentioning the a remember that training pipeline we have to define 

the transformers. So, basically what kind of transforms you will apply on the data. So, 

here we are normalizing the images with this mean and standard deviation. Now, we are 

defining the batch size as 4, now remember again for the training we are not giving 

individual images ok, we are giving the images as batches. So, your tensor dimension 

will have the batch size in the front, ok.  

So, if you are interested in giving only one batch size like, one single image then, batch 

size will be one and if you want to increase the batch size and remember if you increase 

the batch size the memory required to transfer to your GPU that will also increase 

because that many number of images that you want to store also the gradients for those 

number of images; the intermediate transition values that you want to store and those 

many weights also you want to store. 

So, any increase in the batch size will take more memory inside your GPU. You need to 

be aware of that and in this session we will see how to actually last day many of you 

asked this question like this is one hyper parameter, so how we will define this and what 

will be the value for this for a particular model, right. So, for that you can do some 

exploration. So, what kind of batch size is giving you better performance and better 

accuracy so, that you can explore. 
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Now, training set train loader, test set test loader, that we have defined as discussed in 

the lecture. Now, as we had seen that we are take taking CIFAR10 data set. So, 

CIFAR10 data set has 60000 images with 32 by 32 dimension. So, for 10 classes it has 

all the images, different images from different perspective, ok. With different resolution 

with different angle of capture and so on and so forth. So, that the training module that 

we want to train learns better features from these classes. 

So, these 10 classes that you are seeing here that we will use to actually calculate the 

accuracy for each class, ok. If so, this is very optional to your training pipeline, but some 

kind of analysis that we want to do. So, if you want to apply some analysis into your 

training model that it.  

(Refer Slide Time: 15:24) 

 

So in this, then for the training we need that torch.nn which is we will be using as nn and 

then, we will need the functional api for the relu function and all these functions that are 

already available in inside this library so, that we will take help off. 
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(Refer Slide Time: 15:44) 

 

Now, we are defining the network here. So, basically in the initializer, so this class net as 

I was mentioning you can name it rename it to any name as your preference. And then, 

the definition of the networks so, we have first convolution layer then max pool layers 

so, this max pool layer if you want to define as a specialized with let us say 2 by 2 

kernel. So, that we can define also convolution 2D so, this 2 or 2 convolution layers and 

3 fully connected layers which are the linear layers that we as we say. 

So, after the definition we have this a forward pass which will take the input. So, 

basically x is the input and it is return in the prediction as x which is the output of this fc 

3, ok. So, this is just one pass ok forward pass. And so, initializing the network as net, 

right. 
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(Refer Slide Time: 16:53) 

 

Now, we are transferring this module or net to the device ok. So which is basically cuda 

0 here. So, if you are having activated run time as GPU it will take the GPU as the target 

device. So, you can print the target device as well. So, and see that we have a cuda 0 

available and the network which is transferred to your device. What are the things that 

are transferred you can see the entire stages, ok. 

So, convolution layer 1, a pooling layer convolution layer 2, a fully connected layer fully 

connected 2 layer, fully connected 3 layer. Now, we have defined only one max pool 2D, 

but this will also be reused in and after this convolution layouts, ok. So, that is fine. 
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(Refer Slide Time: 17:50) 

 

Now, in the next section we will see to define the optimizer. So, this is also we have 

seen. Now, what are the values for learning rate and momentum for your SGD? So, here 

we are using SGD depending on the model training what kind of model you are using 

and what kind of optimizer that you will use you can see several other optimizers are 

also there to compute the gradients from the losses, also several other losses are also ok 

like mean square loss cross entropy loss we are using here. 

(Refer Slide Time: 18:25) 
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Now, this is your training loop, ok. So, basically once you have defined the network you 

can see that inside this epoch. So, we are running this entire epoch which is going 

through the entire data set twice ok. And then, the running loss we are actually be 

initializing to 0 and for i data which is from the training loader now training loader will 

have the entire data set and as batches we are actually transferring into the data inputs, 

ok. 

So, inputs we will segregate the data in inputs images and labels here we are working 

with images as data. And then, we are initializing the 0 grad and this is the forward pass. 

Forward pass, the plus your loss which is useful in the backward pass. So, you can see 

that only one line of backward pass and step is the update.  

So, this is where actually entire computation is happening and this loop will run for how 

many times how many data you have depending on how much batches batch size you are 

having access in each iteration. Now, we are having this statistics computed because we 

want to just print like how many loss we are improving. 

(Refer Slide Time: 20:01) 

 

So, you can see that after so after so this is the first epoch and this is the second epoch as 

you can see, ok. So first, so you can see that we are giving print the epoch and the how 

many date data batch that we have processed. So, after every 20000 mini batches we are 

actually updating this. So, the loss has improved from 1.2 to 1.1 ok and we have just 
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finished the training. You can go on with several other numbers of epochs or increased 

number of epochs to improve the loss, ok.  

So, after the end of the training so, once you have computed the entire loop here so that 

means, you have finished the training process. 

(Refer Slide Time: 20:58) 

 

So after the training process, you will need to save the model and we will save here we 

are saving the model inside this. And then, we are just printing the images just to see 

what kind of images are there and then, we are loading that model again inside this net 

ok, because we want to test now, right. So, outputs test outputs is now images which are 

taken from the test loader, ok. 
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(Refer Slide Time: 21:27) 

 

So now, we want to see what kind of predictions it did. So, outputs will give. So, ground 

truth is so, these are the images that we have loaded. So, basically cat ship and plane and 

then, the predicted value that we have predicted from this output, ok. Because, this 

output is essentially the predicted output from the network depending on these images 

that we have fit and this predicted value will have the predictions and the maximum 

predictions actually. So now, we are guessing what kind of class it has test or predicted. 

(Refer Slide Time: 22:07) 

 

408



So, the last one only it has correctly predicted as well ok, because we have trained that 

model with very limited or low number of epochs, ok. So, if you increase the number of 

epochs and you can see whether your prediction is increasing or not, ok. That means, 

your prediction is getting better or not. Now, here we are just calculating some accuracy 

for each class ok. so, accuracy for the network for let us say 10000 test images what is 

the accuracy it is giving we are just computing that for percentage and we see that almost 

50 percent images that that were guessed correctly or predicted correctly by this 

predicted output, ok. 

(Refer Slide Time: 22:58) 

 

Now, so this is also optional just to see the statistics of each class prediction, ok. So, for 

each class ok so, we have defined this total number of classes as 10 ok and all these 

classes we have seen. So, print accuracy so we are calculating accuracy for each class 

and then printing the accuracy for each class. 
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(Refer Slide Time: 23:20) 

 

And you can see that almost 53.6 percent accuracy have got for plane class and so, this is 

class wise prediction, ok. So, this these are these are just some statistics that we want to 

evaluate after the training of the entire a network model, right. So, the next thing we will 

discuss is that how to profile our net training, ok. Because, this is very important when 

you are trying to tune for a particular data set and for a particular model that we want to 

training, ok. So, for that one handy tool is there which is the tensor board, ok. 

(Refer Slide Time: 24:02) 
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(Refer Slide Time: 24:03) 

 

(Refer Slide Time: 24:04) 
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(Refer Slide Time: 24:06) 

 

(Refer Slide Time: 24:08) 

 

Now, tensor board is one visualization toolkit, it is from tensor flow actually, but you can 

use that using PyTorch as well ok. And it provides visualization and tool needed for 

machine learning experimentation. So, what kind of things we can see that you can see 

that here tracking and visualizing or metrics such as loss accuracy these are very very 

important parameter when you are actually training one network module, or any other 

machine learning model, ok. Visualizing model graph because, we have defined one a 

network model, right. 
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Now, when you are trying to optimize or let us say what kind of data types it is using 

how many parameters it is giving output. So, all these info you want to capture visually, 

if you have very very big training network then you can from the code to figure out what 

kind of output dimensions it is giving each layer and all these information getting is very 

hard. So, to visualize the entire model graph you can use this also viewing histograms of 

weights biases. 

So, all these are actually parameters and your hyper parameters you can you can view in 

histograms. You can also project embeddings to a lower dimensional space, ok. So, this 

is also very handy feature you can display images text audio data. So, we are working 

with image data. So, we will display some image data to see what kind of images 

available inside this training image set that we have downloaded right, ok. And then, 

profiling tensor flow programs you can profile like what program module is using what 

kind of resources and all this evaluation you can do using this tool kit, ok. 

So, today we will see some features of that and eventually we will quite we will do the 

other I mean go on learning some advanced topics. So, we will see more of kinds of 

more features, ok. 
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