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All right. So, welcome back to the second segment of the first module in week 10. Let us
continue from where we left off in the previous segment.

(Refer Slide Time: 00:19)

So, if you recall, we were looking at this recursion tree that is generated by a recursive algorithm.
And we concluded that this tree has an exponential number of nodes, leading to the conclusion
that the algorithm that we just wrote has an exponential time complexity because the time
complexity is proportional to the number of function calls made. And that is what is depicted in
this recursion tree. That is about as far as we got last time.

And what I asked you to do was to think about whether you can identify any redundancy of
computation in this recursion tree, which will hopefully give us some way of saving some time.
So, one thing that you may have noticed is that there are parts of this recursion tree that look
exactly the same. In particular, for instance, if you look at this function call that is being made to
4 here, that looks rather a lot like the function call that was made to 4 earlier. And the
information that we are getting out of these function calls is exactly the same.

So, this entire computation that is highlighted in orange is completely redundant because, by this
time, you have already performed the exact same computations a few moments ago. When you
went over the function calls that have been highlighted in yellow in this picture, there to the
bottom left of your screen.



So, when you look at this picture, it seems like, we are being rather silly in redoing a lot of work
that is already been done. So, the question to ask ourselves at this point is, is there any way that
we can leverage the information that we have from computations that we have already done so
that we do not have to do it again? And that is exactly the process or the strategy of
memoization.

(Refer Slide Time: 02:06)

So, essentially, we want to remember the work that we have done before so that we do not have
to do it again. So, let us take a look at how this works. Essentially, we want to store the outcomes
of these prior function calls, so that at any point in time, whenever we have a recursive call, what
we can do is really examine, if there is a need to go down the recursive rabbit hole prompted by
this call.

The way we do this is, (to) check if the information that we would get by performing the
recursive computation is already available to us. If it is already available to us, then we avoid the
recursive call altogether. If it is not available to us that means, we are doing this operation or we
are doing this computation the first time and it is okay to actually invoke the recursion.

So, notice that overall your algorithm is trying to track N pieces of information, where N is the
number of stones that are there in the input that you are working with. So, to implement this in
your program, what you would typically do is, declare an array, or a list, or a vector of size N,
and use that to actually store the output of the recursive calls as you go along. So, let us take a
look at how this would actually pan out in your program.
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So, here is the code again, but now, it is fixed to account for memoization. And the difference
between this and the recursive program that we saw earlier is so small that I would not be
surprised if you did not even notice the difference from a quick glance. So, let me actually
highlight the line that makes all the difference. It is this conditional statement here, which is
basically saying, look, if you already know the answer, then you do not have to go through the
process here. Okay. So, what we have done, behind the scenes in the sense that you do not see it
on your screen right now, is we have initialized a memo array or a vector, where all the values by
default are -1.

-1 in this problem is essentially a way of saying, we do not know the answer yet. If you are
working with a problem, where the value -1 has some meaning or significance, then that is not a
good value to initialize your array with. Basically, use some number, which has nothing to do
with your problem, so that you can really use it as a code for saying I do not know yet. So,
coming back to our program, here is what the code is doing for you. It is saying, okay, we want
to know the answer for N. The first thing we do is check if we know this answer already. So, if
the array value at N is something other than -1, that means, well, that is a déjà vu situation. We
have already been here, we know, what the answer is.

(Refer Slide Time: 04:51)



And we can simply return in this case. Okay. So, if it is not -1, notice that the code does not
execute any of the recursive calls, it does not do any other work. It immediately returns the
answer. On the other hand, if the array does report -1. That means that this is unknown territory,
we do not know what is going on, and we do need to go down the recursion rabbit hole to figure
out what the answer is going to be.
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So, with this revised version of the recursive algorithm, let us take a look at what is going on in
the recursion tree. So, notice that all of these function calls that have been highlighted here, will
actually not execute in terms of recursion, but they will immediately return the answer. Because
at the time that these function calls happen, the same computation has already been performed
before, and the memo array is actually going to report an actual answer.

So, (all of these) all of this work in the recursion tree, basically, does not happen and is avoided.
And your recursion tree will now essentially look like a linear path. Notice that this is really the
leftmost sequence of executions. And once all of those are complete, as you walk your way back
up to the root of the tree, there will be function calls, but they will all return immediately.
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So, no new recursive instances will be spawned, and the total amount of work that is being done
now is actually linear. So, I do hope that you find this as amazing as I do. I think a little bit of



extra space and a couple of lines of code adjusted (for) can lead to really tremendous time
savings. So, that is the impact of memoization.

And whenever you come up with recursive solutions, do watch out for the potential to memoize.
What you really want is a situation where there is a lot of redundant work, so that you can find
ways of avoiding it and saving yourself some time. So, we will have more to say about general
principles in just a bit, but while we are at it.

Let us actually see how this algorithm plays out for the example that we started off with. So, we
have the frog here, on the third stone, mainly because as we said for the first two stones we
already know what the costs are going to be. These are the base cases. So, in the first stone, let
me just recap that the cost we agreed would be 0. And on the second stone, the cost would
simply be the absolute differences, the absolute difference between the heights of the first and
the second stone. And in this example, that happens to be 20.
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So, let us actually go ahead and make a note of this in the recursion tree as well. So these are the
values that are returned by these two bottoms most function calls, which is where the work
happens directly, and there are no further calls. So, these values are reported and pushed
upstream to the calling function, which is trying to figure out, what is the answer, when there are
three stones in the picture.

So, at this point, remember we are asking ourselves, how did you end up on the third stone?
There are two possibilities, either you came in from the second stone, and that jump would have
cost you 50, or you came in from the first stone, and that jump would have cost you 30. So, the
final answer is the better of the two options between 50+20 and 30+0.
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So, here 30+0 is the clear winner. So, we are going to report 30 back to the calling function,
which is trying to figure out the answer, for when there are four stones.

(Refer Slide Time: 08:23)

So, here again, what we are going to ask ourselves is, where did you come from? Did you come
from the third stone or the second one? If you came in from the third stone, then the cost of that
jump would have been 50, and the total cost would be 50+30, which is 80, versus if you came in
from the second stone, then the cost of that final jump would be 0, and that gets tagged on to 20,
so 0+20 is 20. So, clearly, the better of the two options here between 80 versus 20 is 20. So, we
are going to record that as our final answer at this stage.

(Refer Slide Time: 09:05)



Now, let us go back to what is going on when we land up at the fifth stone. This is what we are
trying to understand now, now that we have understood everything, up to the fourth one. So, how
could you have come to stone number five? You could either come in from the fourth, which
would have involved a cost of 50+20 to get to the fourth stone itself. So, that is 50+20, 70.
Versus you could have come in from the third stone, and the cost of that jump would be 0. And
the overall cost would be 30+0, which is 30.

(Refer Slide Time: 09:40)

So, you can see that 30 wins this round. And that is what we are going to keep track of as we
move on to the final stone. And this is going to be our final answer. How did we land up at the
final stone? Did we come from 5? In which case the last jump would have cost us 10 and the
total cost would be 30+10, 40, or did we come from stone number 4? Where the cost of the final
jump would already be 40 and 40+20, the total cost would have been 60.

(Refer Slide Time: 10:15)



So, between 60 and 40, again, the winner is 40 and that is what we are going to report as the final
answer. And we are pretty much done here because this is all that we have been asked to report
the final cost of an optimal solution. But on the other hand, what if the problem also asked you to
actually provide a sequence of jumps whose total cost matched the optimum that you are
claiming? You might have already seen, as we worked through the example, a way to do this as
well. So, all you would need to do is a little bit of extra bookkeeping to keep track of basically
what drove your choices as you went along.

So, for instance, in the very last step, when we got to 40, we want to make sure we understand
how we got to 40. So, the reason the answer was 40, was because we came in from stone number
5 with a cost of 10. And how did we get to stone number 5? Well, we got there from stone
number 3 with a cost of 0. And how did we get to stone number 3? Well, we got there from stone
number 1 with a cost of 30.

So, if you essentially just keep track of where you came from, by figuring out who won the
comparison when you calculate the answer, just keep that extra piece of information. Then just
like we often do by following parent pointers, you could essentially run a backtrace, to figure
out, what choices led to this final conclusion.

And of course, when you are sharing your answer, you typically want to reverse the order so that
the jumps happen in the sequence that they are supposed to happen. So, I think it is a fun
exercise to modify the program that we have here so that it outputs one of the optimal sequences.

Notice that you are going to break ties arbitrarily, so which sequence you print, will depend on,
how you have broken ties. But no matter which sequence you print, they will all be optimal. But
your tie-breaking may be different from mine. So, the actual sequences we print may be
different. And most judges, when they ask you for a sequence that is optimal, they will accept
any valid sequence. So, they will typically run a check, to make sure that the cost of the sequence
that you have printed actually matches the optimal cost and that is what they will care about.

Sometimes occasionally, you may have a requirement, which is along the lines of ‘print the
lexicographically smallest optimal sequence.’ In this case, you have to fine-tune your



tie-breaking, to prioritize the lexicographically better option at every step. So, these are some
details that are worth keeping in mind.

I should say that this is a common feature of dynamic programming-based approaches, which is
that by doing just a little bit of extra work, in terms of tracking the choices that you are making
as you go along, you will be able to output, not just the optimum value, but also an actual
solution that witnesses that value. So, I think this is a good thing to practice and get used to.
Some people call this running a backtrace on your DP, and essentially, it is something that is
useful in the competitive programming context because you are often required to actually
produce a solution.

And just in case you are using dynamic programming-based approaches for solving real-world
problems at work and so on, often, you are interested in an actual solution, not just a value. So,
do keep that in mind, and let us move on to making some general remarks about how dynamic
programming-based approaches typically work, summing up some of what we have seen even
just through this very introductory example.

(Refer Slide Time: 13:51 and 14:47)

So, you can broadly think of dynamic programming as being memoization on top of recursion.
So, you come up with a recursive approach to solving your problem, and you make it efficient by
memoizing it like we did. I would say that usually the memoization part, at least in terms of
implementation, is usually routine. You just have to figure out how to allocate space to the
answers that you are interested in and make sure that you just modify your recursive subroutine
so that there is that initial check for whether we really need to do this or not. Okay.

But what enables you to do memoization is, coming up with a recursive algorithm that has
enough redundancy built into it so that the memoization is eventually useful. So, usually, the
heart of the problem is in coming up with a recursive approach to solving the problem. That is
appropriate for memoization going forward.

So, to come up with a recursive solution, again, there is no formula and every problem is going
to be different. But typically, the mindset, with which you want to think about recursive patterns,
is to see how best you can break up your problem into natural sub-problems. And again, as you



practice more and more problems, you will begin to get a sense of, how people typically chop up
problems into smaller pieces.

Sometimes for array- or sequence-based problems, you are either looking to chop things off from
the end or the beginning or even some subsection in the middle. Sometimes your pieces may
have to be subsets of some collection of elements. If you are working with graphs, say, for
instance, you are working with a tree, then natural subproblems are typically subtrees that you
obtain when you delete some root vertex. So, you try to figure out the answer at all of these
subtrees and then somehow see if you can piece them together.

So, normally when you are doing recursion with the hope of memoizing going forward, you want
your recursive sub-instances to actually have enough overlap so that you can leverage that
overlap to save yourself time. You also want the pieces to be useful in the sense that you want
your answer to be in some way a function of the pieces that you develop. Like we did for the
frog problem, the two pieces that we solved were directly helpful in finding our final answer.

And we also had substantial overlap as we just saw and that helped us eliminate a lot of the
exponential part of the search space. This is one of the reasons, why some people think of
dynamic programming as being essentially clever Brute-Force because when you first write own
your recursive approach, it is practically a Brute-Force approach. It is exhaustive, and its
correctness is easy to prove because it is exhaustive. But then after that, you take a closer look
and you identify all of this redundancy and you memoize and that is going to save you a whole
lot of time.

(Refer Slide Time: 16:48)

So, this process of doing dynamic programming is usually called top-down dynamic
programming, which is essentially you start by solving the problem at the top. That is the
original problem. So, you start off by invoking solve of n or something like this. And this is
essentially recursion. But we save the day with the modification that allows us to save time by
using space, essentially.

So, when you write your dynamic programming solutions in this style, one advantage is that you
are essentially building off of the recursive paradigm in a small way. So, it is really your



recursive code with some small but important tweaks. So, if you are somebody who is already
used to writing recursive programs then there is not much additional work to do to elevate it to
the status of being an efficient dynamic programming-based solution.

Also, the other nice thing is that you only compute what you need based on the recursive calls
that actually happen. You will probably appreciate this more when you see the contrast with the
bottom-up approach, which is something that we are going to discuss next. And I think one of
the reasons it is worth knowing a different way of really implementing the same thing, is because
the other style which is the bottom-up style is sometimes cleaner from the point of view of
memory optimizations.

So, if you wanted to save some space, then it is sometimes easier to do when you visualize this
whole thing as a table that you are filling out, as opposed to this stack of recursive calls that are
being made and that are doing their thing. They are really doing the same thing behind the
scenes. It is just a different way of implementing the same idea.

So, we are going to continue this conversation in the next module, where we look at a different
problem and we are going to implement it using the so-called bottom-up approach. And I would
suggest that for both problems, you do the implementation in the other style, the one that has not
been given just to get some practice. I think it is a good idea to be flexible about which style you
use, because, in certain situations, one may have a small advantage over the other.

Although it is true that most people have sort of their preferred default styles when it comes to
dynamic programming. And they would only switch if there was a specific need to switch from
the point of view of a certain kind of optimization and so on. So, as I just said before, I think it is
a good idea to at least be aware of both the styles and be reasonably comfortable implementing a
given solution in either of these styles because that may be something that is useful in a specific
situation.

Having said that in the early stages, most elementary dynamic programming-based problems are
such that this choice should not really matter. So, if you find one style much more intuitive or
natural than the other one. It is perfectly fine to just stick to that for now. Let us continue this
conversation in the next module, where we will use another introductory example to exemplify
the style of bottom-up dynamic programming!


