Getting Started with Competitive Programming
Prof. Neeldhara Misra
Discipline of Computer Science and Engineering
Indian Institute of Technology, Gandhinagar

Lecture - 48
MaxFlow-MinCut Duality

(Refer Slide Time: 0:11)

Getting Started
i

COMPENTHVE PROGRAMMING
A Course on NPTEL

[MaxFlow—MinCut Duality]

Week 9 - Module 1 » Network Flows Il

Welcome to the ninth week of Getting Started with Competitive Programming. So, this week we
continue our exploration of network flows. But our perspective this time is going to be slightly
different from the one that we had last week. So, if you remember, in week 8, our goal was to
find a maximum valued flow in a flow network. So, the goal was to push as much material as we
could from a designated source vertex to a designated target vertex.

This time, our goal will be somewhat the opposite. We want to see what is the minimum amount
of damage that we need to do to the network to make sure that the target is unreachable from the
source. So, this is called the problem of finding a minimum cut. And it turns out that it is
intimately related to the problem of finding a maximum flow. In fact, so much so that without
knowing it, you have already learned an algorithm to find a minimum cut because the
Ford-Fulkerson’s algorithm for finding a maximum flow as a by-product automatically finds a
minimum cut as well.

Now, as you can imagine, the minimum cut problem has a variety of applications. One that is
easy to visualize but probably a bit depressing to think about is war strategy. So, let us say that
you are planning out an attack on the enemy camp. And what you are trying to ensure is that no
useful supplies reach them from the other side. Then you may want to strategically destroy roads
so that all connections are cut off. You either destroy roads or monitor them, whatever you do.

Now, monitoring or destroying is expensive. So, you want to be able to identify the smallest
number of key roads or locations that need this kind of attention. Minimum cuts are also
interesting because they give you a sense of the weak points in your network. Right. So, if you
have a minimum cut at hand, then you know that if these edges were to be destroyed, then you
lose all contact between the source and the target.

So, by identifying such minimum cuts, you may get ideas for how to strengthen your network
and make it more robust. That goes into the realm of something called network design, which is
a very interesting topic if you want to find out more about it. In the meantime, let us go ahead
and talk about the relationship between MaxFlows and MinCuts, which is the topic of this
module here.

(Refer Slide Time: 2:32)

A (s,t) cut is a partition of the vertex set of a
flow network into two parts S and T such that

s belongs to S

&
t belongsto T

So, what is a cut? Formally, it is a partition of the vertex set of a flow network into two parts,
which we will typically denote by capital S and capital T. So, these capital letters correspond to
vertex subsets. And the only thing that this partition must satisfy is the constraint that the source
vertex belongs to one of the parts and the target vertex belongs to the other part. That is all that
we need. Other than that, you could distribute the remaining vertices however you like, and it
will still be a valid S-T cut. Let us take a look at an example of an S-T cut.

(Refer Slide Time: 3:05 and 3:35)

The edges that cross a (s,t)-cut (S,T)
are edges e = (u,v) such that

uisin§

&
visinT.

Here is a flow network. The capacities are not shown here because they are not so relevant at the
moment. You have the source vertex S, and the target vertex T on the extremes of your screen.
And you will notice that all the green vertices, being the set capital S and all the red vertices
being the set capital T forms a valid S-T cut in this particular flow network. Now, given a cut
like this, we are specifically interested in edges that cross the cut. What do I mean by this?

Well, an edge from u to v is set to cross the cut if u belongs to S and v belongs to T. So, in this
example, once again, you can see that these are all the edges that cross the cut. They have been
marked in pink. And hopefully, you agree that this is consistent with the definition that we just
gave. Now, what is the capacity of this cut? Well, you just add up the capacities of the edges that
cross the cut, and that is going to be the capacity of the cut. Okay.

(Refer Slide Time: 3:59 and 4:08)

The capacity of a (s,t)-cut (S,T) is the)
sum of the capacities of the edges that cross the cut. Deleting all edges that cross a (s,t) cut

Now, think about what happens when you delete all the edges that cross an S-T cut. Take a
moment, if you would like to go back to the example and see what happens. And see if you
notice something particularly spectacular that happens when you remove all the edges crossing
any S-T cut.

(Refer Slide Time: 4:25)

Deleting all edges that cross a (s,t) cut

disconnects s from tin the graph G.

Well, let us actually look at what happens in this example. So, we have these edges that cross the
cut. And here is what you get when you remove these edges. Notice that when you do this, you
have removed all possible connections from S to T. So, I would like to claim that this is true not
only for this example but in general. If you were to delete all the edges that cross an S-T cut, then
you end up disconnecting S from T in this graph, which is to say that after these edges are gone,
there is no way for you to travel from S to T along a valid path.

To see why this is true. Let us assume that all the edges in an S-T cut have been deleted. And let
us suppose for the sake of contradiction, that you still have a path from S to T. And let us say that
path looks like this. So, clearly, just by definition, this path starts from the source vertex and ends
at the target vertex. Now, let us label the intermediate vertices of this path depending on which
side of the garden they belong to. So, just for simplicity, you could think of coloring these
vertices green or red, depending on whether they belong to capital S or capital T. Right.

(Refer Slide Time: 5:07)

e—’.—’.—’.—’. .—’.—’o A mincut is a cut with the smallest capacity.

So, when we go ahead and do that, notice that at some point, you must change color on this path
because it is starting with a green vertex, and you are ending at a red vertex. So, at some point,
there must be two consecutive vertices on this path, which have opposite colors. Right. So, if you
can find such a consecutive pair, then you have also found an edge that crosses the cut.

But remember that this edge is not there because we deleted all the edges that cross the cut.
Therefore, this particular path has been destroyed and is in fact not there. So, depending on your
taste, you can think of this as proof by contradiction, which simply says that this claimed path
does not exist. Or you could think of it as a constructive proof, which says, well, let us go and
examine every S-T path turn by turn.

And let us argue that at least one of the edges on any of these paths was, in fact, destroyed when
we deleted all the edges in an S-T cut. Either way, the point is that removing all the edges in an
S-T cut disconnects S from T. And that is why a cut, which has the smallest number of edges that
crosses it, would correspond to a minimum effort way of destroying all connections between the
source and the target, which was sort of the original goal that we set out for ourselves when I was
introducing the MinCut problem back at the beginning of this discussion.

Also, recall that we are working with edges that have capacities and you could think of these
numbers as being a reflection of how expensive it is going to be to destroy a particular edge. You
can imagine that if these edges are modeling a road network, then a six-lane road, which of
course has a large capacity is going to be more effort to destroy compared to some kaccha-pakka
road, which has a capacity of maybe one bicycle at a time or something like this. Right.

So, this naturally motivates the definition of a minimum cut as being a cut, which has the
smallest capacity. Once again, remember that the capacity of a cut is simply the sum of the
capacities of all the edges that cross the cut. Alright. Now, that the definitions are out of the way,
it is time to make our first connection between flows and cuts. So, here is a preliminary claim.

(Refer Slide Time: 7:43 and 8:23)

Note that:
the value of any valid flow f Let f be a valid flow; and let (5,T) be a (s,t)-cut.
is at most
the capacity of any cut (S,T) What if the value of the flow is more than the capacity of (S,T)?

I want to say that the value of any valid flow in a flow network is at most the capacity of any S-T
cut. Please feel free to pause the video here and just absorb this statement and see if you find it
intuitive. See if you can come up with your own reasoning for why something like this would be
true. Come back once you are ready.

Alright. So, we will not be proving this formally. If you are interested in proof that involves
proper inequalities and everything, you can take a look at the references that have been linked to
in the description. But what I will try to do instead is convey the main intuition for why you
might expect this to be true.

So, let us consider any flow ‘f.” Right. And let us fix an S-T cut, S-T, which is capital S capital T.
Let us think about what happens if the value of ‘f” exceeds the capacity of the cut S-T. Alright.
So, let us go back to our example here.

(Refer Slide Time: 8:39)

So, notice that the highlighted region on the left is the set capital S. Right. And we have that this
cut has a certain capacity — could be whatever you like. And let us say that you have managed to
push your flow from S to T, which is higher, the value of this flow is greater than the capacity of
this cut. Now intuitively, you can think of the cut as being some sort of a bottleneck between S
and T.

It tells you, remember, when we were working with the trucks, right, we said that, well, there is
only so much that you can push from S to T if this is going to be the situation that all of your
trucks have to take one of these three roads that have been marked in pink. So, that essentially
gives you a ‘bound’ for how many trucks can go through from S to T. So, in other words, if you
have managed to push a flow whose value is more than the capacity of these three pink edges
combined, then some of that flow is actually stuck on the yellow side of this network.

It cannot get out, it cannot go to the other side. But remember when we introduced the flow
problem, we also talked about how the flow that goes out of the source is the same as the flow
that lands on the target. So, it cannot really be that some of your flow is stuck on one side of the
graph and does not reach the target. If that is happening, then somewhere you have violated the
conservation constraints.

So, if you write down a few equations that involve starting from the starting value of the flow
and relating it to the capacity of the cross edges, and applying the conservation constraint, you
will see that you will end up with a contradiction if you start off with a flow that is more than the
capacity of this particular cut.

(Refer Slide Time: 10:27)
Note that:

the value of a maxflow f
is at most
the capacity of a mincut (S,T)

So, what we know is that the value of any flow is bounded by the value of any cut. In particular,
we could set this flow ‘f” to be the MaxFlow, and we could choose this cut to be the MinCut,
which tells us that the value of the maximum flow that you can achieve is bounded by the
capacity of the minimum cut in this flow network. So, what we have discovered so far is that the
capacity of a minimum cut gives us a target for the maximum value of the flow that we can hope
to achieve. Right.

So, if you found a minimum cut and it has some capacity, then this is the best that you can hope
for in terms of how much flow you can push from the source to the target. Now, the interesting
question is, is this an achievable target? Can you always push this amount of flow corresponding
to the capacity of our MinCut from S to T? And this is the question that we will try to address
next. Now, let us take a look at the flow that we get from the Ford Fulkerson algorithm. The first
thing I want to point out is that this algorithm already gives us an S-T cut.

(Refer Slide Time: 11:35)

Let S be the set of all reachable vertices
from s in the residual graph
after the last iteration of Ford-Fulkerson’s algorithm

&

let T be all the remaining vertices.

Then (§,T) is a (s,t)-cut.

So, let us look at the residual graph that we get in the last iteration of Ford Fulkerson.
Remember, we stop when we are not able to find an S-T path in the residual graph anymore. So,
let us look at all the vertices that are reachable from S in the residual graph that we obtained at
the last step, the step where we got stuck. Notice that this set of reachable vertices does not
contain the target vertex T because if it did, then we would not be stuck here. We would have
found a path, and we would have augmented the flow along this path. Right.

So, we know that the set of all vertices that are reachable from the source in the residual graph at
the end of the Ford Fulkerson algorithm is actually a set that contains the source vertex, and it
does not contain the target vertex. That sounds familiar. Right. So, that is essentially a cut. So,

you know that this is a valid S-T cut. And this is going to be a particularly interesting cut to work
with.

(Refer Slide Time: 12:33 and 12:59)

The value of the flow output
by Ford-Fulkerson’s algorithm is...

C.
Let the capacity of this (S,T) cut be C.

@

Let us say that this particular cut has a capacity of C. Now I want you to think about what is the
value of the flow that the Ford Fulkerson algorithm has found in terms of this capacity C. Pause
the video here for a moment and just think about whether there might be a connection. Alright.
So, it turns out that the value of the flow that is found by the Ford Fulkerson algorithm is also C.

Okay. Let us try to think about why this might be the case. But before we do that, let us say we
believe this for the moment. Then notice that your algorithm has also found a minimum cut.
Right. Because you have a flow whose value is C. You have a cut whose capacity is C. You
know that this flow whose value is C is actually the maximum possible value of any flow in this
flow network. So, you know that you cannot have a cat whose capacity is smaller than C. Right.

Because then this would violate the first inequality that we saw. So, in fact, the set of vertices
that is reachable from S in the residual graph at the last iteration of Ford Fulkerson is also a
minimum cut. The fact that that is a minimum cut, of course, relies on this observation here,
which is that you have a flow whose value is equal to this capacity.

So, again, let us try and see why this is true. Like before, I will not be proving this formally, but
hopefully, I will be able to share enough ideas based on which you can go and work out the
details of a formal proof. So, to begin with, let us try to understand the value of a flow in terms
of the edges that go between the parts of a cut.

(Refer Slide Time: 14:18)

Fact. /\/\/_\ﬁ\’\
/ “‘ \
[\)\/’ \
\

Given aflow fand a (s,t)-cut (ST),

the value of f s the sum of the flows on edges crossing the cut (‘/Y"\‘\ /
minus the flows on the “backedges” of the cut ‘\f_)/
i.e, edges (u,v) such thatuisin Tand visin S. U

So, in particular, let us fix a flow ‘f” and let us fix an S-T cut, capital S capital T. Right. Now, it
turns out that the value of the flow is the sum of the flows on the edges that cross the cut, and
you have to adjust for the flow that is coming back from T to S. So, you also add up the flows on
the edges that originate in the set capital T and have the other endpoint in the set capital S. And
all the flow that is coming on these so-called back edges, you need to subtract this from the total
flow that is going on the cross edges.

So, if you do that, the resulting number that you get will equal (to) the value of the flow itself.
Now, if you think about it, this is fairly intuitive. It is essentially because of the conservation
constraints that the amount of flow that you were able to push from S, or the amount of flow that
lands at T, can also be understood in terms of, you know, the amount of flow that crosses any of
these intermediate cuts.

And you really want to be looking at the net flow that crosses this intermediate cut, which is the
flow that is on the cross edges adjusted for the flow that is coming back into the set capital S. So,
again, this is something that you can confirm by a fairly straightforward calculation, which I will
not get into. But once you understand that this is true, let us look at what is going on in the cut
that is finally discovered by the Ford Fulkerson algorithm.

So, let us say that this cut that we are looking at is specifically the cut, which is obtained by
considering all the vertices that are reachable from S in the residual graph in the last step of the
Ford Fulkerson algorithm. So, now what is happening on the forward edges, which are the cross
edges? Notice that each of these edges must be fully saturated by the flow. Because if they are
not fully saturated by the flow, then in the residual graph, these edges would still be present with
the residual capacity, which means that if you look at the vertices, which are sitting in T right
now, at the other ends of these two blue edges, these vertices would not be in T, if these edges
were not fully saturated.

They would still be reachable from S, and they would be pulled to the other side. So, hopefully, it
is clear that the edges that are crossing this cut must be fully saturated by the flow. Again, if this
was not the case, then your ‘cut’ would not be looking like this. Okay. So, we need all of these
edges to be missing. The only way to make these edges vanish in the residual graph is by fully
saturating them so that their residual capacities are 0.

On the other hand, let us look at these back edges in the flow network. Okay. So, these edges, |
claim, cannot have any flow going through them. Because if you send any flow going through
these edges, then in the residue graph, you would have introduced an artificial edge, which goes
in the other direction, which would have a non-trivial capacity.

And once again, this would not be an accurate picture of the cut that you obtain at the last step,
and you would get a contradiction. So, in fact, if you look at the S-T cut that you obtain, at the
very end of Ford Fulkerson, the cut that is obtained by looking at the vertices reachable from S in

the residual graph at the last iteration, then it must be the case that your MaxFlow, again, as
discovered by Ford Fulkerson, must have the following form.

It saturates fully all the edges that cross this cut, and it does not touch the edges that come back
from this cut, which is to say, edges that start in T and end in S, these I just do not have any flow
going through them. Again, the reason for this is that if the flow did not look like this, then this
cut also would not look like this, okay, and that is what we just discussed.

(Refer Slide Time: 18:18)

Let S be the set of all reachable vertices
from s in the residual graph

) after the last itevation of Ford-Fulkerson’s algorithm
So Ford-Fulkerson’s algorithm

also finds a (5,T) cut &

whose capacit
P y let T be all the remaining vertices.

equals the value of the maxflow. Then (S,T) is a mincut!

So, essentially, the value of this flow is in fact equal to the capacity of this cut. And both the flow
and the cut have been discovered by this Ford Fulkerson algorithm. And we know from our
previous discussions, that this flow is in fact, a max flow, from which we can conclude that this
S-T cut must, in fact, be a MinCut.

This is something that we also mentioned a while ago because notice that if you have a cut,
which was smaller than this, then this flow would have trouble getting through. Right. So, Ford
Fulkerson witnesses the fact that the minimum cut target is, in fact, achievable. And it also finds
this minimum cut for you. So, what more could you ask for? So, in the next module, where we
look at a problem that requires you to find the MinCut, we will see how to adapt our
implementation slightly, so that we can find this MinCut and work with it.

(Refer Slide Time: 19:16)

In the meantime, if you had to have one major takeaway from this module, it would be this
equality, the equality of the value of the MaxFlow, and the capacity of a MinCut. The fact that
the value of the maximum flow is bounded above by the capacity of a minimum cut, I think, is
pretty intuitive. And that is something that can be appreciated just pretty much directly from the
definitions.

But the fact that this upper bound can always be achieved, and the fact that that is a consequence
of Ford Fulkerson, you have a constructive way of getting there, I think, it is absolutely amazing.
And this is one of the most elegant dualities in graph theory and it can be used as a basis for
proving some other very interesting dualities as well. And we will see one example of that in the
last module this week.

In the meantime, we would like to talk about how you can implement the process of finding a
minimum cut. Because you have already implemented the MaxFlow algorithm, this turns out to
be super easy to do. And that is what we are going to see in the context of this specific problem
in the next module. So, I will see you there!

