
Getting Started with Competitive Programming
Prof. Neeldhara Misra

Discipline of Computer Science and Engineering
Indian Institute of Technology, Gandhinagar

Lecture - 04
Ad hoc and Implementation - Module 4 (Will It Stop?)

Welcome to the final module of the first week on AdHoc and Implementation-based problems. I
do hope that you have had a good time solving the problems that we have showcased so far in
this week. And, as usual, this is a friendly reminder that if you are stuck anywhere at all, then
please do join us in the Discord community that has been set up exclusively for this course. Now,
in this module, we will be talking about a fun problem called, Will It Stop?

(Refer Slide Time: 00:43)

This problem features in a really nice compendium of contest problems called looking for a
challenge, Volume 2. And at the time of this recording, this book is freely available from the
book’s website. So, you can find the link in the description below, as well as on the course
homepage. I should, perhaps, mention that this book consists of model solutions to problems that
featured in the Polish College at programming contests, the ones that took place between 2011
and 2014.

And while this is an excellent collection of problems, if you are just starting out on your
competitive programming journey, you might find that they are a little more advanced than what
you are prepared for right now. Do not worry about it, and definitely come back to them later,
when you do have the background to appreciate some of the other problems. The problem that
we are featuring in this video is problem C, and it, fortunately, requires no specific background.
And it is a really cute problem. So, let us get right to it.



(Refer Slide Time: 01:43)

Let us begin by taking a look at the problem statement without the story for now. So, here is the
task at hand. We are given the following program.

You can see that it is a snippet of code that involves a while loop and a number n. And it seems
to be doing something different based on whether the number n is even or odd, to begin with.
Specifically, if the number n is even then it seems to be getting halved. And if the number is odd,
then it is roughly getting tripled. Specifically, it is transforming as 3 * n + 3.

So, at a high level, what is happening is that the number is either becoming smaller or bigger
based on whether it was even or odd, to begin with. You can probably already imagine that there
might be values of n for which this while loop just goes on forever and the program never
terminates. It turns out that this is precisely our task.

We are given a number n as input. This number can range anywhere between 2 and 1014, which is
just to say that this can be a pretty big number. And we have to identify whether this code, that
you are seeing on your screen right now, terminates when n is given to it as input.

What would be the most natural way of trying to solve this problem? Well, it might occur to you
that we should just try to simulate this code snippet here on the given value of n and see if it
terminates or not. That is fairly natural, but you can probably already see why it is going to be
problematic. Of course, if your code actually terminates on n within a small number of steps,
then you can confidently conclude that the program indeed terminates.

However, suppose your code runs for, maybe, 1000 steps, 10,000 steps, or even 100,000 steps,
and it is still not terminated. Now, can you still confidently conclude that the program will never
terminate? Well, these early steps may not be a good indicator of what happens ultimately. It is
possible that if you had waited for another 3 steps, the program would have terminated.



It is also possible that you needed to wait for another 10 billion steps before the program actually
did terminate. So, you can see why this is going to be dicey. Fundamentally, the issue is that just
because your program did not terminate in the first so many steps that is not enough evidence to
conclude that it is never going to terminate. So, it seems like the real task for us is to identify
some pattern on the numbers n for which this code does not terminate, and then use that pattern
to answer the question.

How do we discover this pattern? Maybe, we can go back to the simulation approach we were
discussing. Yes, I know I just said that it is not going to work. But it is not going to hurt for a bit
of a trial-and-error approach. Let us replicate this code in Python or whatever programming
language you are using right now. And just run it for some small values of n.

Pick a threshold that you like, say 100,000 steps, and let us just identify those values of n for
which this program does not terminate even within 100,000 steps. We can flag those values as
potentially being those for which the program never terminates. At this point, this is just going to
be an educated guess. But it is going to be a good starting point to investigate further. I would
really encourage you to try this yourself, and join me to discuss what we observed.

(Refer Slide Time: 05:19)







Eventually,

I ran the program for values of n between 2 and 10. For n = 2, the program terminated in just 1
step. But for 3, it seems like the program is getting into the cycle of values between 3, 6, and 12.
It is seemingly going on forever. For 4, the program terminates in just 2 steps. But for 5, again,
the program eventually gets into the same cycle that we observed for the number 3.

Now 6 was interesting because so far, the program seems to be terminating on even numbers and
non-terminating on odd numbers. So, we may be tempted to conjecture that that is the pattern.



But for 6, the program is again getting into this ‘3, 6, 12’ kind of cycle. For 7, the program again
gets into the sort of a loop that shows no sign of stopping.

But for the next number, which is 8, the program again terminates in just 3 steps. For 9 and 10,
you see that the program again gets into a cycle and shows no signs of stopping. So, at this point,
can you identify a pattern to, at least, the 3 numbers that we have seen so far on which the
program seems to terminate? If you run this program for even more values of n, then you may
have a larger stash of numbers on which to guess a pattern.

From what we have seen so far, it looks like all the numbers on which the program did terminate
happened to be powers of 2. So that seems like a very tempting conjecture to make. Perhaps the
program only terminates on powers of 2.

(Refer Slide Time: 07:02)

It is reasonably easy to see that if you have a power of 2, then the program does terminate. It is
because the program is successively shaving off powers of 2 from n, till the number becomes 1.
For instance, if to begin with n was the rth power of 2, then after the first iteration, it will become
the r-1th power of 2. After the second iteration, it will become the r-2th power of 2 and so on. And
after r iterations, the number becomes 2 to the 0, which is 1, at which point the program
terminates.

To summarize, if n was the rth power of 2, then the program terminates in r iterations. We also
saw this with the examples. When n was equal to 2, then we terminated after 1 iteration. When n
was 4, we terminated and 2, and when n was 8, we terminated in 3 iterations. So, this case is
abundantly clear. Now let us consider the other possibility, which is that n is not a power of 2.
When n is not a power of 2, let us split things up into 2 further scenarios.

(Refer Slide Time: 08:04)



What if n is not a power of 2, and is odd? In this case, notice that n is always going to be a
multiple of 3. Indeed, in the very first step, n gets transformed into 3*n+3. At this point, it is
clearly a multiple of 3. Since in future iterations, we never divide by 3, it should be clear that n is
always going to be a multiple of 3. For this reason, it is never going to reach a value of 1, and the
program is going to run forever.

What happens if n is not a power of 2 but it is even, to begin with? Then well, let us just consider
the prime factorization of n. It is going to have some powers of 2, and then some other factors as
well, because we explicitly said that n is not just a power of 2. So, as long as n is divisible by 2,
the program is going to enter the first branch of the if statement. It is going to, again,
successively shave off the powers of 2. But when it has no factors of 2 left, you are left with a
number that, by definition, is odd. You are back to the previous case, where n is not a power of 2,
and it is odd. From here on out, it is going to go on forever.

What we have argued after making an educated guess is that, indeed, the program does not stop
if and only if n is not a power of 2. So, the program that you have to write at this point is really
simple. You just have to check if n is a power of 2 or not. And one way to do that is to just try
and successively divide by n and see where you get stuck.

If you go all the way to one then n was a power of 2, but if you stop short of something that is
different from 1 then n is not a power of 2. If you are used to bit manipulation tricks, then there is
a faster way of checking if n is a power of 2 or not. We will mention this when we get to the
summary at the end. Before we go further though, let me just show you the original problem
statement so that you can take a look at the story there.

I know that normally we are in a big rush to just somehow get rid of this story and quickly
identify the abstractions involved. But in this case, I think the story has a little bit of interesting
trivia. So, I want to tell you about it, especially now that we have more or less solved the
problem.

(Refer Slide Time: 10:31)



So, here is how the problem statement goes. Byteasar was wandering around the library of the
University of Warsaw. At one of its facades, he noticed a piece of a program with an inscription:
Will it stop? The question seemed interesting, so Byteasar tried to tackle it after returning home.
Unfortunately, when he was writing down the piece of code, he made a mistake. The rest of it is
what we have discussed so far. But this might make you curious about a couple of things. First of
all, is there such an inscription at the facades of the library of the University of Warsaw? It turns
out that there is indeed such an inscription. Did Byteasar actually make a mistake while noting it
down? It turns out that, yes, the original inscription, on the facade of the library is a slightly
different code snippet. It is a really small mistake that Byteasar made while noting down this
piece of code.

(Refer Slide Time: 11:27)

So instead of a +3 in the else statement, we have a +1. That is the only difference, but it turns out
that it massively changes the nature of the problem. The mathematician Lothar Collatz believes



that this code stops for any value of n. It turns out that as of now, nobody really knows if this is
true. Of course, people have tried this computationally, apart from in other ways.

It has been verified that the program does terminate for some fairly large values of n. But we do
not know if this is the case for every n or not. This is a fascinating conjecture with a lot of
history. If you are interested in this, then do look up the Collatz conjecture. I am sure it will be a
very interesting rabbit hole for you to explore. But let us now recap what we have learned.

(Refer Slide Time: 12:12)

For the version of the code that we saw in the problem statement, we can say yes, if n is a power
of 2, and we can say no if n is not. I promised you a bit manipulation trick that would help you
identify if n is a power of 2 or not. And here it is. You can test if n is a power of 2 or not by just
taking the XOR of n and n-1, and doing an AND with n and check if that is n.

So, you can probably see right away that if n is a power of 2, then this equation is satisfied.
When you do n XOR n-1, you get essentially all ones. When you add that with n, then only the



first, the most significant bit is the only one that survives, and you get back n. However, it is a
little more work to check that this equation actually fails for any value of n, which is not a power
of 2.

It is a fun little exercise so I will not spoil it for you. But for now, if you just want to record it as
a trick that you can use, then by all means, please do make a note of it. So, all that remains is to
actually code this up. As you can imagine, for this problem, the coding bed is really simple, but
let us just go through it.

(Refer Slide Time: 13:33)

So, here is the page, which has the problem statement. This is a new platform compared to the
ones that you have seen so far. If you are here for the first time, on the top right, you will see a



link, which says login, as opposed to your username. If you do not have an account yet, then
when you click on login, you will get a drop-down menu, which will also give you the
opportunity to register.

It is a very simple registration form. So, you should have your account set up in a couple of
minutes. It is completely automatic. Once you have done all that, please make sure to log in. The
only reason I am recommending that you set up an account of your own is because you do need
that to be able to actually make a submission. If you are not logged in, you will not be able to
submit your code.

Let us just quickly recap the problem statement. The contents of the problem itself are exactly as
we have discussed. Let us take a note of the input. There is only one line of input and that is the
integer n. And the output well is yes or no, but notice that it is in Polish. So let us just take a note
of the words: It is going to be TAK or NIE. Let us just make sure that that is what we output in
our program. Otherwise, the tests are not going to pass.

Let us head over to the submission pane. Notice that you cannot, right away, select the
programming language. But once you start typing in here, the drop-down does get activated. I am
just going to pick Python because it is a simple program. It should not really make a difference,
what programming language we use here. We take in the number n. Now we just have to test if it
is a power of 2 or not. So let us use the bit manipulation trick that we just talked about. We want
to do n XOR n-1. So, the bitwise XOR is the ^ symbol in Python, and the bitwise AND is a
single & sign. We want to ask ourselves if this is true, and if it is, then we print TAK.

If it is not, then we print NIE. That should be the entire program. Notice that the editor interface
here does not really have support for tabs. That is why, I am kind of typing out for spaces. You
can, of course, also just code this in your favorite IDE and upload the file instead.

(Refer Slide Time: 16:33)



Let us just go ahead and make the submission to be sure. At this point, the status is pending. I
have made a similar submission before. My current submission has run its course. It seems like it
has a full score, which means all the tests passed, which is not surprising given that it was a
really simple check that needed to be done.

So, there is not a whole lot of margin for error here. But do try this out, and see if you managed
to also pass all the tests. You could try doing this the other way where you actually successively
divide n by 2 and see if that is within the time limit. I believe that that approach also works just
as well. Do give it a shot and let us know how it went for you. This was the final problem that we
discussed in this week. We are looking forward to seeing you next week, and also over at
Discord and the Google Groups. Thanks so much and talk soon. Bye for now!


