
Getting Started with Competitive Programming
Prof. Neeldhara Misra

Discipline of Computer Science and Engineering
Indian Institute of Technology, Gandhinagar

Lecture - 37
Minimum Spanning Trees - Module 1 (Blingor’s Network | Foundations [SPOJ])

(Refer Slide Time: 00:11)

Hello, and welcome to the seventh week of Getting Started with Competitive Programming. This
week we are going to be talking about ‘minimum spanning trees,’ which is yet another cool
optimization problem in the context of graphs. This problem may, in fact, remind you of some of
our discussions of single-source shortest paths.

But it turns out that it is really quite a distinctive problem in its own right, and we will contrast it
with the shortest path problem as we go along. As usual, we will spend the first module laying
down the foundations. We will discuss a couple of popular algorithmic approaches to this
problem. They are usually referred to as Prim’s algorithm and Kruskal’s algorithm. As is the case
with most of these algorithmic ideas for fundamental graph problems, these algorithms were also
co-invented by other people.

But we will stick to these names because they are the standard textbook names, and you will
have an easier time finding related material if you do it this way. But if you want to find out
more about the history of this problem, then I would definitely recommend checking out the
relevant chapter in the ‘algorithms text’ by Erickson. There is a link to it in the description of this
video.

So, what we are going to do is, first, talk about minimum spanning trees – what the problem is,
what we are required to do? We will talk about why it is different from, say, single-source
shortest paths. In particular, we will talk about why a solution to SSSP may not actually serve as
a solution for MST, even though it may be tempting to think of it that way. And then we will talk



about Prim’s algorithm, which turns out to be an algorithm that has a flavor very similar to
Dijkstra’s algorithm, again, making that connection with SSSP.

But really, the mechanics of it are subtly different. And hopefully, you will be able to see the
differences and appreciate them. And finally, we will run this off with Kruskal’s algorithm. And
you will see that the implementation of Kruskal’s algorithm relies heavily on the disjoint set
union, which is something you have already seen in week four. So, that should tie up quite
nicely. So, this module is divided into three segments corresponding to these three separate
discussions, the introduction followed by Prim’s algorithm followed by Kruskal’s algorithm.

We will be testing both of these implementations using a problem on the sphere-online judge
called Blingor’s network. It is a very direct ask for a spanning tree. So, all we have to do is make
sure that we read the input carefully and then pass it on to the implementations of our algorithms.

Their problem statement promises large inputs, so this should be a good way to stress-test the
efficiency of our implementations. So, with all that said, let us talk about minimum spanning
trees now. I am going to introduce the problem to you through a story, which is a pretty
commonplace thing for us to do.

(Refer Slide Time: 03:04, 03:52, 04:08 & 04:19)

But this is a bit unusual in that the story is borrowed from a resource called CS unplugged. There
is a link to this in the description. It is an amazing collection of activities and stories that
introduce computational problems. So, if you are interested in follow-up stories, definitely check
this out. But let us talk about this one first. So, once upon a time, there was a city that had no



roads. Getting around the city was particularly difficult after rainstorms because the ground
became very muddy. Cars got stuck in the mud, and people got their boots dirty.

So, the mayor of the city decided that some of the streets must be paved. But she did not want to
spend more money than was necessary because the city also wanted to build a swimming pool –
so they have a limited budget. The mayor, therefore, specified the following two conditions. The
first one says enough streets must be paved so that it is possible for everyone to travel from their
house to anyone else’s house only along paved roads. So, you want some sort of a ‘connected’
structure to emerge.

The second condition is that the paving should cost as little as possible. So, you want to find the
best possible way of doing this. And, you know, the cost of paving any particular road, in
particular, we have this example, which you are welcome to pause the video at this point and
work out if you like. So, the cost of paving any particular road is proportional to the number of
stones that are on that road in this picture. Now an obvious way of meeting the first condition is
to just pave everything.

This will connect everyone to everyone. But notice that you can check that this does not meet the
second condition because there are going to be some redundancies. At least in this particular
example, you can see that there are many cycles, and that means that you can actually remove
some of the roads and still remain connected. And therefore we know that it is not a minimum
cost solution.

If you just wanted to optimize the budget, then, of course, you do not have to do anything at all,
but then you do not actually connect the houses. So, you need something that is in between and it
is not surprising that the structure that you are looking for is a tree because that is exactly what
captures this notion of being minimally connected. And not only do you want a tree, (but) you
(also) want a tree that, well, touches every vertex and has the smallest possible cost in terms of
the sum of the weights of the edges.

In this case, the weights simply correspond to the cost of paving the road in question. Now for
our convenience, let us replace this lovely sketch of the city with a more useful abstraction. It is
pretty natural to want to model this using a graph with the vertices representing the houses, and
an edge between two vertices, indicating that it is possible to, in fact, pave a road between the
corresponding houses, and a number on that edge would record the cost of actually paving that
road.

(Refer Slide Time: 05:51)



So, what we are looking for in this graph is a subgraph, which is a tree where the total costs of all
the edges in the tree are as small as possible. So, please take a moment here and see if you want
to work through this yourself in an ad hoc fashion.

Or if you are already familiar with a systematic approach, then perhaps try to apply it to this
example and see what you get. We can tally notes later. Okay. So, before I get to actually talking
about how we compute an optimal solution for this example, and also in general, I want to
suggest an approach and I want you to think about whether it will work. Remember, I said that
minimum spanning trees are reminiscent of shortest paths in the sense that shortest paths
intuitively take us from one place to another as quickly as possible.

So, why not just start at one of our favorite houses, and just compute the shortest paths to every
other vertex. Now perhaps this can be used as a spanning tree. Well, it is going to be a valid
spanning tree for sure because you are going to find paths to every other vertex. And this
collection of paths can be shown to be acyclic. But on the other hand, the thing to really think
about is, does this have the smallest possible cost among all spanning trees?

It is fairly easy to come up with examples where starting from a particular house may just be a
bad idea. But we can improve on this idea a little bit, we can say, well, let us just try stopping
from every possible house, just like we did for APSP. Our first approach for APSP was to run
SSSP on every vertex. So, let us just try and do that. For every vertex in the graph, we figured
out the shortest path tree, which is just computing the shortest paths to every other vertex.

And then we take the one that is the best among all of these ‘n’ options. Would this work? Just
think about whether this would make sense. I think it is a really instructive exercise to play
around with some examples. And I think this really emphasizes the distinction between the goals
of shortest paths versus spanning trees. Although at some level, they are similar in the sense that
you are trying to optimize for somehow some sort of reachability.

But the style in which you are optimizing for reachability is relatively local in SSSP, and
somewhat more global in MST. And this really does make a difference. So, feel free to pause
here and see if you can figure out this puzzle. And when you come back, we will talk about it
more. So, since I have been talking about the contrast between these two problems, the answer
should come as no surprise to you. Just trying SSSP from every vertex will not solve the MST
problem for you.

(Refer Slide Time: 08:59)



Let us take a look at this example. So, what we have here is a complete graph on five vertices.
The red edges on your screen have a weight of 1.5, while the black edges have a weight of 1. If
you think about a solution to the minimum spanning tree problem on this graph, then you can
probably predict that any minimum spanning tree actually looks like a path on this outer rim. It
just leaves out one edge and takes on all the rest. This is the best that you can hope for.

On the other hand, if you were to start off an exploration based on, say, Dijkstra to perform SSSP
from any vertex, so let us pick the one on the top here, for instance, highlighted in blue. Think
about what would Dijkstra do here? Well, you are going to get the two neighbors first, for sure.
That is the best way of getting to those. But for the two vertices that are at the bottom, the best
way to get to them is not via the outer rim. It is actually via the direct edge.

So, your shortest-path tree will look something like this, and that is going to be the same story no
matter which vertex you start from. So, hopefully, this example illustrates the key difference
between our goals with a single-source shortest path versus a minimum spanning tree. So, as you
can imagine, MSTs will require a slightly different approach. Although one of the popular ways
of finding MST, which is via Prim’s algorithm, feels a lot like Dijkstra.

So, it is a common question as to whether they are really different. And I wanted to get that out
of the way up front by concretely showing you that it is indeed a slightly different problem. Now,
before talking specifically about either Prim’s algorithm or Kruskal’s algorithm, I want to make
some comments about a generic MST algorithm.

(Refer Slide Time: 10:44 & 11:06)

It turns out that most algorithms can be fit into this framework in some form or fashion. So, it is
just a useful way to think about MST approaches. So, what you typically want to do is grow a
minimum spanning tree by iteratively building it out of a spanning forest of some sort.

So, what is a spanning forest of a graph? Well, the vertex set of a spanning forest is the entire
vertex set of the base graph that you are working with. But the edge set is essentially some
acyclic subset of edges. There is no requirement that these edges should form a connected
subgraph. That is what makes a spanning forest different from a spanning tree. So, you think of it
as a collection of trees on the vertex set of G.

And some of these trees could be trivial. In particular, they could be isolated vertices. In fact,
most algorithms would start with a spanning forest, which is simply all the isolated vertices in



graph G. Now, of course, not every algorithm starts here. So, for instance, you could quite
naturally think about your starting point as the entire graph G, all the vertices, and all the edges.
And then you could try to erase edges away until you are actually left with a spanning tree.

But the approach that we are going to be talking about will be building up to a solution as
opposed to chipping away at the whole graph till you are left with something minimal. So, as I
said, our generic view is that we are trying to iteratively build up a spanning forest till it evolves
and matures to being a single spanning tree.

(Refer Slide Time: 12:22, 12:41 & 12:54)

Here is what a typical spanning forest may look like at some intermediate stage of your
algorithm. Now, at this point, what we want to say for correctness eventually, is that these
intermediate spanning forests that we are building are some partial realizations of an optimal
solution that exists somewhere.

This is what you would need to prove to show the correctness of your algorithm. And while we
would not be getting into the proof, let me introduce some terminology that may help you think
about how such a proof would go.

So, first, when you have a spanning forest, let us classify the edges into a couple of useful
categories. The first one is the category of useless edges.

(Refer Slide Time: 13:05, 13:28 & 13:54)

These are edges that have both of their endpoints in the same tree of the spanning forest. Notice
that such edges will induce cycles, and therefore we are never going to add them to our solution
if we are committed to extending the solution that we have built up so far. So, the nomenclature
of calling such edges useless is actually quite appropriate.

On the other hand, we talk about an edge being safe for a particular component if it is the
cheapest edge among all the edges that have exactly one endpoint in that component. We do want
to talk about uniquely identifying the cheapest edges. So, if there are multiple cheapest edges



that are getting out of a component, then we will have some previously agreed upon tie braking
mechanism.

So, again, let us look at our spanning forest here. Let us identify a component as an example. Let
us work with this one. And let us say these are all the edges that are coming out of this
component. They have one endpoint inside the component and the other endpoint outside. And
let us say that the cheapest edge that comes out of this component happens to be this one. Then
this is the edge that we will label as being the safe edge for this component.

Now, one thing to observe is that the same blue edge may not be the safe edge for the other
component that it is incident to. So, this yellow component here may have a different safe edge
going out of it to some other component. But notice that once you do collect all the safe edges
incident on all the components, then they must together be acyclic. Imagine that you do have a
cycle among the safe edges.

Just start traveling on this cycle. You will notice that you must experience that the weights in fact
decrease as you go along. So, you will get a contradiction by the time you hit the end of the
cycle. So, just think about this a bit. And I just want you to preserve this intuition that all the safe
edges at any stage of your algorithm must, in fact, be acyclic. And in fact, you can show which
we will come to in a moment that these safe edges are called safe because they actually do
belong to an optimal MST. So, you can pick them without thinking.

(Refer Slide Time: 15:22 & 15:36)

But before we get to that, let us also label all the remaining edges as undecided. So, you could
have edges that are neither useless nor safe. So, these are edges about which we do not know
much, and we will just call them undecided.

So, the key to the mechanics of most algorithms is the (following) fact that there is going to be
an optimal solution, which does not contain any (of the) useless edges and contains every safe
edge at every iteration of your algorithm. As I said, one intuitive thing to appreciate is that
adding the safe edges will not violate the structure of the subgraph that you are looking for – the
safe edges are already acyclic. But it does require proof that these are the best edges for your
solution in terms of the cost.

In fact, what we are doing here has a really strong greedy vibe to it. We are seemingly focusing
on edges that are locally the cheapest with respect to a component. And it is not obvious at all,
that this would be the right thing to do long term. But it turns out that it is and once you know the
correctness of the statement, then an algorithm, in fact, naturally suggests itself. Right. What you



could do is start with all the isolated vertices, identify all the safe edges. This just amounts to
going to every vertex and asking who is the neighbor that is the closest to you.

And once you have the answer to all of these questions, then you (just) have identified all the
safe edges so you can freely add them to your solution. If at this point your graph becomes
connected, that is fantastic. If not, and it may not be in fact. You can think of examples where
you do this once, and you could be left with a graph that has as many as n by 2 components, for
instance. So, your graph may not be connected.

But you could just repeat this process. You go to every component, and you ask, what is the
cheapest edge that is incident on you? Again, having identified the safe edges, just add them to
the solution. And repeat this until your graph in fact becomes connected. You can show that in
every step, the number of components will in fact go down by half. So, the number of iterations
that you have to repeat this process for is in fact only logarithmic in the number of vertices. You
do have to think about the cost of identifying the cheapest edges that go out of components.

And this is actually a good exercise to go through and this is a perfectly valid MST algorithm. It
is a little bit different from the ones that we are going to discuss. But it is very natural from the
observations that we have set up so far. So, I just wanted to point it out to you as a fun thing to
think about. The more traditional approaches which are Prim’s algorithm and Kruskal’s
algorithm are the ones that we are going to discuss in the next two segments. So, I will see you
there!


