Getting Started with Competitive Programming
Prof. Neeldhara Misra
Discipline of Computer Science and Engineering
Indian Institute of Technology, Gandhinagar

Lecture - 11
Greedy Algorithms - Module 3 (Stable Marriage-I)

(Refer Slide Time: 00:11)

Getting Started
il

COMPEUTUVE PROGRAMMING:
A Course on NPTEL

[£ Stable Marriage 4 Regionals 2007 Europe - Southeastern]

Week 3 - Module 3 » Greedy Algorithms

Welcome to the third module in the third week of ‘Getting Started with Competitive
Programming.” This week we have been looking at ‘Greedy Algorithms’ and I hope that the
couple of examples that you have seen so far are already giving you a feel for how these things
work. This time we are going to look at an example, which is actually a computer science classic,
and it is called the ‘Stable Marriage’ problem.

This problem has enormous applications and really interesting history. If you are curious about
some of the trivia that is associated with this problem, please check out some of the links in the
description, which include a pointer to a very cool number file video on the topic and a couple of
other really interesting articles. I will be presenting this as a stand-alone puzzle because of
limitations of time and will really be doing no justice to the amazing history of this problem.

Please do learn more about it after you are done with this video, if you feel so inclined. Back to
the context of contests, this problem did make an appearance in one of the ICPC Regionals. It is
also available on the CodeChef problem archive. You can find links to both versions in the
description of this video and you can use either one for practice, whatever is more convenient.
The tasks are exactly the same and if I remember correctly, the limits are also kind of similar. So,

it should really make no difference. With all that said, let us get to the problem statement and
figure out what our task is going to be.

(Refer Slide Time: 01:47)

//' o _ / ~—
>R
] N v,
0

\
\
\
/

\
\

FEEE

The setting is the following. We are given two groups of people, which we will refer to as ‘men’
and ‘women’ and there is always going to be the same number of them. Let us say that there are
N men and N women for a total of 2N people. By the way, let me just mention that this
terminology, using the word ‘marriage’ to refer to the problem itself and to refer to these groups
of people as men and women, is traditional even in the computer science research literature
around this problem.

So, it is not just from the contest problem statement. Do not be fooled into thinking that this is
just a puzzle about matching men and women and getting them into happy marriages. It just
turns out that this terminology is a convenient abstraction for modeling a wide array of
application scenarios, some of which may even occur to you as we go through the problem
statement together.

For a more comprehensive view of the many scenarios that can be thought of as instances of this
stable marriage problem, I will point you to some of the links in the description. Let us now get
back to the problem statement and consider what else we are given. We have these two groups of
people: N men and N women, and it turns out that this is a rather judgmental group of people.

Every individual here has feelings for the people in the opposite group, and the way these
feelings are modeled or given to us is by way of rankings. In particular, every man will have a
ranking over the set of all women. You can think of a ranking as simply a permutation of the
opposite set. In this case, the set of all women. Similarly, all the women also have rankings over
the set of men. These rankings are really individual preferences and there need not be any
relationship between the rankings of two different people.

You can think of the input as just being N permutations of the set of women corresponding to the
N men and N permutations of the set of men corresponding to the N women. Often we will think
of these permutations literally as ranked preferences and we will talk about the top preference or

the second favorite and things like that. In this example, for instance, the ‘king of spades’ seems
to like the ‘queen of diamonds’ the most and that is his top preference. The second-best
preference is going to be the ‘queen of spades’ and so on and so forth.

We will use that kind of positional terminology to refer to people on a certain rank list.
Hopefully, the input is clear. As I said, it is going to be 2N people and correspondingly N
permutations of the men and N permutations of the women. What is the output?

(Refer Slide Time: 04:44)

¢ ¢
(e \ -
iy ey (Fs)
@ T
m E N

What we want to output is essentially a bijection between the men and the women, which is to
say that we want to match every man with exactly one woman. There are many different ways to
match men with women. In fact, if you think about it, you will realize that there are N factorial
possible matchings. Every matching can be thought of as a permutation of one of these sets and
there is going to be N factorial of them.

We are not interested in just any arbitrary matching. Since we are given these preferences, we
want a matching, which in some sense makes everyone happy. We do have to be careful about
what we mean by a matching that makes everyone happy though. A natural definition may be to
say, well, why do not we just match everyone with their favorite person from the other side. An
immediate issue with this is that it is possible that multiple men, for example, have the same
choice of favorite woman or multiple women have the same choice of their favorite man.

In this case, coming up with a well-defined matching that gives everybody their favorite person
from the other side is going to be impossible. You could say that in these cases, we just say that
there is no matching possible. But it turns out that we are going to have a more interesting
definition for what we want from our matching.

To be able to understand what we mean by a so-called stable matching, which you might have
guessed is what we are going to be looking for from the name of the problem, we first have to
define an intermediate notion called a ‘blocking pair.” The notion of a blocking pair only makes

sense in the context of a matching. As with most things, let us try to learn about this definition
through a concrete example.

(Refer Slide Time: 06:28)

Suppose > for Suppose > for
6 £8 > B9 for @9 § @ > (9 for @9

Blocping pair
2y (e

Here, I have a fragment of a larger matching. I just wanted to focus on these four people here.
That is why I am only showing you a part of the matching. We have a situation where the ‘king
of spades’ has been matched to the ‘queen of spades,” and the ‘king of hearts’ has been matched
to the ‘queen of hearts.’

Ssuppose that in terms of preferences, we had the following situation. Let us say that the king of
spades happens to prefer the queen of hearts over the queen of spades. He likes the queen of
hearts more according to his ranking. On the other hand, if you consider the queen of spades, she
also likes the king of spades more than the king of hearts.

She also prefers the king of spades over the king of hearts in her ranking over the men. With a
little imagination, you can probably already guess what happens next. Because the king of spades
and the queen of hearts prefer each other over their currently matched partners, they might find it
an interesting option to just break off their current alliances and elope with each other.

This is why they are called a blocking pair because they put the current matching in some kind of
jeopardy because of this mutual incentive to run away with each other. Remember that it is very
important for this admiration to be mutual.

If only one of these people prefers a different person over their matched partner but said person
does not return this admiration, then you do not have a blocking pair. It is not going to be a
problem.

But as of now, these folks are left stranded and this is not a good situation. By now you have
probably developed this intuition that blocking pairs are troublemakers for matchings and that is
why you might find this definition of stable matching very natural now.

(Refer Slide Time: 08:22)

There are given n men and n women. Each woman ranks all men in order of her
preference (her first choice, her second choice, and so on). Similarly, each man
sorts all women according to his preference. The goal is to arrange n marriages
in such a way that it a man m prefers some woman w more than his wife, and w

. . ;r— prefers m more then her husband a new marriage occurs between wand m. If w

prefers her husband more, then she stays married to him. This problem always

d_ M no- E—LQ(W FW}_ has a solution and your task is to find one

A matching is set to be stable if it simply does not have any blocking pairs and our task with this

problem is to find a stable matching if one exists. Now I am saying ‘if one exists’ just to sound
fancy.

If you actually look at the CodeChef problem statement, the last sentence of this paragraph
guarantees that this problem always has a solution, which you might find surprising at first.
When we come up with the algorithm, you will see that the algorithm itself doubles up as proof
for why these stable matchings always exist.

(Refer Slide Time: 08:55)

@

Agerls who- are malched will Their Top choice

Let us try to think about how we will go about this goal of finding a ‘stable-matching.” What is
the natural greedy choice here?

A first cut observation to make is that if somebody is matched with their top choice, then they
are never going to be involved in a blocking pair. Because they are absolutely happy with what
they have and they are not going to really be interested in forming a blocking pair with any other
person. A natural greedy choice may be to match as many people with their top choices as is
possible. Let us try to pursue this strategy with an example.

(Refer Slide Time: 09:34)

N e Fe)
o es Ty
e E9) &)

@9

/
3

(we) () * [@e)

Here we have again, the four men and four women in our running example, and let me bring up
the top choices for the men. You can see that both the king of spades and the king of hearts like
the queen of hearts as their favorite option, and both the king of spades and the king of diamonds
like the queen of diamonds as their favorite.

In the spirit of doing the greedy thing, let us try to see what happens if we try to match all of
these gentlemen with their favorite options. As you can see, this is not going to be
straightforward because there is clearly some competition. For instance, both the king of hearts
as well as the king of spades will reach out and try to get matched with the queen of hearts, while
both the king of diamonds and the king of clubs will try to reach out and get matched to the
queen of diamonds.

Notice that both the queen of hearts and the queen of diamonds have a bit of a choice to make
here, while the queen of spades and the queen of clubs are left stranded, at least for the moment.
From the perspective of the queens that do have a choice, what choice do you think they should
make? They can only pick one option because remember that the thing we want to finally output
is a proper bijection. It is a matching.

These queens have to pick one choice. It may not be a permanent choice. It may be something
that they could revisit later for reasons that we will see in a bit. But for now, they have to at least
make a temporary choice disregarding one of the offers that they seem to be getting. The natural
choice here would be, again in the spirit of ‘greedy,’ to pick the better option.

Notice that it is possible that these options are not very good for the queens in absolute terms.
For instance, it is conceivable that these two options that they have are their bottom-most
choices. But still, because there is a choice to be made, you just pick the relatively better one. In
this example, let us say that the queen of hearts prefers the king of hearts over the king of spades
and the queen of diamonds prefers the king of diamonds over the king of clubs.

They go ahead and make those choices, and you are left with this sort of tentative arrangement at
this stage. What we have achieved so far is that these two kings have been matched to their
favorite options and at least as long as this matching persists, these kings will never participate in
blocking pairs. Of course, it is possible that we may have to modify this matching as we go
along.

For example, especially if these queens receive better options in the future. Remember, we said
that we are only looking at the top options from the perspective of the kings. These options that
the queens have received may be some of their worst. It is conceivable that the queens receive
better offers later on, and they may have to give up on their current alliances to forge new ones.

Notice that if that happens, the kings will still not participate in a blocking pair because the only
people that they would care about forming a blocking pair with were taken away from them

because they found better matches for themselves. Any of this admiration that the kings may
have will not be reciprocated. This, of course, is getting a little ahead of ourselves.

If some of this does not make sense, do not worry about it. We will have more explicit examples
and we will go over the overall algorithm once again. Do not worry if some of this sounded a
little bit vague. Let us continue with our story here.

These kings have already been matched. The other two kings, who did not have any luck in the
first round, are now going to move on to the second favorite options on their list. This time, the
king of spades has the queen of spades as his second favorite option, and similarly, the king of
clubs has the queen of clubs as his second favorite option.

These proposals are made to the respective queens and from the perspective of queens — well, it
does not even matter where these gentlemen rank on their lists because we are intuitively in a
situation where being matched is better than not being matched. Remember, we want to output a
matching eventually.

The queens are simply going to accept this offer because it is better than nothing. They do not
have to make any further comparisons because they do not have a choice, at least at this stage,
and therefore these offers are accepted. Notice that all the men have been matched, and we have,
in fact, a matching.

You can think about why would this matching, in fact, be a stable matching in this case because
it was a simple example. We already know that the king of hearts and the king of diamonds have
been matched to their top options so they do not participate in any blocking pairs.

The king of clubs and the king of spades could have potentially participated in blocking pairs
with, say, the queen of hearts or the queen of diamonds. These are queens that they prefer more
than their currently matched partners.

But notice that these two queens, just by construction, are currently matched to people that they
like better than the king of spades and the king of clubs. So, they are not going to reciprocate the
love and therefore these blocking pairs will remain incomplete.

You can hopefully convince yourself that the matching that we obtained for this particular
example is a stable one. Let us go through another example, which is just a little more
non-trivial, to really get a feel for what is happening.

(Refer Slide Time: 15:12)

EDEENED

We are back to the original situation with four kings and four queens and this time, let us say that
the top options look like this. As you can probably tell, we are once again in a situation where
the top options are concentrated on two of the queens. In particular, both the king of spades and
the king of clubs have the queen of diamonds as their top choice and both the king of hearts and
the king of diamonds have the queen of hearts as their top option.

Let us ask the queens what they make of the proposals that they have received. For the queen of
hearts, let us say that the king of hearts happens to be her top choice. If this is the case, then the
queen of hearts is going to reject the application from the king of diamonds and the alliance
between the king of hearts and the queen of hearts is going to be forged at this stage.

Notice that this is a really good match because these are two people who have been matched to
their mutually top options. This is a match that will never be revisited. In some sense, we will
never need to change this because it really does not get any better than this, to put it intuitively.

Let us turn our attention to the queen of diamonds who has to make a choice between the king of
clubs and the king of spades. Let us say that she likes the king of diamonds the best. But she does
not have a proposal from him. So, let us ignore that for now.

Between the king of spades and the king of clubs, she likes the king of spades better. So, she is
going to reject the proposal from the king of clubs and instead settle with the king of spades.
This is the tentative arrangement that we have at this stage and we are still left with two kings
that do not have a match yet. Let us turn to them and ask them about their next best options.

(Refer Slide Time: 16:56)

(ELINETIET IIEE Y

The king of clubs has the queen of spades as his next best option and the king of diamonds is the
queen of diamonds as his next best option. Let us say that these kings go ahead and make these

proposals. Notice that now we have an interesting situation. The queen of diamonds already is
engaged, in some sense, to the king of spades from the previous round.

But now she has a more interesting proposal to consider. If you remember her preferences, she
prefers the king of diamonds over the king of spades who is her current partner. Given that this
new proposal looks tempting, should the queen of diamonds deflect and basically go with this
new proposal breaking her old arrangement? Or should she just be loyal to her current partner
and ditch the king of diamonds even though she likes him more?

Just think about what would be the appropriate thing to do given that we eventually want a stable
matching, which is one without any blocking pairs. Hopefully, you had a chance to think about
this because it is a really interesting question at this point. There is a tension between doing the
seemingly right thing in terms of being loyal to somebody you have been matched with before
and doing the thing that seems like the correct greedy choice in terms of optimality to the point
where it almost sounds selfish.

What should the queen of diamonds do? Let us consider what happens if she decides to stay true
to her current partner who is the king of spades. If she does that, then at the very end, she is
matched with the king of spades and on the other hand, the king of diamonds is matched to
somebody that he certainly likes less than the queen of diamonds.

Everybody that he liked more than the queen of diamonds, he has already been rejected by from
previous rounds. In the current round, the queen of diamonds decided to reject his proposal as
well. In the final matching, the king of diamonds is going to be matched with somebody that he
likes less than the queen of diamonds. Notice that the queen of diamonds and the king of
diamonds will end up forming a blocking pair because they mutually prefer each other over their
ultimate matched partners.

Since this is precisely the situation that we want to avoid at the end, it would actually make a lot
of sense for the queen of diamonds to actually break off her current relationship with the king of
spades and accept this new alliance with the king of diamonds. It may seem like a painful thing
to do, at the moment, but it will be for the best in the long run.

Notice that no actual rejections are happening. No actual breakages of engagements are
happening. This is all background work that is being done by the algorithm and it is only the
final matching at the end that will matter even in the context of a more real-world application.

Do not worry about any actual heartbreak. This is really all in the analysis. Now, it is much
easier to think about the queen of spades who has only one proposal in this round. So, there are
no choices to be made, and she just goes ahead and accepts the alliance with the king of clubs.

Now we still have one unmatched king, that is the king of spades who was matched before, but
has now gone back to being single. Let us now consider the next best option for the king of
spades.

(Refer Slide Time: 20:24)

EOJEDEEry Cdy (U

& ——e .
Do U
) ey (8)

@ el "

Let us say that this happens to be the queen of spades. The king of spades will go ahead and
make that proposal. Now, the queen of spades is in a situation similar to the one that the queen of
diamonds was in previously. She has to consider making a choice between accepting this new
proposal and breaking off the old one versus rejecting the new proposal and keeping the old one.

What the queen does depends on how she compares her current partner with the potential new
partner. Let us bring back her preference lists and observe that she actually prefers the king of
spades over the king of clubs, and because of this she would want to actually accept this new
proposal and break off her current alliance with the king of spades, much like the queen of
diamonds of did before.

Notice that this may not always happen. If the preference was listed the other way, then the
queen of spades would have maintained her current alliance and the king of spades would have
to go back and try his luck with the next person on his list. But in this example, that is not how it
plays out.

This is the current matching that we have at this stage. Now the king of clubs goes back to being
single and makes a proposal to the queen of clubs, who is the next person on his list. This
proposal gets accepted because the queen of clubs is single at the moment and because
something is better than nothing. This is an immediate acceptance and we finally have a
‘matching.’

You can try to convince yourself that this matching is stable. That should be intuitive given that
we had that at the back of our minds all along. Nonetheless, it is useful to actually prove this
formally and instead of working in the context of this example, let us actually turn to the
algorithm in full generality and try to argue the correctness also in slightly more general terms.

(Refer Slide Time: 22:25)

Initially all meM and we W are free
While there is a man m who is free and hasn't proposed to
every woman
Choose such a man m
Let w be the highest-ranked woman in m's preference list
to whom m has not yet proposed
If w is free then
(m, w) become engaged
Else w is currently engaged to m’
If w prefers m’ to m then
m remains free
Else w prefers m to m’
(m, w) become engaged
m’ becomes free
Endif
Endif
Endwhile
Return the set S of engaged pairs

Algorithm Design — Kleinberg and Tardos

Just to recap what the algorithm is doing. We start off with the list of men and women and
initially, nobody is matched to anybody, to begin with. This piece of pseudocode is borrowed
from the book ‘Algorithm Design’ by Kleinberg and Tardos and you can find a pointer to the
book website in the description of this video.

What we are going to do is basically run a ‘while’ loop for as long as there is a free man. A man
who is still single and has not been matched to anybody. As long as there is such a man, what we
are going to do is basically look at the highest-ranked woman for this man to whom he has not
yet proposed or in other words, the highest-ranked woman who has not yet rejected him.

We have this man approach this woman, and what plays out from here will depend on the
situation of the woman. If the woman is unmatched herself, if she is single because we have been
saying that it is better to be matched than to not be matched, this proposal will have immediate
acceptance. So, this match is made and we are done.

On the other hand, if ‘w’ is currently engaged, then she would have a choice to make between
her current matched partner and this new proposal. We have seen this play out a couple of times
in the last example that we discussed, so you should probably be able to predict what the
algorithm does here.

Let us say that the currently matched partner is m’ and the new proposal is coming from “m.”
Suppose ‘w’ prefers m’ over “m,” which is to say that she likes her current situation better than
the new proposal, then she is just going to reject this new proposal, and “m” remains single and
will have to go back and revisit his preferences and propose to the next woman on his list, which
will happen naturally as you go back to the start of this ‘while’ loop.

On the other hand, if ‘w’ finds this new proposal more exciting than her current alliance, then
she is going to break off her current alliance, and m’ now becomes a free man (gets added to the
pool of single men) and the engagement between ‘m’ and ‘w’ is established — ‘m’ being the new
person who is proposing to ‘w.’

That is pretty much it. That is how this progresses and once you stop, that happens when all men
have been matched, and at that point, you have a set of engagements that you can finalize and
claim to be a stable matching. There are a few useful observations to make about this algorithm.

First of all, let us argue termination. Because there is a ‘while’ loop involved and there are
engagements being broken and men going back to being single, you might even suspect if there
is a possibility that this algorithm keeps going around in circles and possibly never stops on some
cleverly designed input.

If this thought is in fact bothering you, then I would encourage you to pause here and take a
closer look at the pseudocode and see if you can find an argument for termination. One hint
would be to think about the number of proposals that are being made and observe that the
running time of this algorithm is really proportional to the number of proposals being made and
see if you can bound that in some way. Come back when you are ready. Hopefully, you have had
a chance to think about this. As we were just saying, the most basic question here would be one
of termination.

(Refer Slide Time: 25:56)

The total number of proposals made is at most n2. The total number of proposals made is at most n2.
The algorithm always terminates If m is free at some point in the execution of the algorithm,
with a matching. then there is a woman to whom he has not yet proposed.

Notice that the number of proposals that are made over any run of this algorithm is at most n*
because a man never proposes to the same woman twice. He is always walking down his
preference list and there are ‘n’ men and every man has ‘n” women to propose to. The number of
proposals may never exceed n” and this essentially drives the conclusion for termination.

We also want to say that the algorithm terminates with a complete matching. Nobody is left free
at the very end. One of the reasons for this is that if somebody is single, then there is still some
work to be done. There is still somebody that he can propose to. Notice that at every intermediate
stage of the algorithm, the set of engagements form a valid partial matching, which is to say that
you never have a situation where one man is matched with multiple women or multiple men are
matched to the same woman.

What you have is a valid partial matching. It is enough to argue that at the very end, you do not
have any single men. But as long as you have a single man, he still has some woman left on his
list that he can propose to, so the algorithm has not yet terminated. Notice that the reason for this
is that if he really proposed to every woman on his list, and he is still single that means that he
was rejected one way or the other by every woman that he proposed to, either outright or by
getting into an engagement and then being kicked out of it.

This only happens when the women are already engaged to somebody. But you cannot have ‘n’
women being engaged to ‘n-1’ men if what you are maintaining is a valid partial matching at
every stage. Therefore, it is not possible for a man to be single, once the algorithm has
terminated. But since every man is matched, and you have a valid partial matching at every
stage, at the final stage you indeed have a complete matching.

(Refer Slide Time: 27:53)

Proof of Stability T

R
/ “\
The total number of proposals made is at most n2. r@ /,J'
SO e A
. . —
The algorithm always terminates :
with a matching. [(Ee.))
\ SO
The matching is stable.

The last thing we want to claim is that this complete matching is, in fact, stable. The intuition for
stability was probably already established when we were making some of these greedy choices
with respect to the proposals and the rejections. Let us once again recap the reason why the
output matching is, in fact, stable. One way to argue this is by contradiction. Let us say that the
output matching was not stable.

The algorithm output something with a blocking pair and let us say that the blocking pair looks
like this. The output matching matches the king of spades to the queen of spades and the king of
hearts to the queen of hearts. But the queen of hearts prefers the king of spades over the king of
hearts and this love is reciprocated in that the king of spades also prefers the queen of hearts over
the queen of spades.

If the situation were to really arise, can you think of a contradiction in terms of the behavior of
the algorithm? In particular, think about the proposals that the king of spades would have made
during the run of the algorithm and think about how the queen of hearts should have reacted at a
certain point.

Please feel free to pause the video here and really think through the proof yourself before
continuing. Consider the king of spades and the proposals that he makes. Before he proposed to
the queen of spades which he must have done to be finally engaged with her, he must have first
proposed the queen of hearts. Because the assumption here is that the king of spades prefers the
queen of hearts over the queen of spades. So, she would have come first in his list and would
have been approached before the king of spades approached the queen of spades.

The real question now is: What did the queen of hearts do when she was proposed by the king of
spades? Given that they are not matched in the output, it must have been the case that the queen
of hearts rejected this proposal in one way or the other. Either it was rejected immediately or it
was accepted and rejected in a future iteration in favor of a better proposal. But notice that if the
queen of hearts did indeed reject the king of spades, either immediately or later on, it must have
been because she was in a better situation than the king of spades.

It could not be possibly the case that she likes her current matched partner less than the king of
spades as stipulated by this blocking pair scenario. Hopefully, it is at least intuitively clear why
we are not going to have blocking pairs because really the greedy choices were geared towards
avoiding them in the first place.

Please feel free to take your time to work through this yourself and hopefully convince yourself
that everything does work out in terms of both termination and obtaining a complete matching
and also ensuring that this matching was a stable one. This brings us to the end of the description
of the algorithm. You probably have enough, especially if you go back to the place where we
discussed the pseudocode, you probably have enough to actually code this algorithm yourself
now.

Please feel free to take a break and do that and come back to the rest of the content once you
have given it a shot yourself. For this particular module, we are going to split up the
implementation into a separate video and I will see you there!

