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Lecture - 08 

Analyzing Recurrences  

 

Welcome back to the second module of the second week, which as you know, by now is all 

about branching algorithms. So, this is a really short introduction to how you analyse the sort 

of references that were coming up in our previous discussion of branching algorithms. So, we 

will just talk about how do you handle these references? And how do you come up with the 

kind of bounds that we were claiming in the previous module.  

(Refer Slide Time: 00:40) 

 

So, when we are working with branching algorithms, we noticed that the work that is being 

done by a branching algorithm is best understood by looking at the search tree that is 

naturally associated with it. And we said that the work done is essentially proportional to the 

size of the search tree.  

(Refer Slide Time: 00:55) 



 

And by size, simply mean the total number of nodes in the search tree. But the total number 

of nodes is basically proportional to the number of leaves. So, we have been using the 

number of leaves in the search tree as a proxy for the total amount of work being done by the 

branching algorithm. Now, the number of leaves or at least a worst case bound on the number 

of leaves in a search tree is usually most naturally expressed by a reference.  

 

And that reference is something that comes out of just studying the recursive calls that the 

algorithm is making, and how your concept of measure is evolving across these recursive 

calls. So, we have seen specific examples of these references, when we did the vertex cover 

branching algorithms, both when we branched on an edge, and also when we branch to vertex 

vertices search table.  

 

So, I will not repeat those specific examples for you. And in fact, in the lectures that are 

coming up, you will see more examples of these references show up, which is why we are 

having this discussion right now. So, you are prepared to deal with these references as they 

come up.  
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Our treatment of this is going to be fairly short and black boxes, in the sense that is been a lot 

of standard techniques for handling references. And in particular, the kinds of references that 

we will have to worry about are mostly linear references with constant coefficients. So, these 

references are fairly well understood. And our plan is to take advantage of this understanding 

quite directly without actually opening up any of these black boxes.  

(Refer Slide Time: 02:41) 

 

So first, let us talk about a little bit of terminology. So, suppose you have a branching 

algorithm that generates p recursive sub instances. And in these p branches, the measure that 

you are working with, which we will just do not by k, are drops by quantities d 1, d 2, up to d 

p, respectively right. In this case, d 1, d 2, and so on up to d p is called the branching vector 

of this recursive process.  

(Refer Slide Time: 03:08) 



 

So, just as an example, here are the branching vectors from the algorithms that we saw in the 

previous lecture. Hopefully, this looks familiar. So, we discussed 3 branching algorithms for 

vertex cover. Well, there were essentially 2 but when we branched on a vertex, we had 2 

different approaches, one of which gave us a stronger bound on the number of leaves in the 

search tree.  

 

So, these branching vectors are in correspondence with the references that you have already 

seen. And if this looks mysterious, or strange in some way, then please do pause here and go 

back to the algorithms that we have already discussed in the previous lecture. And try to 

make sure that the connection and the definition of a branching vector is clear before we 

move on.  
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So, if we do have a branching vector d 1 through d p, then the recurrence for the number of 

leaves in the search tree for such a branching algorithm will be quite naturally given by T of k 

equals T of k – d 1 + T of k – d 2 and so on up to T of k – d p. That is again, just because of 

the form of the reference. So, the algorithm itself is generating instances where the measure 

has dropped by d 1, d 2 and so forth.  

 

And so, if you draw the corresponding search trees, you will see that you have a root and you 

have these p sub trees that are adjacent to the root. And the number of leaves in each of these 

sub trees is given by the recursive expression, T of k – the appropriate drop depending on 

which sub tree you are analysing. And of course, for the overall tree, the total number of 

leaves is just the sum of all the leaves and all of these sub trees.  

 

So, again, if you relate this back to the examples that we have discussed. In particular, when 

we were branching on an edge, we actually explicitly drew out the search trees. So, it may be 

useful for you to go back and tally that picture with the slightly more general expression that 

we see here. So, the overall running time is essentially given by T of k, as we have discussed 

before, this is with the working assumption that you only need a polynomial amount of time 

to generate the sub instances.  

 

And you only need a polynomial amount of time to resolve the base cases, then you can say 

that the overall time that your algorithm takes is essentially governed by T of k, with this 

polynomial overhead. Just keep in mind that if you have an algorithm that has a different 

behaviour from what these assumptions stipulate, for example, maybe you have a more 

expensive way of handling base cases.  

 

Or maybe you have a fancy pre processing rule, which is also expensive that needs to be run 

before you can generate your sub problems in a valid way. Then maybe your algorithm 

requires a more sophisticated analysis compared to this general approach. But I think for the 

most part, we are good. This certainly covers the scenarios that we will be encountering in the 

lectures.  

 

So, I do not think you have to worry too much about the assumptions that we are making on 

the slide, but just know that these assumptions are in place.  
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So, let us take a closer look at this equation here. This, of course, is the recursive expression 

for T of k, which is the quantity we are interested in bounding. And with the kind of 

statement that we want to be able to prove is that T of k is bounded by some lambda to the k, 

possibly with a constant multiplier. Notice that, these were the kind of bounds that we were 

claiming in the previous lecture.  

 

And notice also that we are interested in finding or discovering the smallest possible value of 

lambda for which this inequality holds. So, right now, we have no idea about what this 

lambda is? But let us just pretend that it is true that T of k is at most c times lambda to the k. 

And let us pretend that we are trying to prove this inequality by let us say, applying 

induction, for instance. And we want to apply induction on k.  

 

So, let us say we know that this inequality holds for all smaller values of k. So, then to show 

that T of k is at most c times lambda k, what we can use is the fact that T of k – d 1, T of k – 

d 2 and so on after T of k – d p can be subject to the inductive hypothesis, because notice that 

all of the d’s are strictly greater than zero. So, each of these quantities, the k – d is strictly 

smaller than k.  

 

So, we can see that T of k – d 1, for instance, is at most c times lambda to the k – d 1, and so 

on and so forth. So, let us go ahead and make those substitutions. And so, we know that this 

expression that you are seeing here on the left of the inequality at the bottom of your screen. 

We know that that is exactly T of k that is just by the definition above and the application of 

the inductive hypothesis, as I described it right now.  



 

So, this expression is what we want, as being at most c times lambda k. So, I have implicitly 

cancelled out the c’s here, there is every term in this expression could have the c multiplier, 

but you will see that they all cancel out. So, if you rewrite this inequality, you essentially get 

this sort of equation or rather, this inequality, which you can view as being a polynomial in 

lambda. And by the way, what is d here? So, d is the largest of the d’s.  

 

So, essentially, we are cancelling off whatever we can, and this is what we will be left with. 

So, we have this polynomial in lambda, which we want to be non-negative. And we want to 

know, what is the smallest value of lambda for which this inequality holds? So, it turns out 

that the polynomial on the left hand side of this inequality has a unique positive route, let us 

call it lambda not.  

 

This turns out to be the best possible choice for lambda in terms of a value that satisfies this 

inequality. Any value of lambda that is less than lambda not will not work, because, it 

violates the inequality. And since lambda not satisfies the inequality, you would anyway not 

be interested in any values of lambda that are greater than lambda not even if they work out. 

So, essentially lambda not is what we will call the branching number for this branching 

factor.  

 

And that is the number for which you can say that T of k is bounded by lambda naught to the 

k. So, at this point, a natural question you might have is, how do you get to this lambda 

naught? this is really just a matter of calculation, once you have your branching factor. It is 

completely straightforward to write down this polynomial in lambda. And if it is a 

polynomial that factors easily and you can visibly identify the root, then that is great.  

 

You may have done a similar exercise for, you know, say the Fibonacci recurrence or 

something like this. So, it can be a better of a manual process depending on how nasty your 

polynomial you are working with. One general way of doing this is to go to a website like 

Wolfram Alpha, actually input the polynomial and get the routes, a software like that will use 

basically, again, black box methods to come up with a route. And it is not something that you 

have to worry about if you just want to get to the number.  
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The text on parameterized algorithms actually has this handy table, if you are only working 

with simple branching vectors that have 2 entries in them or 2 coordinate branching vectors. 

And, you know, if they range from 1 to 6, then this table already gives you the values and you 

can simply look it up. But you might have branching vectors which have more coordinates in 

them.  

 

Or maybe your drops are larger than 6, in which case, you would actually have to resort to the 

use of software or just maybe some clever calculation depending on the polynomial at hand. 

So, this was essentially an engineering perspective on how to come up with the branching 

number for a given branching vector. And with this background in place, we are now ready to 

tackle more branching algorithms.  

 

So, in the upcoming lectures, we will be talking about the feedback vertex set and vertex 

cover in a new light with an exciting new parameterization. So, I will see you in those 

discussions. Thanks once again for watching and see you soon.  


