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Welcome back to the third segment of the first module in the 12th week of parameterized 

algorithms. We are looking at reductions and at the end of the previous module we talked 

about how solving independent set, even on the restricted class of regular graphs is as hard as 

solving clique on general graphs. And we are working with this running assumption that 

clique on general graphs parameterized by solution size does not admit a FPT algorithm. 

 

And the theme of our current discussion is to really examine the consequences of this 

assumption. So, in this segment I want to use the hardness of independent set on regular 

graphs in particular to show you the hardness of partial vertex cover on general graphs. 
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So, what is the partial vertex cover problem it is a very natural generalization of our officially 

favourite problem of vertex cover. So, let us imagine that you are working with a budget of k 

and somehow this is a hard constraint you cannot afford to work with more than k vertices 

and let us say you have a graph where there is no vertex cover of size k. What is the next best 

thing that you can do? 

 

Well, you now want to think about I could not cover all the edges with k vertices. What is the 

largest number of edges that I can cover with k vertices? If you choose your vertices carefully 

you might be able to cover a substantial fraction of the edges in the graph. So, the partial 

vertex cover is a question in this spirit it says suppose you have a fixed budget k and you 

have a target s. Is it possible to cover at least s edges using at most k vertices? 

 

Notice that if s = m then this is the original vertex cover problem. So, you could think of 

partial vertex cover as being a generalization of the vertex cover problem. So, we want to 

consider partial vertex cover parameterized by k again, where k is the size of the solution and 

we want to think about well you know what is the complexity of this problem what I want to 

do in this segment? 

 

At least in the first part of it is to talk about a reduction from independent set on regular 

graphs to partial vertex cover on general graphs with the parameter k. So, let us just think 

about what does an independent set on a regular graph look like. So, suppose we have an 

instance G, k let us look at G. 
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And let us look at an independent set on k vertices in this graph. What possible connection 

could this have with partial vertex cover? Well, we already know that the complement of an 

independent set is a vertex cover. But I do not really want to go down that path because as we 

know this will involve going from k to n - k and then that is going to get messy. So, let us not 

think about the complement of the independent set. 

 

But let us instead think about the independent set itself. How many edges does this 

independent set actually cover? Remember that G is a r regular graph. So, based on this if 

you have an independent set of size k how many edges do you think this independent set 

covers take a moment to think about it and then come back and tally your answers with me. 

Well, this independent set is going to actually cover r times k many edges. 
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Because every vertex in the independent set has degree r and in some sense all of this degree 

is going outside the independent set. And other words every vertex in the independent set has 

r neighbours and all of these are neighbours are sitting outside the independent set just by the 

very definition of an independent set. So, no vertex in the independent set can have a 

neighbour inside the independent set. 

 

So, all of this degree is getting thrown out of the set which means that the total number of 

edges covered by this set is in fact r times k. Just to really make this more explicit notice that 

if you were working with a subset of k vertices which is not an independent set. So, let us say 

that we have S prime, again S prime is a subset of k vertices but this time it is not an 

independent set there is at least one edge sitting completely inside the set. 

 

Then notice that such a set will not cover r time scale many edges, because this edge that is 

sitting inside will essentially get counted twice. So, the number of edges that you will cover 

will be strictly less than r k, take a moment here if you needed to convince yourself that this 

is indeed the case. So, once again when I am trying to count the number of edges incident on 

the set one way that I can do that is basically add up the degrees of all of the vertices. 

 

And then adjust for my over counting so, if there was some edge that got counted twice then I 

will have to subtract one for every such edge. When all of the neighbours were sitting outside 

of this set, I do not need to do any adjustment because there was no edge that got counted 

twice. On the other hand, if there is an edge that sits completely inside the set then I do have 

to adjust for it.  

 

And therefore, in this sort of a setting the number of edges covered by this set is strictly less 

than r k. Why am I telling you all this? Because all of this leads up to a hint for how you can 

transform an instance of independent set on r regular graphs to partial vertex cover 

parameterized by the solution size. Take a moment here and think about what the 

transformation could be.  

 

In this example we do not really have to add any artificial content into the graph your graph 

can be just the same as it is for the source instance but you just have to carefully determine 

what your s and k have to be.  
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So, just to make this explicit here is the kind of statement you want to prove. You want to say 

that r regular graph G has an independent set on k vertices if and only if it also has a partial 

vertex cover on something many vertices that covers something many edges. So, these 2 

blanks that you see on your screen right now should be quite fillable based on the discussion 

that we have had so far.  

 

So, feel free to pause and take a moment here and commit your answers to how you would 

complete the statement and we can exchange notes once you are done. 
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So, what we want to say is that G has a partial vertex cover on k vertices covering at least r 

times k many edges where this r is the same as the regularity of the graph that we started 

with. So, notice that the forward implication which says that if G has an independent set on k 



vertices it has a partial vertex cover on k vertices covering at least r k edges follows from the 

first part of our discussion.  

 

Where we observed that if you have an independent set of size k and the graph is irregular all 

of these are neighbours for every vertex in the independent set must lie outside. And 

therefore, when you add up the degrees there is no adjustment to be made and the number of 

edges covered by this set is in fact r times k. So, that proves the forward direction. In the 

reverse direction suppose you do have a partial vertex cover on k vertices that covers r k 

many edges.  

 

Based on this you want to discover an independent set on k vertices. Well, let us just propose 

the partial vertex cover as our candidate independent set it. Certainly, has k vertices and let us 

assume for the sake of contradiction that this is not an independent set. That means that there 

must be an edge sitting inside the claimed partial vertex cover which is supposed to be 

covering remember at least r k many edges.  

 

We know that G is r regular so, suppose that the partial vertex cover is not independent it 

does have an edge sitting inside it then based on the second part of our earlier discussion. We 

see that this partial vertex cover will actually fail to cover r k many edges contradicting our 

starting assumption. So, at this point we are actually done this concludes the argument for 

equivalence and notice how the regularity of the graph really came into play and was quite 

crucial in helping us easily establish this connection. 

 

The other two aspects that we need to confirm for this reduction to be a parameterized 

reduction include the fact that the parameter is preserved and the fact that the reduction runs 

in polynomial time. The fact that the reduction is efficient is clear because we did not really 

have to do anything except specify the values of k and S, it is really the same graph. So, that 

is straightforward.  

 

In terms of the parameter notice that k goes to k, that is why it is important that we are 

looking at partial vertex cover parameterized by the solution size. Notice that S which is the 

target the number of edges that we want to cover is r times k. So, if you were working with S 

as your parameter instead of k then this would not have been a valid parameterized reduction, 



because you get a dependence on r and remember that r is something that is quite independent 

of k. 

 

It is certainly not guaranteed to be a constant or anything like we discussed last time in fact 

the hardness that we have for clique. Actually, the hard instances that we generated had a 

regularity which could potentially be a function of n depending on the graph that you started 

with. So, as far as the solution size is concerned, we are safe the parameter transforms nicely 

from k to k.  

 

So, this is a valid parameterized reduction for partial vertex cover parameterized by solution 

size. And it would not be a valid reduction for partial vertex cover parameterized by the 

number of edges that you want to cover. So, it turns out that there is a good reason why you 

would not expect this reduction to work. In fact, partial vertex cover parameterized by S or 

the target number of edges that you want to cover is actually FPT.  

 

And this is a fun exercise in colour coding if it is something that you have not done before. I 

would definitely encourage you to think about it as a fun exercise. So, moving on the next 

thing I want to tell you about is a problem called multi-coloured clique. 
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And it is sibling multi-coloured independent set. These problems are very similar to their 

counterpart’s clique and independent set. But somehow, they are apparently superficially 

reformulated, it turns out that this reformulation just is very convenient especially in the 



parameterized context making them extremely popular starting points for a variety of 

reductions. 

 

So, it is worth knowing about what makes multi-coloured clique as hard as clique and we will 

see one example of how the multi-coloured variant is a useful starting point for a different 

reduction. So, for now let us focus on just showing the hardness of multi-coloured clique 

based on the hardness of clique. So, let me begin by defining the multi-coloured clique 

problem. Here the input is again a graph whose vertex set has been partitioned into k parts. 

 

And the question is if G has a clique that picks exactly one vertex from each of these k paths. 

So, the reason this is called multi-colour clique is because sometimes it is convenient to think 

of the partition as a colouring of the graph and the parts as colour classes. If you do that then 

a multi-coloured click is essentially what you might think of as a colourful clique borrowing 

terminology from the colour-coding days. 

 

A colourful clique would be a clique that does not have any repeated colours. And what we 

are claiming here is that finding a colourful clique is as hard as finding a colourless clique in 

the normal setting. So, notice that this is not necessarily obvious especially given that in the 

past we have been in situations where we have said that looking for a colourful variant of an 

object can actually be easier than finding the analogous colourless version of it. 

 

So, it turns out that for clique it is just that the colouring does not make a difference and you 

are just back to square 1. The way we establish this formally is by reducing clique to the 

multi-coloured variant. And once again this would be a good place to pause and think about 

coming up with such a reduction yourself. One hint to work with is to see if you want to 

make copies of G just like we did when we were working with the reduction from clique to 

clique on regular graphs. 

 

Here you want to think about how the copies would be useful. Loosely speaking you could 

think of the copies as corresponding to colour classes and that should lead you to a thought 

process involving well how should we connect vertices between two copies. The last time 

that we worked with copies they were all nice and disjoint and they connected to a common 

pool of dummy vertices.  

 



But here the spirit of the construction is going to be slightly different. So, I hope this pointer 

helps. Take a moment play with this a little bit and come back once you have done that. So, 

welcome back hopefully you have had a chance to take a break and think through the 

reduction yourself. Following up from the hint that we were talking about. Let us actually 

begin this construction by making multiple copies of our source instance the graph G. 
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So, let us say in particular we are working with an instance of clique which is given by G, k 

where k is the size of the clique that we are looking for. What we are going to do is begin by 

making k copies of the vertex set of G and we really want to think about what is going on 

within these copies and what is going on across these copies. Intuitively I want to think of 

these copies as ultimately the parts of my partition or the colour classes of multi-coloured 

clique. 

 

So, we do know that we are never going to be indulging in more than one vertex from within 

any copy. So, I can actually keep the copies empty I do not have to really add any edges 

inside these copies. You could actually do whatever you like within the copies and it turns 

out that it would not really matter, but what is really critical is what is going on across the 

copies. 
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So, let us fix any pair of copies of the graph G we are going to actually do this for every pair 

of copies. So, we are going to consider all k choose two pairs of the k copies that we have 

made and here is what we want to do across the copies. If we have an edge between the 

vertices u and v in the graph G then we are going to look for the ith copy of you and the ith 

copy of v and the jth copy of here and the jth copy of v. 

 

Here to make sure that they are connected in this way in particular the ith copy of u is 

connected to the jth copy of wave by an edge and similarly the ith copy of v is connected to 

the jth copy of u by an edge. Remember that we are working with simple and undirected 

graphs so this is all that we have to worry about. In particular it is very important that we do 

not add edges between copies of the same vertex. 

 

Notice that if you did that and you did that for all the k choose two copies then the graph that 

you generate will always be a yes instance of multi-coloured click irrespective of the status of 

the instance that you started with. So, that is definitely not going to be a valid reduction. So, 

just keep that in mind and this actually basically completes the description of our 

construction.  

 

So, whenever you have an edge make sure that you sort of spread it across all of the copies. 

Every copy of you gets connected to every copy of v whenever u and v have an edge between 

them in the original graph G. So, that is what is going on here. 
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And now let us try and argue the equivalence of the instances that we are working with. So, 

suppose the instance that we started with which is G has a clique of size k, then to find a 

multi-coloured clique in the graph that we have constructed all you do is look for the copies 

of the vertices involved in the clique. So, you could line up the vertices of the clique in 

whatever order you like.  

 

So, let us say that you have the vertices a b c with k = 3 in this example. Then look for the 

first copy of a, the second copy of b and the third copy of c. You would have made three 

copies of the vertex set. So, you can find these copies and because of the construction 

because of the way we added edges between copies notice that these three vertices will 

actually form a clique.  

 

In general, if you have a clique on vertices say v 1 v 2 through v k then the multi-coloured 

clique will essentially consist of the vertices the first copy of v 1 the second copy of v 2 the 

third copy of v 3. And so, on up to the kth copy of v k and now consider any pair of vertices 

among these chosen vertices let us say the ith copy of v i and the jth copy of v j. Notice that 

they are going to have an edge between them because of the construction.  

 

Because of the fact that we know that v i and v j have an edge between them, because they 

were coming in from a clique in G. So, that covers the forward direction. 
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In the reverse direction suppose the graph that we constructed let me call it H actually has a 

multi-coloured clique, we want to be able to somehow pull this back into a clique of G. We 

want to say that if the instance that we constructed is a yes instance then the instance based 

on which this instance was constructed is also a yes instance. So, the natural thing to do of 

course is to ask ourselves for all the chosen vertices in the multi-coloured clique which vertex 

were there a copy of back in G. 

 

And once you have the answers to these k questions you have found k vertices back in G and 

these k vertices must form a clique because again if there was any pair of them that did not 

have an edge between them, then the corresponding pair for whatever copies you chose 

would not have an edge between them and H either. So, certainly the chosen vertices will 

form a clique but one thing to be careful about is to be sure that this is actually a clique on at 

least k vertices. 

 

So, we have k distinct vertices in edge, but do they lead us back to k distinct vertices in G. 

What could happen is that you have two vertices which are distinct in G but then they were 

copies of the same vertex in G. So, when you go back to G then they sort of collapse to the 

same vertex and lead you to a clique on fewer than k vertices total which would not be nice. 

So, this is something to watch out for. 

 

And to make sure that this does not happen we actually ensured in the construction that we 

never add an edge between two copies of the same vertex. And this is why this aspect of the 

construction is really crucial, it ensures that whatever vertices you picked in edge actually 



correspond to or come from distinct vertices in G. So, that when you pull these vertices back 

into G you are really looking at k distinct vertices corresponding to a clique therefore of size 

k. 

 

This completes the argument for the equivalence of the two instances that we are working 

with. And it is straightforward to verify that this reduction has the other two properties that 

we desire from it which is that the parameter is preserved. Once again, we are in a situation 

where k goes to k and that the running time is efficient. And once again, we have a reduction 

which runs in polynomial time because what we did was to make k copies of the graph G. 

 

And we had to construct the H set between of course every pair of copies that we introduced 

and all of these are basically polynomial time operations. So, we conclude that multi-

coloured clique is in fact as hard as clique itself. And this in fact also shows the hardness of a 

related problem which is multi-coloured independent set. 
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So, multi-coloured independent set is defined pretty much the same way as multi-coloured 

clique except that we are now looking for an independent set rather than a clique. So, your 

graph once again is given as a vertex set that has been partitioned into k colour classes and 

what you are looking for is a colourful independent set which is to say an independent set of 

size k that picks exactly one vertex from each of these parts or each of these colour classes. 

 

Notice that the hardness of multi-coloured independent set follows quite naturally from the 

hardness of multi-coloured clique which we have just seen and the way this would work is 



similar to how we deduce the hardness of independent set on regular graphs from the 

hardness of clique on regular graphs. So, in particular if G k is an instance of multi-coloured 

clique, then G complement k is an instance of multi-coloured independent set with exactly 

the same partition as G. 

 

And it is straightforward to verify that this works exactly as you would expect the clique in G 

becomes a clique in G complement and if the clique was multi-coloured to begin with since it 

is the same set of vertices in the same partition. It is also a multi-coloured independent set in 

G complement. So, we will see how multi-coloured independent set can be used to show the 

hardness of dominating set and that is something that is coming up in the next segment and I 

will see you there. 


