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So, let us start where we left in the previous lecture, where, if you recall, we defined 

kernelization and gave a kernel for point line cover, vertex cover and we also gave kernel for 

edge clique cover. This were like order k square points, order k square vertices and edges and 

this was like 2 power k vertices. And so, since there only n square edges, so, it will have at 

most 4 power kedges.  

 

So, notice this first 2 kernels has polynomial bound but the last kernel is exponential. And so, 

a natural question arises is that; is there a polynomial kernel for this problem? If not, can be 

proved that no such kernel exists. So, we will see such methods later in the course to show 

that kernels of certain kind do not exist. But for now, we will continue our foray into 

discovering techniques to design polynomial time kernels.  

(Refer Slide Time: 01:42) 



 

So, let us there is a very well known notion about is FPT same as kernelization. And let us 

see if we can say any statement like this. So, for a parameterised problem Q, we can have one 

of the following things. Q admits a polynomial kernel, this could be one statement. Q admits 

a kernel may be exponential like this is like vertex cover or point line cover, admits a kernel 

like exponential like edge clique cover or Q admits no kernel.  
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Now notice, so, it is very natural right to say that the moment Q admits a kernel Q is fixed 

parameter tractable right. Because look at why we say this, suppose look at a vertex cover 

example.  
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So, what did you do? Given or say point line cover example. So, in point line cover, given a 

set of points P, k in polynomial time, we got an equivalent instance P prime k prime, where in 

fact k prime was less than equal to k and P prime was less than equal to k square. Now, to 

check whether there exists k lines that covers all the points; we can, we know that how many 

number of lines that we need to cover, need to consider?  

 

The total number of lines that we need to consider are like at most k power 4 lines. And from 

this k power 4 lines, we need to choose k power 4 choose k lines and check whether they 

cover all the edges, all the points or not. So, how many such possibilities like this. So, k 

power 4 choose k is like roughly k to the power 4 k, which is like 2to the power big of O of k 

log k times n to the power big O of 1 to n to the power big O of 1 to get the kernel and to 

check all these things. So, we do get a kernel.  

 

So, once we have a kernel, it seems that an obvious way of trying this answers is good, 

because size of the instance itself is bounded by some f of k.  
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So, it seems very obvious that if Q admits a kernel implies Q is FPT. But this may not be true 

all the time because this is something which if you do not understand, it is perfectly fine. You 

can, size is some function of parameter that does not imply the problem is FPT. Why? 

Because I may not have an algorithm to even make a like decide with a yes instance. So, 

basically what we need at this point of time is about problem to be decidable.  

 

So, we say this is a statement from world of computability that a language problem whatever 

you want to call it, L is decidable if there exists a turing machine M such that language 

accepted by turing machine is exactly equal to L and M halts on every input, which could be 

implies that look a language a problem is decidable, if there is a turing machine like on every 

input, it will tell you yes or no.  

 

If we have such an algorithm, then basically, Q admits a kernel imply Q is FPT is basically 

said well if Q admits a kernel. And there is some algorithm for Q, then Q is FPT. So, this is 

an important point to talk about. And every kernel or every problem that we will consider in 

this course and in particular, every NP complete problem had such an algorithm. So, if you 

are dealing with NP complete problem, do not worry at all. They are decidable by definition. 

But there are problems which are not decidable.  

 

So, I will not go into any detail here. But if you have any, if you like to know example, the 

object problem admits a kernel but no algorithm but not FPT, ask me by sending an email or 

some such thing let us not confuse readers with this. But all I want to tell you that do 

remember that if a problem admits a kernel and it does have an algorithm, then it does imply 



the problem is FPT because it just all that it means that you know size is any bounded, you 

now run the algorithm to make a decision about.  
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But what about the other well. So, Q is FPT implies Q admits a kernel, what about this? So, 

this is nice that even the reverse if Q is FPT, then actually Q admits a kernel. Why? So, 

suppose Q is FPT implies, you can decide whether I, k belongs to Q in time, some f of k I like 

instant by say, by some algorithm A. But remember, this was a, this is by FPT is computable, 

this f by definition is a computable function, f is a computable function in this turing machine 

which can given k, you can write f of k.  

 

So, what the kernelization algorithm does? If run this algorithm A for run this algorithm A 

for mod I to the power c + 1 steps. So, either this algorithm just saw like ends by then and 

tells me the answer. So, I have run the algorithm for mod I to the power c + 1 steps. If it does 

not terminate, then I will say hey, I, k is your kernel. So, it is a very trivial algorithm. In the 

following sense what I do?  

 

I run my, suppose the instance size I is equal to n, so, I run this algorithm for n to the power c 

+ 1 steps. If it terminates, then we are happy because we have found the solution. I returned 

to that as a solution. Or, if it does not terminate, it runs beyond this, then I returned the 

instances. And this is, for this termination point that we needed to know whether f is 

computable or not, but beside that point, so, what happens? It means, if it ran for more than 

this step, it means, let us see what happens?  

 



It means f of k mod I to the power c is greater equal to mod I c + 1 which implies that mod I 

is less than f of k. So, you have indeed got a kernel. But how interesting is that a kernel is a 

different thing. So, which implies that this is why in this if you talk about decidability 

decidable problem, then the notion of FPT and kernelization are same. So, we could not 

defined FPT in terms of kernelization also for decidable.  

 

So, but the kernel which comes from this theorem is basically the function of the 

parameterised algorithm. And that is not what it is all about. So, it is all about that how 

smaller kernel can we get, if we just allow ourselves to polynomial time. For example, for 

vertex cover if we want to solve an FPT algorithm, if you want to design an FPT algorithm, 

we cannot do better than c power k modulo some conjectures. But we are able to get a kernel 

with order k square vertices and edges. 

 

So, in polynomial time, we can do much more than just getting a kernel with exponential 

size. So, the field is interesting, also because that our main goal is to determine which 

problem admit polynomial time kernel, which problem does not admit polynomial time 

kernels. And can we show these things? How small kernel we can get and things of this 

nature? Let us moving ahead.  
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Let me give you another example of kernel problem. So, my input is an universe U, d-hitting 

set, a family S of size at most d over U, integer k. And our question is: does there exist a 

subset X of U of size k that has a non empty intersection with every member of S? So, 

basically, you are looking for a set a subset X of U whose size is k and it intersects every set.  



 

So, this is a very classical hitting set problem and it is d-hitting set because every set in the 

family is upper bounded by d. So, for example, this could be your set family, yellow, blue, 

white, green. And they are intersecting things among themselves. So, we would like to make 

a kernel for d-hitting set, but I will, okay. But I will instantiate. So, we would like to get a 

kernel for d-hitting set.  
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So, before we go to d-hitting set, let us observe that 2 hitting set is nothing but a vertex cover. 

If every set has size 2, then this is a vertex cover. And what was the kernel for the vertex 

cover? If you recall there were just 2 reduction rule, isolated vertices were useless for vertex 

cover, right. Isolated vertex were useless for vertex cover. So, we deleted them or let say, 

okay.  

 

And if a vertex is incident with k + 1 either if you recall correctly, if the vertex will incident 

to some k + 1 edges, we included V in the vertex cover and decrease the parameter by 1. 

Because every vertex of this should be in the solution. Now, what we try to do is like try to 

mimic this kernel for vertex cover of a 3 hittings. So, now let us assume that d is upper 

bounded by 3.  

 

So, what is this? If an element V is not contained in any of the sets, then there is always a 

solution without it. It is same like isolated vertices. What are that? If a vertex v, so let us we 

are making some observation. So, what is our observation? Let us try to add a page maybe 

that will be helpful.  
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So, what is. If an element V is not contained in any set, so, an element, is present in the 

universe, but this element does not occur in any set. So, it is same as saying that a vertex is 

not part of any edge. So, it is an isolated vertex, then we can delete V without changing the 

answer. Now, notice, if an element V is contained in k + 1 set S 1 to S k, so, basically, 

suppose you have a sets, here is V and the sets do not intersect, but at v. So, if you look at this 

part, look at this, they are disjoint, so on and so forth, so these are like disjoint. So, this is 

what it means?  

 

If an element V is contained in k + 1 sets S 1 to S k + 1, so, they are like V is presented S 1 to 

S k + 1 sets. And S i intersection S j is exactly equal to V for. So, if you look at any set S i 

and S j, their intersection is exactly V. So, if you look at any pair by sets, they only intersect 

at V. So, now what happens if you do not pick? In fact, if you do not pick V in the solution, 

then notice there are like k + 1, then there are like k + 1 pairwise disjoint sets. Who will hit 

them? 

 

Because to hit this k + 1 pairwise disjoint set, you at least need k + 1 points from U. So, in 

that implies that we must be included in the solution. So, this is same as a vertex cover 

analogues. If they just vertex of high degree of degree k + 1, then we must belong to the 

solution. If you famously, if V is part of k + 1 set, where V is the only set which is common 

to all this.  

 



Then like for you take any 2 pair by set, V is the only common element between them 

basically the look like the picture which I have drawn, then V must belong to my solution. 

Now, what can you say that? Look, I cannot say about V, but I can actually find 2 elements 

UV and now, I have an extension of this k + 1 sets. So, if I delete UV, then all these sets are 

pairwise disjoint. Then what happens?  

 

If you do not pick 1 of U and V, then you again need k + 1 elements to cover all these sets. 

So, it implies that for all i not equal, then at least 1 of UV should be in the solution. So, now 

let us formalise them this intuition into the reduction rule and it is done as follows. So, what 

are my reduction rule? 

(Refer Slide Time: 13:13) 

 

If an element V is not contained in any of the set so, reduction rule is applies delete V. If an 

element V is contained in k + 1 set S 1 to S k + 1 says that S i intersection S j is V for all i not 

equal to G, then what is our reduction rule ; make a new set v delete all set S 1 to S k + 1. 

Why? Because, look at the forward direction. You know that V go into the solution, then V 

and every other one else, I will formally prove it in a minute.  

 

Or, you can prove it yourself for this, will contain this and in the backward direction because 

you have kept the set single set V like single element set V, the reduced instance must pick V 

the moment to pick V, S 1 to S k + 1 will be hit in the original instance. And if 2 elements 

UV are contained in the sets k + 1 set such that this, then what you did? So, look at this. What 

happened?  
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So, you have U family, what you did here? U in this, you did a U and F prime is F – S 1, S 2, 

S k + 1 and but you added set + UV and this is what we did. So, this is, I returned F prime, k. 

Now, let us see, what happens. So, forward direction, you get a forward direction well, in the 

forward direction, you know that if the register set x subset of U that intersects all sets in F 

and mod x is less than or equal to k implies x must contain U and V. Then I claim that x also 

intersects every set in F prime.  

 

Why? Because look, F prime does not, F prime has all the sets like which F contains except 

UV and x is the same then you have taken care and now since x contains U or one of the V, 

contains one of U, V, x also intersects every sets.  
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Reverse direction is also obvious, x intercepts every set in F prime implies x contains either 

U or V implies x intersects all of F. Because, why? Because look here, what is the difference 

between F prime and F. Well, F prime contains all the sets of F but S 1 to S k + 1 and it 

contains UV. Now, because F prime contains UV, you know that one of U and V are must be 

taken in my x but then that U takes care of S 1 to S k + 1.  

 

Or, that we will take care of S 1 to S k + 1 and the remaining element of x will take care of 

other sets of it. So, this is very simple reduction rule and we can prove its correctness 

immediately. So, but how many sets are in an irreducible yes instance because how are they 

obtaining a kernel. We are obtaining a kernel by the following procedure. We apply some 

reduction rule.  

 

And we say when we are reduction rules are no longer applicable and if this is a yes instance, 

then the number of sets, number of objects are bounded because if they are not bounded, then 

I can say no and then we are correct. So, let us try to do the same analysis for the problem 

okay.  
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So, to do the analysis, I am going to do the following. I have U, F, k. Greedily compute a 

maximal family of pairwise element disjoint sets from F. So, we have greatly computer 

support this is like S 1, S 2 dot dot dot S l. First of all, if l is greater than equal to k + 1, say 

no right because now I have k + 1 element disjoint sets and you want to hit all the sets with 

just k elements, then for this k + 1 set itself you need k + 1 element so, (()) (21:30).  

 



So, we can assume that l is at most k. So, now if I take say, let us not take call it x, let us call 

it z which is union of x i, i going from 1 to l right.  
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Then size of z is at most 3 times k. Now, observation 1 and suppose this is a yes instance. So, 

if it is yes instance, l is always less than equal to k. Now, look at observation 1. What is this? 

For every element U, V, number of distinct sets that contain UV is upper bounded by k. 

Otherwise, we would have applied the reduction rule C. This is. Else reduction rule C is 

applicable. I am going to claim for; first of all, what is a observation 2? z is a hitting set for F.  

 

Why? Because a maximal element disjoint sets from F. So, if you cannot add any sets, why? 

Because this set intersects 1 of the sets previously selected set. This is so generating set of F 

of size at most 3k.  
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Now, this is our main claim. Every element injured intersects at most some, we will fix some 

k square, some question mark, question number Mark k sets. So, basically some order k 

square sets. Let us see why. Because once we are done then we will be happy. So, why? Let 

us fix element w. This is injured and suppose, it participates into lots of sets. So, suppose it 

participates into more than some k square plus some set.  

 

We will see what happens. So, what is a common about these things? w is inside each of this 

set. Now, let us pick up the first set here. I pick up an element here z. I pick up an element 

here z. And I asked myself among these sets. Among the sets, among these sets, how how 

many of them contains z? Let us ask ourselves suppose z was here, z was here, z was here 

and z was here. So, let us pick up.  

 

So, first of all we picked up w. Now, we picked up z and be picked up all the sets with z 

contains. Well, this can be at most k of them. Otherwise, w z is common with k + 1 sets 

which implies reduction rule C is applicable. Okay? Now, so z appears. Now, let us ask 

ourselves how many sets suppose another element y, How many sets contains y? 
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Same way we can say hey, look at w, y and look at all the sets it contains. It is also at most k 

of them. Okay, great. So, now, what I am going to do, I am going to pick up z, y. I am going 

to pick up this set and delete all the sets. So, what I do? I pick up the set, I pick up the set w z 

y. And now, delete all sets that contain either z or y, how many sets will be deleted such? By 

this process, we will delete at most 2 sets. So, but now, we have got a set w z y. In the 

remaining set, do the same. What will we get?  
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So, if this process continues for k + 1 steps, what do we get? We get w z y, some other set, 

some other set, some other set, some other set, we get k + 1 sets that are pairwise intersecting 

only at w. But then reduction rule B is applicable. W, you should have a set containing just w 

which implies that this process can only continue for k steps which implies that each step you 

knock out 2k sets.  



 

In each steps you can, so, basically you will get, if you get like, you cannot have more than 

2k square because, in each step you knock out 2k. So, you cannot have more than 2k square 

set that contains an element of z. So let us go back. So, 2k square, is the right (()) (29:19). We 

did not know what it is. Now, we have got it 2k square okay, set at most 2k square.  
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Now, what we know about z? z is a hitting set. And so, like z 1, z 2, z at most 3k. Each 

element occurs in at most 2k square sets. So, the total number of sets are 2k square plus into 

3k plus the sets from z 1 to z t k which was like at most k, so, which is like into 3k. So, this is 

like 6k square + k. So, total number of sets are at most 6k square 6k cube, there is k cube. 

Number of sets is at most 6k cube plus some roughly k.  

 

So, the number of elements will be like you multiply with some 3 (()) (30:57). So, this is how 

you can get a kernel for 3 hitting set, just generalising the idea of vertex cover. And in fact, 

this follows from which I did not teach you, the notion of sunflower.  
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So, what is sunflower? Your sets S 1 to S k form of sunflower. if the sets S i – S y look at, so, 

they just have one common intersection otherwise pairwise disjoint. So, S i – their common 

intersection are disjoint. So, this is called centred and actually these things if you delete the 

centre or delete the common intersection, whatever these are called petals.  

 

So, in as early as 1960 Erdos and Rado prove the following lemma. If the size of system is 

greater than p – 1 to the power d times d factorial and it only contains set of size at most d, 

then the system contains a sunflower with p petals. So, in our case, we applied this with p 

equal to k + 1. So, if you have more than k power d, d factorial sets then you will contain a 

sunflower with k + 1 petals. And furthermore, in this case, you can find such a sunflower in 

polynomial time.  
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So, how do we get a d-set? If k + 1 sets form the sunflower, then remove the sets from S and 

add the centred C to S, does not hit one of the petals, thus it has to hit the centre. Note if the 

centre is empty, the sets are disjoint, then there is no solution. So, if the rule cannot be 

applied, then we know that number of sets is upper bounded by k power d and you can get a 

kernel for d-hitting set applying this classical sunflower. And the proof is of this lemma is not 

very hard and you can find in the textbook of the course.  
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So, d-hitting set admits a kernel with k power d-sets. So, before I end my lecture today, for, 

let me give you another problem which is very classical and which has, it is called d-set 

packing. So, input is universe, a family S of sets of size at most d over U and integer k. And 



the question is: does there is a subset x of S of size k so, that all sets of x appeared while 

disjoint.  

 

So, here for example, abc and efg are pairwise disjoint. Similarly cgh and bde are pairwise 

disjoint and there are only 2 pairwise disjoint sets. So, in the d-set packing, our goal is that 

can I find cases that are pairwise disjoint?  
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So, I will just give you up. Let us look at 2 set pack. A 2 set packing is nothing but you want 

to find 2 sets which are pairwise disjoint. And basically if you think of 2 sets, then they are 

like a graph. Each you think of universe as vertex set, think of universe as vertex set and 

universe and for each 2 sizes, you just put an edge. So, this is basically a graph and 2 set 

packing is nothing but finding a maximum matching in a graph which you can do in 

polynomial but forget for now.  

 

Notice that if I have a vertex V whose degree is say 2k + 2, then I claim to you that you 

know, you can forget one edges, you can delete one edges insert into V. And now, we can 

show that G has a k matching if and only if G prime has k matching. So, look at the forward 

direction, backward direction is very easy. So, the backward direction is very easy. Why?  

(Refer Slide Time: 34:49) 



 

Because backward direction is very easy because here is a G, here is G prime. So, any 

matching in G prime is a matching in G. So, if you gave me a k sized matching in G prime, I 

can get k sized matching in G, but whatever the forward direction that is a interesting point. 

The point is look at forward direction. We have 2k + 2 edges. And what happens is that in G 

prime, some edges missing, this is important.  
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So, you let us look at a matching M of size k in G. Let us suppose, this is edge UV; this is 

edge UV. Here 2 things; contains UV; does not contain UV. This is easy, does not contain a 

VM and then M is a matching, fine. But now it contains UV. If it contains UV, then what 

happens? If M contains UV, look at this UV. Let us delete this UV. Now, because you delete 

UV, what happens?  

 



Now, I need to find because it contained edge UV, it contained an edge UV because it 

contained an edge UV, you know that no other edge, no other edge incident to V is selected 

in M, fine. Now, let us look at this U 1, V 1. Okay, maybe this edge and this is edge, I cannot. 

This edge and this is, I cannot, I would like to what I do, I would like to replace in the M UV 

edge by some other edge which is present in G prime that is my goal.  

 

But unfortunately, this edge is, so let us look at the C 1, V 1. So, that is our objective is to 

replace UV with some other edge.  
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Objective: replace UV with another edge incident to U in M that is present in G prime. Okay, 

so, let us ask ourselves, what about this edge? Oh, I cannot pick this edge because oh, 

because there is some vertex, some edge which is incident to this vertex, fine. So, an edge can 

only kill 2 edges, some other present edges can only kill 2 edges incident to U. So, by doing 

this Okay, this cannot be done, this cannot be done, this cannot be done but how many 

number of edges that we cannot select.  

 

Or, those edges that intersect with vertices in V of M – UV is at most 2 times k – 1. But what 

was a degree of A? Degree of V is greater than equal to 2k + 2. So, after I deleted 1 edge, a 

degree of V is at least 2k – 1. Now, I deleted 2 into k – 1. So, degree of V is at least say, let 

us say, 2k – 1 – 2k. No, it was 2k + 2. I deleted this. So, let us see how many edges are.  
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So, maybe, we need at least 2k + 2, so say this my bad, say degree of V at least 2k + 2 + 1. 

So, even after I deleted, so maybe we should do that is my bad, this is something. So, we 

started with 2k + 2 edges, 1 edge, we are not allowed to pick because of UV. And these many 

edges are deducted because of the, so, let us see, 2k + 2 – 2k minus, minus plus 2, – 1, which 

is so, 3.  

 

So, we still have a lot many more edges left at V that we could replace that edge of M with 

this particular edge and we can get. So, basically what it tells us that if you are looking for to 

preserve matching of size k and if a vertex has very high degree like to 2 k order k plus order 

k, like 2k plus 2, then you can do something interesting. Like you can delete any.  
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We can apply the same kind of idea but using, so, you can prove that if a set contains a 

sunflower with dk + 2 petals, 1 set of the sunflower can be deleted. So, you can apply this 

reduction rule based on sunflower and get the d-set packing admits a kernel with order k to 

the power d-sets. So that is the last kernel that I want to touch.  
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So, there are more problems, one can kernalize like cluster editing or feedback Arc set in 

tournament. Look at the exercises that will come follow.  
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So, let us just summing up these 2 lectures on kernel. So, we saw some simple kernel for 

vertex cover, point line cover, edge clique cover. We saw when FPT is equal to kernelization 

under what condition. We saw this nice sunflower lemma and saw an application to d-hitting 



set and d-set packing. We will have couple of more lectures on kernelization to follow in the 

due course. Okay, so, thanks for now. 


