
Parameterized Algorithms

Prof. Neeldhara Misra

Department of Computer Science and Engineering

Indian Institute of Technology, Gandhinagar

Prof. Saket Saurabh

Department of Theoretical Computer Science

Institute of Mathematical Science, Chennai

Lecture – 39

Algebraic Techniques: Inclusion Exclusion (Colouring)

Welcome to the week 10 of the course, up until now we have been seeing a several new

techniques in parameterize algorithms. And in this week we will learn another new technique in

parameterize algorithms called algorithms based on algebraic techniques. And one of the first

techniques that I would like to talk about is what is called inclusion exclusion based algorithm.

So, now what is the principle of inclusion exclusion? Let us try to understand that.

(Refer Slide Time: 00:42)

The principle of inclusion exclusion, there are several formulation we will see the more classical

formulation later. But let me tell you something slightly different formulation and may be this

will help you. So, basically what we would like to show is that there are as many odd sized

subsets as even sized subsets that are sandwiched between 2 different sets. So, what I mean by

this, so let us spell it out what does it mean?

So, this basically means so, we will prove this for R subset of T, look at R is there, S is there.

And I do minus 1 then this is equal to. So, let me introduce this notion. This is also like this

notion basically what I mean. So, what is this notation means R = T.

(Refer Slide Time: 02:51)

This is basically what is called we used what is called Iverson notation. Iverson notation P for

proposition P, meaning this evaluates to 1 if P is true and 0 otherwise. So, in the context of this,

what does this mean that this expression the left hand expression is equal to 1 if R and T are

equal otherwise 0 here. Now, look at this expression what does this tells us? This expression tells

us that you look at you fix an R, you fix a set T and you look at all the sets S which contains R.

But it is contained inside T and then you look at the minus 1 to the power there Cardinality. So,

notice that all the odd sets here is going contribute minus 1 and all the sets S which contains R

and contained inside T and they are that are even are going to contribute 0 because minus, they

are going to contribute minus 1. So, the odd sets are going to contribute plus 1 even sets are

going to contribute minus 1.

And if R and T are not equal, then the number of contributions that will come from all the odd

size sets and even size set they will cancel out each other. And this is exactly what it means that

there are as many odd size subsets and even sites subsets sandwiched between 2 different sets.

So, now let us try to prove this. This is not very difficult. So, let us try to do this.

(Refer Slide Time: 05:14)

So, let us try to prove this. So, how are we going to prove? Let us take first R = T then in this

case there is exactly 1 sandwiched set and what is that? Namely R = T. And then the left hand

side and in this case namely R = T and so, the left hand side will become there is only 1

contribution that is minus 1 to the power 0 which is 1. And in the right hand side what is it? In

the right hand side you know that R = T. So, this notation also evaluates to 1 so, this is fine.

(Refer Slide Time: 06:17)

So, now let us assume that R is a proper subset of T. So, now what are we going to show? Now

to show this we are going to how do we prove this in this case? We are going to set up a bijection

between odd and even sized subsets. So, we are going to set up a bijection between odd and even

size subsets S. And how do we set up such a bijection? That is very easy you know that R is a

proper subset of T, so let t be an element of T – R. Because you know, now for so, what is the

bijection we are going to give for every odd size subset S 1.

So that is great, it is slightly better. So, for every odd sized set S 1 that contains S and contained

inside R, T contained inside R we are going to setup S 0 = S 1 and what is this notation? This is

basically notation for symmetric difference.

(Refer Slide Time: 08:15)

So, now notice. So, every odd size subsets; so, now look at S 1 what kind of set S 1 can be t

could belong to S, if t belongs to S then what is S 0? S 0 is S 1. So, what is a symmetry

difference? Symmetry difference means this and this. Now if t belongs to this then what is S 0 it

is basically S 1 - t and then in this case what is S 0 is even. I will look at S 1. Now t does not

belong to S then S 0 is what? It is S 1 and union t. So, since we started with S 1 as odd and we

have added a new element to this this is still even.

So, notice that we have been so at least the mapping from odd to even is fine. So, every odd set is

mapped to an even set and why this is a bijection because you can recover. And so, this is one

thing, we also have to show that the set R is contained inside this. So, now we started look at the

first case S 1 we deleted t but where the element t was? t was in t did not belong to R. So, what

does it mean? So, if you looked at an odd set you deleted an element who did not belong to R.

So, this implies that even in this case S 0 contains R.

And since this is anyway you are adding an extra element from a set, so this in this case also we

can show that S 0 contains R. So, we have been able to show not R where T. We picked up T so,

I made a mistake here this is what, so t does not belong to we, this implies that this is fine. This

is so either way.

(Refer Slide Time: 11:30)

So, the basic fact of the matter is that we have been able to give a bijection from or we are given

a function that maps even sets that maps odd sets containing R and contained in T to even sets

that contains that R and contained in T. So, function is established. Now why do the bijective?

That is bijective because we can recover S 1 from S 0 as again you can do the same thing. So,

what is S 0? It is nothing but S 1. So, this is what so we can recover S 1. So, I object from you

do.

So, you can be covered so look so it is like I can get S 1 by again doing the symmetric difference

between 2 by with respect to the set T. So, this is why this forms this establishes bijection. And

once you have been able to show that in the second case the number of sandwich sets of even

size and all sides are equal. When R is a proper set then the left hand side contributions are the

even number of plus 1’s and even an equal number of plus 1’s and equal number of minus 1’s.

So, they will cancel out each other so left hand side is 0 and since R is not equal to T so this right

hand side notation will evaluate to 0. So, you are done. So that is it. Now let us so why did I tell

you this? So, it is a very important and interesting algorithm you will make out of this. So, first

example I would like to give is in graph coloring.

(Refer Slide Time: 13:54)

So, what is graph colouring? So, graph colouring is nothing but it is so, input is a graph G integer

K and question is, does there exist an assignment from vertex set of G to an integer 1 2 K also

called colours. Such that for each edge UV assignment, fu is not equal to fv.

(Refer Slide Time: 14:56)

So, basically you have a graph and you want to assign numbers. So, for example, this is not a

proper colouring because there is an edge here and both end points have been assigned the same

colour. But this is the proper colouring because you look at the any edge the assignment maps

different integers. So, this is what is called K colouring of the graph. And the question is there

exist an assignment there exist the colouring of the vertices with colours 1 2 K such that no edge

is monochromatic meaning that like same colour is not assigned to the end point of any edge.

All of you know that this problem is NP hard even for 3 colouring. Meaning, if you are looking

for an assignment from colour 1, 2, 3 even then the problem is known to be NP hard.

(Refer Slide Time: 16:05)

So, hence expecting an algorithm of running time say f of K n to the power O of 1 or even an

algorithm with running times some n to the power f of K is not possible. Because if you could

design such an algorithm then what it will imply? Substitute K = 3 then what you will get f of 3 n

to the power O of 1 or even n to the power f of 3. Whatever it is for value 3 this is either

polynomial both of them are polynomial time algorithm. So, unless p equal to NP we do not

expect that p will be able to design such an algorithm.

(Refer Slide Time: 16:45)

So, for this we are going to use a parameter which is cognitive of VG = n. So, we are going to

use our parameter n the number of vertices. So, we can ask is this K coloring problem, is there K

coloring problem? FPT parameterize by n, but now let us see how many number of assignments

are coloring are there? How many assignments number of colorings are there? Number of

assignments or coloring are how much. So, you are looking for a total number of functions from

1 to n to 1 to K.

So, every vertex could be assigned one of the K. So, the number of such functions number of f’s

are upper bounded by K power n. So, you can enumerate each of this function and check whether

they form valid coloring or not.

(Refer Slide Time: 18:06)

So, the 1 trivial running time of an algorithm could be K to the power n and n to the power O of

1, but now you know that like so, this is 1. So, if you are looking for a proper colouring and

generally this is like your look. So, for example, if K is greater than equal to n then you can

trivially do this assign every vertex different color and you are done. So, we can assume that K is

less than equal to n. And hence n to the power n, n to the power O of 1 which is 2 to the power O

of n log n and we are happy.

So, now as we have been trying to do. So, what is the goal? So, goal is fixed. So, the goal is to

design an algorithm with running time C power n where C is a constant.

(Refer Slide Time: 19:38)

And of course C as small as possible; so that is the goal or in this area of computer science. So,

just to give you a motivation let us start with 3 colouring.

(Refer Slide Time: 20:08)

So, I want to assign from 1 to 3 and I want to do better than 3 to the power n. Because the trivial

algorithm is 3 power n and the question is can we do better than 3 power n. So, now let us look at

a valid colouring. So, valid f in an assignment 1, 2, 3 now notice f inverse of 1, let us call this V

1, so let us call this we will use V i.

 (Refer Slide Time: 20:54)

So, now look at this graph. Now all these vertices have been assigned 1, all these vertices has

been assigned 2, these has been assigned 3. Notice that there are no edges here because otherwise

this will be monochromatic. So, basically what is what is the property?

(Refer Slide Time: 21:23)

The properties that each V i forms and independent set. So, that is one of the observations. And

secondly, in fact it is partitioning of vertex G into K independent sets. So, we will come back to

this principle in a minute. So, once you have seen this there is a very simple algorithm for testing

with a graph with 3 colourable how. So, the algorithm for 3 colouring is very simple.

(Refer Slide Time: 22:28)

Here is an algorithm for 3 coloring. So, what is an algorithm for 3 colouring? First enumerate an

independent set. Rather like let us look for all X subset of VG, X being an independent set check

whether G - X is a bipartite. Now, notice that if I have guessed the colour class 1 correctly then

the graph induce 1, 2 and 3 is nothing but 2 colourable or nothing but graph induce some color

class V 2 union V 3 should form a bipartite graph. So, this is why I checked. So, notice so this

algorithm will run in time, the possibility of X number of X’s are upper bounded by 2 power n.

(Refer Slide Time: 23:47)

So 2 to the power n and n to the power 1, so this is 1 algorithm and but now you can ask

yourself, what about 4 colouring? So, now you are looking for an assignment from VG to 1, 2, 3,

4. So, now what I can do? So, now let us make an algorithm for 4 colouring.

(Refer Slide Time: 25:10)

The X being an independent set, check whether G - X i can for 3 colours. So, now we made

changes here. So, rather than checking whether, we said it is fine. Now what is an algorithm for 4

colouring? Algorithm 4 colouring is nothing but you. So, once you have guessed V 1 the

remaining V 2, V 3 and V 4 the graph is 3 colourable. So, in this case now, in the first case we

have 2 power n and we could do this checking in poly time, But now we cannot do this so, but

for this we have an algorithm with running time 2 power n.

(Refer Slide Time: 26:06)

So, if you do naively it will become 2 power n times 2 power n 4 power n. But that is not how

you should be doing. So, basically you have to do in choose i, i going from 0 to n. So, this is

possibilities of x and then in the remaining how many vertices are left? In the remaining the total

number of vertices are left is n - i and n that you run your 2 to the power n - i algorithm. So, this

is going to be 3 to the power n.

(Refer Slide Time: 26:35)

So, just generalizing this you can get a K colouring algorithm in running time but, this tells us

something. I mean this tells us this idea of an algorithm tells us something that X being an

independent set with a check whether G – X is 3 colourable. So, once I know the first set in the

remaining I need to know the chromatic number of G – X. So, that just implies that this is like

this immediately implies that maybe we should look for a dynamic programming algorithm. And

in fact you can design a dynamic program a simple dynamic programming algorithm based on

the following recommends?

What is the following recommend? So, if you are looking for a following K colouring or

chromatic number you can do anything.

(Refer Slide Time: 27:41)

So, look at AX. So, what is A of X? It is going to write down the chromatic number of graph

induce. So, now let us try to compute chromatic number of G. And what is the chromatic number

of G? Minimum number of colours required so, that we have a valid colouring. So, this is what

chromatic number is like minimum number of colors you need so that every edge can be non

mono chromatic. So, this is what A of X is going to store? Chromatic number. So, what is A of

X? Graph induces. So, I am going to look at A of X look at it.

(Refer Slide Time: 28:32)

So, I guess the first independent set, so this is going to be minimum over Y subset of X, Y is an

independent set, that is the first thing. Y is a subset of X, Y is an independent set and what is Y?

Y is an independent set and Y is not equal to phi. So, you have guessed the first thing. So, it is 1

plus the chromatic number, the minimum number of colors you need for the graph induced on G

- Y. So, this is AX - Y and that is it. So, I am trying to have an array A of X. So, basically A of X

is indexed by a subset of my vertex set and what does A of X stores.

A of X stores the chromatic number of that and that can be given us minimize Y subset of X. Y

is an independent set Y is not equal to phi and 1 plus this. So, now what?

(Refer Slide Time: 29:51)

So, this is a big array, and you index them with subsets okay and you fill this up in the increasing

order of sets and if you fill this up increasing order of size of set. So, you first fill up the 0 size

set then 1 side sets then 2 sides sets then 3 sides so on and so forth and what is this? This is 0 A

of phi is it.

(Refer Slide Time: 30:29)

And now to evaluate A of X, how much time will it will take to evaluate A of X? Time to

evaluate A of X is basically 2 power cardinality of X and table lookup. So, you take you like so

you take 2 power X entries and you take minimum of that and you put that in. So, the running

time of this algorithm is again going to be n to i and 2 to the power n – i that is what and this is

going to be 3 power n. So, you can compute chromatic number of a graph in time 3 to the power

n.

(Refer Slide Time: 31:13)

So, there was lots of work happening in this area to get 3 power n to something is smaller. And

with lot of effort it was stuck at roughly I would say 2.3, let say 2.4 it is not accurate, but this is

2.4 roughly. It was stuck and then there was a very beautiful algorithm which we are going to see

now. Now using inclusion exclusion we will see 2 power n algorithm. So that will be our goal

using inclusion exclusion to see 2 power n algorithm. So, now let us go back to our colouring

perspective. So, what is a coloring?

(Refer Slide Time: 32:30)

So, as I said, so like let us look at any color assignment colouring. So, basically as I said it is a

basically every valid coloring or every set proper colouring partitions V of G into K independent

sets that is very clear that every proper coloring partition VG into K independent set but what

about the other way around?

(Refer Slide Time: 33:27)

So, if I have a partition of say V of G into K independent sets what does that imply. So, I have

this is partition of VG into K independent sets V K, the moment I have a partition of VG into K

independent sets I could assign color 1 2 3 K and if you notice, because these are independent

said there are no edges here which implies that this is a proper K coloring. So, now what we are

to be able to prove?

 (Refer Slide Time: 34:03)

We are able to prove that the following lemma that G has K coloring if and only if V of G can be

partitioned into V 1, V 2, V K can be such that each V i is an independent set and that is

perfectly fine. In fact so, this is so we have reduced what we have done is we have reduced K

coloring to partitioning in partitioning into K independent sets and we will utilize this fact to do

inclusion exclusion. But before that let us make it even better in fact what we can say is the

following.

(Refer Slide Time: 35:25)

We can prove a better slightly more general lemma and we say a graph G is K colorable if and

only if G can be covered by K independent sets what is the meaning of this. Let us try to focus

there can be covered with K.

(Refer Slide Time: 36:01)

So, basically what I am saying a graph G is K colorable if and only if I can find V 1, V 2, V K

the V i’s are independent sets and union of V i, i going from 1 to K = VG. I am not claiming that

they should form partition. What is the meaning of partition? A vertex will not appear in 2

different sets. So, I am saying that look of course K coloring is same as partitioning into K

independent set but in fact what I am saying that it is K colorable even if you could cover the all

vertices with K independent sets. So, these are basically 2 differences.

So, now let us prove forward direction is very easy, if graph G is K colorable then you know that

they can be partitioned into K independent set. And hence they can also be covered into K

independent set in fact; even better no vertex appears twice.

(Refer Slide Time: 37:13)

So, forward direction is very simple, but what about the backward direction now, we know that

we have the sets maybe like this V 1 say V 2, V 3, V 4. What is the property? V i’s are

independent sets and union of V i’s, i going from 1 to K = V G.

(Refer Slide Time: 37:50)

Now given this covering we will from covering we will recover a partitioning. How you fix V 1?

And now what is V 2? So, what is the new so V 1 is V 1 we will make V 2 prime which is

nothing but V 2 – V 1 fine. So, similarly so basically what when you are trying to construct V i

prime it is nothing but V i minus union of let us call this V 1 prime = j going from 1 2 i - 1 V i V

j. So, whatever previously you have selected just remove all those vertices. So, V j only contains

those set of vertices which does not appears in V 1, V 2, V i – 1. That is it.

So, now notice that because of this we have and this is how you can get V K now notice that

every vertex is in some set and in fact every vertex is exactly1 in 1 set. Because we have make

sure that no vertex appears in more than 1 set and all of these are basically a subset of an

independent set so, they are also independent set. So, from a given covering we have been able to

obtain a partitioning word of independence set. So, what does this imply? So now, we have

actually reduced our problem from if you want to test for the graph is K colorable we are asking

can be covered the whole graph with K independent sets. So that is it.

(Refer Slide Time: 39:51)

So, we will use so notice what does this implies K colorable if and only if K independent set

partitionable if and only if K is independent set coverable that is it. So, let us we will use this for

our purpose so, the lemma which we will like to prove is the following.

(Refer Slide Time: 40:22)

And we will see how we can use that to design our algorithm. So, to do this to be will before this

let g of s denotes the number of non-empty independent sets in non-independent sets in s subset

of VG. So, basically the rather you should say that g of s is number of independent sets in graph

induced on s but non empty one. So, this is what g of s means. So, for example so let us call this.

So, this is one independent set of this graph.

All Singleton's are one independent set and if you look at the 2 independent set it can only be this

and this or it can be this and this that is it. So, but we are only talking about non independent non

empty independent set we are not talking about empty independent set. So, now what we can say

about this

(Refer Slide Time: 42:37)

So, the lemma is the following. Now that we have set up the notation, a graph G is K colorable if

and only if summation s subset of N rather than say VG. Let N = VG just so that it is easier to

use notation, s subset of N – 1, N minus cardinality of s. So, remember what is g of s? g of s is

number of independent sets non empty independent sets in my graph and why we are talking

about non empty independent set is because you want V 1, V 2, V 3 each of them to be non-

independent.

So, now to prove this, will prove this so, what is this g of s K counts? So, basically notice what g

of s K counts is basically it counts you number of ways to pick K independent sets, so I am not

saying that like look number of ways. So, let us not well do a proof for this.

(Refer Slide Time: 44:11)

So, to prove this first let us what does it tells us that look what is g of s to the power K is number

of ways to pick K independent sets. So, our intuition is that so, in particular what is a good way

of picking a independent set for our purposes if for us good will mean so, let us try to understand

what is g of s to the power K means it comes the number of ways to pick K independent sets. But

let us say if I selected some K independent sets. And suppose S = N which is equal to vertex set

of G when some K independent sets will be great for us.

Because if you picked up K independent sets say I 1, I 2, I K and if the union is equal to V of G

great for us, because once it means I have picked up K independent said that can cover a whole

vertex set. Because then covering implies, partitioning implies calculate so, this is great. But

when it is not this great?

(Refer Slide Time: 45:45)

If union of V I is a proper subset of it, because the union can only be. So, if I look at the whole

vertex set and like for S = N let us pick up K independent set. These independent sets are great if

I have picked up K independent set which is which can cover the whole my vertex, but it is not

good for me if it is proper subset. So, now what we are what basically I will tell you that look in

this expression only thing which will matter is those counting for which like.

So, the only those ways of selecting K independent set will contribute who could equal to VG

and rest they will like rest of them are counted equal number of times with minus 1 equal number

of times with plus 1 and hence they will cancel out each other so, that is a goal of doing this. So

now, let us try to express left hand side slightly better slightly differently rather so, what I can

say so you are what is this summation minus 1 n minus cardinality of s g of s to the power K.

What is g of s to the power K it is some number. So, some number to the power K is nothing but

some number times some number, times some number, times some number and that number is

nothing but summation of 1 + 1 + 1 + 1 + 1.

(Refer Slide Time: 47:36)

So, we can write this left hand side is equal to summation is going from s summation I selected

an independent set I dot dot dot summation I selected K independent set. And what is the

property that for all i this is your that notation for all i, I i belongs to set S and minus 1 N - S

exactly the same thing. That is it so, like what did this means look at all the independence. So,

suppose like among all the independent sets of my graph look at those who belongs to S. So, you

are summing over those so that so, what is this left hand side?

So, it is nothing but minus 1 to the power N - S into g of s. And what is the summation again you

are going over the same thing so, it is minus 1 g of s to the power square. So, if you do K times

you will get summation over s this. Now but I could also do this slightly differently, I could go

over all independent sets of my graph K independent sets of graph and only count this when each

of these I 1 to I K belongs to S. So, what I mean by this so, this is I could write this summation I

1 dot dot dot summation I K so where these I i’s are independent sets in graph G.

So, I am going to do summation over K independent sets but they should only contribute when

but now so I first collected K independent sets and now I am going to sum this is important point

I am going to sum over S and now so I took up K independent set now these K independent sets

could like this K independent set could be contributing to several S? So, this is summation for all

i I i is a subset of S - 1 N - S Now, if you picked up K independent set now you ask yourself if

we have picked up K independent set how many s will you contribute to? You will contribute to

those K those S is for which I 1 to I K is a subset of S. So, we can write down.

(Refer Slide Time: 50:27)

So, this could be again written as I K and summation over. So, this is going to contribute to all

but look I 1 you also part of S, I 2 is also part of S, I K is also part of S. So, this is only going to

contribute to those sets S right for which their union is contained inside this. And then this is

now look at this inner some you so now let us look at fix some I 1 and I K, let us fix this I 1 to I

K let us call this set they are fixed some cases. Let us fix I 1 to I K some K independent sets.

Now let us call R = I k. So, this is my R and my T it is vertex set of G.

So, notice that these K independent sets are going to contribute when this; K independence this I

1 to I K are going to contribute for all S which contains R and which is properly contained inside

T. So, this is vary. Now we know that this so, you fix I 1 to I K then once you are fixed I 1 to I K

then their summation is for all s that contains this.

(Refer Slide Time: 52:29)

So, the inner most some contributes only when R = VG. So for all so, now what we have

learned? We have learned that look at this inner sum. Now any covering of K independent sets

that is not equal to vertex set of G that is counted equal number of times with negative sign and

equal number of sign with positive sign and hence that guy contributes 0. So, the only people

who contribute here are those only people who contribute here are precisely those.

So, only thing who is contributes are the covering of like only things which contribute to this like

non 0 way or yes it is when I have I 1 to I K which covers the whole vertex. So, what we know

so if so we have learned that if summation this S subset of N - 1 N - S g of s K is greater than 0.

(Refer Slide Time: 54:14)

Implies we can cover vertex set of G into R like this you get the 0 if and only if; not rather we

should not say that. We can cover VG by K independent sets great. And now we know that if we

can cover VG by K independent set implies G is K colorable for the reverse direction is very

simple if G is K colorable implies we can cover VG by K independent set if we can cover VG by

K independent set then this sum is always going to be non 0. In fact, when we have G is K

colorable then we can cover VG by K dependent set check disjoint partition great.

So, we have been able to show that if graph is K colorable if and only if following combinatorial

identity is true. Now let us try to see how we can use it this combinatorial identity

algorithmically. Now let us try to so, what we would like to do we would like to compute this

quantity what did this come computing this?

(Refer Slide Time: 55:45)

So, basically what this quantity computes let us first write it down it computes for all S subset of

N which is vertex set of G number of independent sets. What is it come so, it is basically takes

number of independent sets of graph induced on S fine. I mean and so, we can do this very easily

you look at graph induce. Try all subsets S prime subset of S and check if check S prime is an

independent set. So, you look at all like non trivial independent sets S prime subset of S and

check how many of them turn out to be independent.

So, this can be done in time 2 to the power S time. So, in 2 power S time we can compute g of S

and take it K is power and look at this summation so, we can evaluate this summation in time

submission again we can do the same trick n to i, i going from 0 to n 2 power i and that is like 3

power n. So this is so, we did not get anything new when we try this inclusion exclusion formula

then what we already knew before because of this but notice that this algorithm is a polynomial

space algorithm.

(Refer Slide Time: 57:32)

Because all we need at any point of time is like you go through S 1 by 1 and keep a sum of what

is the current evaluation is so that is like 1 memory and for you look at the current graph current

S and you enumerate all subsets 1 by 1 again you have a counter and that is how you can

compute g of S in poly space. So in fact, so what we get before 3 power n algorithm but with 2

power n space, so what did we get before? So, we gave 3 power n algorithms with 2 power n

space.

Now we have given another 3 power n algorithm but with polynomials space. Now what I am

going to tell you is that actually we can do this computation much more easily. So, rather than

doing this what we will do is that.

(Refer Slide Time: 58:48)

We are going to before even running this algorithm, we will build a table with 2 power n entries

containing g of S for all S sub set of N which is equal to VG. And to do this such a thing I can

build a recurrence. And how will it build a recurrence first of all notice that g of empty is 0, now

look at some S and fix some V in S. So, now independent sets in graph induced on S are of 2

types.

(Refer Slide Time: 59:42)

One those who does not contain V and those who contain V. Those who do not contain V are

same as that those who are independent set in graph S - V which you have stored would you

have this is same as g of S you stored here. Now if you contain V then there are so, first of all V

itself could act as an independent set or you have to find an independent set if you contain V then

none of the close neighborhood of V can be contained.

Because V is there none of its close neighbor set which implies that in this case you are looking

for you compute the independent set in graph g of S N - 3 add V 2 that so, that is 1 family of

independent set plus you have to also add 1 for V itself. So, this is nothing but g of S - N V + 1.

(Refer Slide Time: 1:00:56)

So, that implies that immediately gives us a recurrence g of S is nothing but g of S - V + g of S -

N of V + 1. So, this belongs to V in S that is it so, once I have this recurrence then I can again fill

this table. In so first increasing order like 5 then all 1 length sets, 2 sized sets. And at any point of

time you are looking you just need 2 entries from your array which you have already pre

computed. So, each index can be computed. So you like so, these sets are indexed by a sets of

your vertex set and each to compute each index set you only need to look at 2 previous entries.

(Refer Slide Time: 1:02:02)

So, you can fill this table in 2 power n n to the power of O of 1 time. And now once you have

computed this, now that you have computed this table g of S, now you go 1 by 1 and like you

valuate these numbers and just check this. So now, with the help of the table, we can compute

with the help of this table, we can compute the sum in 2 power n n to the power O of 1 time and

2 power n space. 2 power n time and 2 power n space.

(Refer Slide Time: 1:03:04)

And based on the number we know whether G is K colorable or not. So, in terms of time this is

the state of the art. So, in the next lecture, we will continue our further inclusion exclusion but

this time I will give you the classical that intersection way or union way of doing the inclusion

exclusion and then we will take it from there and give another example of inclusion exclusion

and then well move to the different techniques in designing algebraic algorithms.

