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Welcome to the last lecture on important cuts. So, in the first two lectures or first three lectures 

you saw about important cuts, and in this we will use this to give another algorithm for one of the 

most important problems in parallel complexity which was whose parametrize complexity was 

an open problem for a long time and that was directed feedback Edge Set. So, that will be a goal 

to design for this. 

(Refer Slide Time: 01:03) 



 

But before that let us just revise the some of the topics that we covered in the previous lectures, 

was that what we did first was if we define this notion of delta R, which will basically set of ages 

with exactly one endpoint in R, then we talked about minimal X, Y cut which was nothing but it 

is a set of edges, such that there is no path from vertex in X to a vertex in Y and no proper subset 

of S does this job. 

 

Meaning if you only delete a proper subset of (()) (01:34), then there will be a vertex X and 

vertex in Y such that will be path. And an important observation was that for a minimal edge cut 

I can find a set R such that S is nothing but delta R. And what extra property is that X is 

contained inside R and R intersection y is empty. And so, for example, look at this for ages these 

are like areas emanating out of out of R. 

(Refer Slide Time: 02:06)  



 

Then we define this notion of important cut. And what was an important cut? A cut was 

important if there was no other cut which dominated it and what do we mean by this a cut is 

called a minimal X, Y cut is important if I cannot find another X, Y cut, with a property that it 

covers more vertices that are like and number of edges that are leaving R prime is less than or 

equal to the number of edges that leaving R. 

 

For example, look at this cut or is it an important cut and we also saw it showed that we can 

actually test whether a particular cut is important or not in polynomial. So, the question was is 

this cut important cut.  

(Refer Slide Time: 02:50) 

 



And answer was not because you can find an R prime which has as many as leaving as R. So, for 

example, there were four edges we have a four blue edges, but it significantly it contains R and 

also contains some other set of vertices. So, this particular art was not an important cut.  

(Refer Slide Time: 03:10) 

 

But you look at this R and look at these three red coloured edges, you can show that you cannot 

find any R prime which contains are properly and has at most three edges leaving. So, any other 

vertex you will put inside it will have more number of edges going out which implies that this 

particular R is an important cut.  

(Refer Slide Time: 03:34) 

 



And then we had this important theorem who showed that there are at most 4 to the power k 

important X, Y cuts at size at most k. And this is very useful because we could use this important 

cut to design an algorithm for a problem called a multiway cut. 

(Refer Slide Time: 03:48) 

 

So, what are the multi way cut? So, multi way cut of a set of terminals T is a set of edges such 

that each component of G - S contains at most one vertex of T or alternatively we can say that for 

any pair of vertex in T there is no path after we deleted the edge set S. And it is as I told you that 

like for if you just give in to what he, say s and t, then this is polynomial because it is nothing but 

a min s, t cut problem. 

 

But the problem was already NP complete for a fixed number of terminals T greater than equal 

to 3 and that is why we sold told that we do not expect to have an algorithm of this nature. In 

fact, we do not expect to have an algorithm for this nature, unless P = NP.  
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But if you recall correctly, we showed that it is trivial to solve the problem in polynomial time 

for fixed k, k you just try all possible cases subset and check whether it is a multiway cut or not. 

But we design an algorithm using important cut, with running time 4 to the power k into the 

power one. In fact, we did not design this algorithm, we actually we talked about this algorithm, 

but the running time which we properly analysed was 16 power k and to the power of big O of 1.  

 

But that algorithm can be made to run in 4 to power k polynomially. So, this was a slight, so this 

is like covering of whatever we did previously.  
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And now let us see what we do and here is your algorithm, so, recall the heart of an algorithm 

was the following pushing lemma. What are the pushing lemma? It says that look at any solution 

it definitely disconnects T from all of the terminals by some set of minimal cuts which is 

contained inside my solution. But what we showed that well, it is not any minimal cut we can 

find a solution where this minimal cut can be replaced by one of the important t, T - t cuts.  

 

The moment we had we got this very interesting algorithm that basically said if every vertex T is 

in different component, then you are done else you pick up a vertex which is not separated from 

a vertices t, T - t, you enumerate one of the important cut of size at most k delete these records 

with a new parameter k minus cardinality state. And first, it is very trivial to design a 4 power k 

algorithm for this problem, 4 power k squared.  

 

Because in each branch because the budget is decreasing by 1 the depth of the trees at most k and 

since each branching factor is 4 to the power k, the total running time is 4 to 4 k squared. But 

then we use us refine analysis to give 16th power k algorithm, but that algorithm can also be 

analysed even more carefully and we can get a 4 to the power k algorithm for the problem. So, 

that was the state of affairs till the first three lectures. 
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And let us see what up so, the first problem that we are trying to talk about today is what is 

called multi cut problem. So, what is a multi cut problem? So, unlike multiway cut problem, you 



are not given a set of terminals, but you are given a set of request pairs, which are called s 1, t 1, 

s l, t l and you are supposed to delete at most k edges with a property that after you delete this 

there are no paths between s i and t i for anytime.  

 

And why did they use the word that multi cut generalizes multi way cut? Because given a graph 

G and a set of terminal t we can create a request pairs by for every t i, t j in T, i not equal to G 

you will create a request were t i and t j. And what does that imply? That now you have reduced 

multi way cut to multi cut you could have each request physical with other giving a set of 

terminal. And now what I am going to show to you is an interesting algorithm.  
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So, let us see how we can solve out multi cut. So, basically imagine that you have this set S and 

we have s 1, t 1, s l, t l here, once you delete this maybe there is a connected component which 

contains s 1, t 3, s 2, s 4, t 5, t 7 so on and so forth. So, after I delete this the set of terminal pairs 

s 1, t 1, s 2, t l gets distributed, but once this get distributed and this is your green colour or your 

edges what is the property of this.  

 

So, if a think of this set of s 1, t 3, t 2 as a subset of vertices, then my edges of S actually acts like 

a multi way cut.  

(Refer Slide Time: 08:44) 



 

So, this S is basically a multi way cut of this set of you know, this set of terminals here each of 

this. So, that immediately induces a partition of the T star, which we T start consists of s 1, t 1, s 

2, t 2 s l, t l. So, what do I do? So, after I did the edge of s, the terminals in T star gets partitioned 

into different connected components. 

(Refer Slide Time: 09:17)  

 

So, my algorithm is going to be you guess a partition and P start suppose they are T 1, T 2, T q, it 

is a partition of T star. Now, you first check is this a valid partition meaning if I delete the 

solution set S, can we get this partition. What is the meaning of it? S i, T i should not occur in the 

same part meaning they should not be the same part because what we are trying to do is to 

disconnect every vertex in T i from every vertex in T j. 



 

But we are not caring about disconnecting vertices in the same pair. That is the model of 

describing this T i. Now we are going to identify T i into one vertex and which is very simple. 

You delete vertices of T i add a super node say T i and make him adjacent to every vertex any 

vertex in T i was adjacent.  

(Refer Slide Time: 10:11) 

 

So, now for these super terminals what you are going to be done you run your multiway cut 

algorithm, but then what your running time of this algorithm because you know that at least one 

of the guesses is correct and for that, if you run this multi way cut algorithm then it should 

partition them into different parts of with utmost k. So, the running time of algorithm is guessing 

the partition which is l to the power l and then running this code to the power k algorithm.  

 

Which means that we can solve the multi cut in f k l into n power big O of one time algorithm. 

So, how did we solve multi cut? We solve multi cut by reducing it to a multi way cut 

parametrized by k + 1 k + l and this is how you show this theorem that multi cut which is a 

extreme generalization of multi way cut is FPT parameterised by number of request pairs as well 

as the solutions. So, what are the natural question to study them?  
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So, the natural question to study this is just one line proof for whatever we have been talking 

about. So, the one line solution is that whatever parameterised by just k, well multi cut is FPT 

parametrized by the size k solution, but unfortunately that requires much more tools and 

techniques than just important cuts and hence, we will not be covering this in this course. But I 

must insist or I must mention that it also uses the idea of important cut very crucially. But it also 

uses much more advanced tools than just important cuts.  
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However, we will take a slight turn, and what we are going to do is we are going to generalize 

the notion of important cuts directed graph. So, it is a very natural that a natural direction. So, 

because we are talking about directed graphs, we have all kinds of edges that will leave some set 



or edges which will, must be getting inside this size. Given on this you know that you have a 

notion of, out neighbours in neighbours. 

 

And so, you can define delta out neighbours of set R delta in neighbour of set R but we will 

develop our theory without neighbours only. So, what is the delta R is a set of edges leaving R 

and as for undirected graph, we can show that every inclusion minimal directed X, Y cut S and 

by directed X, Y cut S you mean meaning you want to delete path from X a vertex X in X to a 

vertex of a vertex in Y. But you are not caring about deleting a path from a vertex in white to a 

vertex in X.  

 

Then, you can actually; if you are if you want to cut then you can come up with a notion of S can 

be represented as Rs which are leaving a set R. So, for example, the set R is valid out, and then 

you naturally and of course, X is contained inside R and R intersection Y is empty set. Of course, 

there is a natural notion of extension of important cut. What is an important X, Y cut? An 

important X, Y cut will be a cut which is not dominated by other X, Y cut.  

 

What is the meaning of this? I should not be able to find another delta R prime, R prime with a 

property that the number of out arcs from R prime is less than or equal to R and R prime properly 

contains the set R this we should be fine. So, you ask yourself is this R that you have drawn is an 

important cut.  
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Well, no, because you can come up with an R prime that that properly contains a set R and has at 

most as many edges leaving R prime as it was R, as in R we had 1 2 3 4 red edges but in R prime 

we have three blue edges. So, R is not an important cut but what about R prime? R Prime 

important cut. The moment you try to extend R prime by taking any other vertex number of 

edges leaving that set will be more than three and hence that is not an important. 

(Refer Slide Time: 14:36) 

 

So, the proof for the undirected case also goes through for directed case and you can show that 

there are at most 4 to the power k important directed X, Y cuts of size at most k. And how do 

you go about doing this? Exactly like an undirected R if you show that delta hat is a submodular 



function, min cut is again equal to max follow for directed graphs. You define R max executes 

respect to min cut lambda like extension. 

 

Then you show that R max is contained inside every important cut in directed graph. So, it is a 

very, very good exercise that you go back look at each of the undirected lemma we proved and 

extend it to the notion of directed important cuts or directed min cuts the way we have defined.  
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The moment you have this R max the different the algorithm becomes very same; you start with 

R max look at the edges which are leaving it say u, v. So, either the u, v is part of the important 

cuts you are thinking then you delete u, v you decrease k by k - 1 and recursively find all the 

important cuts of size at most k - in G – u, v or you know that u, v is not then you extend X by 

including v in and you look for all important cuts of X union v and y.  

 

But because R max is there if you look at any set which contains R max the min cut from there to 

why is larger than lambda.  
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So, in this case though k remains the same lambda increases by 1. And so, if you look at the 

same major mu 2 k - lambda 2 k - lambda will drop in both case. And hence, you can show that 

the number of important directed cuts are upper bounded by 4 to the power. So, as again, it is a 

very important exercise to go back to every lemma of undirected graph apply with this new 

notion of directed cuts and check that it works. 
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So, suppose I wanted to solve not undirected multi way cut, but directed multi way cut. So, what 

is the director multi way cut? So, in the directed multi way cut, you are again given a directed 

graph G, a set T and k and you want to delete k vertices So, that between any pair of vertices in T 



there are no directed path. But notice that when it was an undirected graph T, if you have to what 

said u and v in T. 

 

Then deleting a path from u to v is same as v 2, but in directed graph it is not same, you have to 

kill paths from u to v as well as kill paths from v to u. So, so now I am going to show to you that 

so the main crux why the undirected multi way cut algorithm works is that look, any cut must 

disconnect t from T - t by a some minimal cut, but we can replace that minimal it is cut from t to 

T - t by an important t T - t cut. 

 

But we will show in a minute that such an object is not possible to show for directed multi way 

cut and hence, we cannot apply just an important cut algorithm and hope that it will work out 

perfectly fine. So, look at look at this instance of that multi way cut, s 2 t, we have to disconnect 

from s 2 t So, there is a unique solution with k = 1 edges a that is deleting the edge a, v. 
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But what happens look, so, this solution is given by the Rs s, a. But it is not an important cut 

because important cut boundary of s, a is this R, but the boundary of s, a and boundary of s, a, b 

has the same one S curve.  
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So, definitely s, a, b is like s, a is not an important cut because s, a, b dominates. But you know, 

but like if you delete these blue edges is not part of any solution of size at most one. Because 

there is a unique solution of size at most k, but then you may ask why is it failing?  
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So, if you just try to look at the undirected graph lemma and try to mimic the proof you will be 

able to see why this proof does not work. So, how did the proof work? So, he said look, look at t 

look at T - t look at all the vertices which are reachable from t the let us call that R these are 

reachable vertices. If delta if R is not an important cut, then there is another important cut R 

prime. So, let us extended.  

 



And what you did the way you created a solution is that from S you deleted you deleted delta R 

and added delta R prime. Now and then you argued that this alternative solution but we have to 

be very careful, it is indeed true that there is no direct path from T to any other vertices T - t but 

nobody stops from having a path from some u using like I can, I could use like I could have a 

path from u to t.  

 

How because I mean I could have a path from u to some other vertex inside R prime or R. And 

since R is a edge because any such path must contain red edges, but the moment it will contain a 

red edge you can jump into R and from there because this vertex is reachable from it you can 

find a path from here to here and you can reach but create a u, t R. And like I mean this is not 

right, but what I am saying that it could possibly happen that I can jump from you to this.  

 

And you do this I can come inside are because of the backward arc and from there I might be 

able to reach it. It is possible I may not be able to reach but I might also be able to reach and that 

will violate that s prime that you have constructed like this is a solution.  
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It is indeed possible to show the director multi way is FPT parametrized by size k of the solution. 

But it requires again additional set of techniques which is very similar to the techniques we need 

for undirected multi cut, but again it is beyond the scope of this course. So, we will not talk about 

it.  
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What about directed multi cut? So, what is the directed multi cut again? It is like an undirected 

multiple cut, you are given a directed graph D, you are given a request p or s 1, t 1, s l, t l interior 

k and you need to delete a set of edges that G - s has no s i, t i path for any. If you notice, this 

also generalizes directed multi way cut, as a gate; because for a set p you write all possible pairs 

like on ordered pairs as a request pair. 

 

And that that is an instance of predicted multi cut and then you are done. But marks and Rajgon 

showed the directed multi cut is in fact W 1 hard parameterised by k. What is the meaning of 

this? It is just mean that we do not expect to have an algorithm which running type f of k only in 

and that is all that. So, whenever you see W 1 hard, W 2 hard, W 3 hard. It just means that you 

should not expect the problem to be fixed parameter tractable. 

 

Parametrized by the parameter in which the; problem is shown to me some w hard. We talked 

about this little bit in our first lecture and we will cover this in detail in the last week of our 

course.  
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So, directed multi cut is W 1 hard parametrized by k, of course, we cannot expect the problem is 

FPT just parameterised by l, because even for l = 2 the directed multi cut problem is that one is 

NP complete and so on. But what about the case l = 2? What about directed multi cuts when the 

number of requests pair is constant or we can use number of request pairs to be a parameter what 

happens? So, l = 2 actually can be reduced to directed multi cuts.  

 

So, you have like you want to kill all the parts from s 1 to t 1 and s 2 to t 2. What you do? You 

add two additional vertex x and you add an edge from x to s 1. So, basically and t 1 to t y, so, 

basically this is trying to capture all the paths from x to y and you add t, t to x and h and y to s 2 

and this is trying to capture path from y to x. 
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And you can show that directed multi cut is equivalent to directed multi-way cut with terminal 

set T x, y. So, it is a very simple reduction or they say please try to do it yourself. But, so, what 

does this means? That for what then the natural question that will arise.  
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Are whatever directed multi cut with l = 3? Whatever directed multi cut is directed multi cut FPT 

parameterised by k and l? 

(Refer Slide Time: 23:58) 



 

And some of the recent progress, not recent progress per say, but like in roughly in 2016 Philip 

juke and Wahlstrom showed the following, the directed multi cut is W 1 hard even when you 

have l = 4 terminals. So, what does it imply? It immediately implies that you cannot have an 

algorithm parameterize by f k, l because that will imply FPT for l = 4 case. However, when l = 3 

it is still unknown whether the problem is FPT or W 1 hard. 

 

So, this problem still remains open. So, what is the parametrize complexity status of directed 

multi cut? When the number of request pair is upper bounded by 3. And of course, if it is like all 

the six like this is like one of some of those cases are definitely N p, t because of the directed 

multiway cut. 
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So, that led to the study of directed multi cut on DAG. So, what is DAGs? So, that is a basically 

directed graph with no directed cycles. So, for example, like this is not a DAG. This is a DAG, 

although it is an undirected size directed size, but there is no directed cycle in sense of directed. 

So, it is known that directed multi cut is actually W 1 hard parameterised by k even on directed 

cyclic graph. 

 

Directed multi cut is NP hard for l = 2 on directed acyclic graph and directed multi cut is FPT 

parameterised by k and l on that. So, it was shown that though the directed multi cut may not be 

a is W 1 hard on general digraphs parameterised by k and l. In fact, even for l = 4 terminals, it is 

W 1 hard. But it is FPT parameterised by k and l if we take directed cyclic graph a graph that 

does not contain a directed cycle. So, extending this algorithm to other classes of diagrams is an 

interesting open problem. 
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But here is a very interesting special case of directed multi cut which is called skew multi cut, 

which has been extremely useful algorithmic tool in directed graph. So, what is skew multi cut? 

So, in skew multi cut, you are given a graph G you have pairs s 1 t 1 s l t l as before and t r k. But 

you are looking for a directed edges says that G - s contains no s i t j path for any item. What 

does it mean of this?  

 

So, basically what I mean to say is that look, if you have s 1, s 1 should not have a path from s 1 

to t 4, t 3, t 2, t 1. Similarly, s 3 should not have path from t 3, t 2, t 1. But s 3 could have a path 

from t 4. So, like so, basically what it means that, if I look at s i, then s i should not have a 

directed path to any t i whose index is lesser or equal to the s i. But it does not care about killing 

paths to higher index. That is important point.  

 

So, s 4 must, like we are looking to delete set S of edges so, that there is no path from s 4 to t 4, t 

2, t 3, t 1, but if s 3 to t 2, t 3, t 1 but s 3 path maybe they are disconnected, or maybe there is 

one, we do not care. So, this is what skew multi cut is. So, I would request you that you pause 

this video for a couple of minutes and adsorb the definition of skew multi cut properly.  
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So, recall what was the main reason undirected multi cut was FPT because we were able to show 

to you, that you fix any terminal and fix other set of terminals. Then there exists a solution that 

contains one of the important s t T - t cut. Now, I cannot show this for any s i and the set of 

requests it needs to get. But I am going to show to you that at least the following statement is 

true the skew multi cut problem has a solution s that contains an important s l t 1 t l. 

 

What is s l? s l is the highest indexed, highest index vertex s. So, s l needs to kill all the paths to 

all the T is. That is important, I am saying to you that look, this must contain an important s l t 1 

to t l. Suppose we prove this lemma, then also we will be able to design the skew multi cut how 

because rather than picking any arbitrary terminal, we will pick a terminal which is highest and 

which still needs to be disconnected from everybody else.  

 

So, you rather than starting from anything, you will first take s l try to disconnect from 

everybody else, then when you are the job of s l is done, you pick up another then you ask for s l 

- 1, hey, are you disconnected from whomever you wanted to? If yes, then you move on to 

someone else. But so, you pick up the highest s i which is still connected to one of the T i s that it 

knows that it needs to be disconnected and you try to disconnect those. That is the point. So, let 

us try to prove this lemma.  
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And the moment if we are able to show this, we will be able to get an algorithm with running 

time 4 to the power k poly n and for skew multi cut. Let us see how we go about. 
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It is exactly similar to the undirected pushing lemma. So, let R the vertices reachable from T and 

G - s for a solution s what happens? Either R is an important cut or R is not an important cut R is 

important cut then you are good if R is not an important cut in what can we say.  
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If R is not an important cut, then there exists some R prime which strictly contains R disjoint 

from t 1 to t l.  
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And delta of R prime is at most. So, now you create another s prime you remove delta R and you 

add delta R prime. Clearly you remove some set of edges and you added some set of edges but 

the number of edges that you added is smaller than what you replaced removed which imply that 

s prime at cardinality by is perfectly fine. Now, why is this not a solution? Suppose this is not a 

solution, what is the meaning of that not a solution.  

 



So, definitely S l gets disconnected from t 1 to t l even in G - s prime. But what could happen 

that now, you might get a path from s i to t i for some s i t i, why? But look when I deleted red 

edges, it was still like when I deleted s minus, when we deleted s it was a solution when there 

was no s i t i path, the whatever part you need to cut. But certainly, you have got a path it means 

it must be using a red edges.  

 

If it must be using a red edge, it must be using one of the red edges it means that path from s i t 

to t i must be coming inside this R prime or in fact in R but what is the property of that vertex in 

R, s l it this vertex is reachable from s l it means the directed path from s l to this vertex. Then I 

can get a path starting from you go to s l to v, now on this s i t i path you follow the path from v 

to t i. So, what you have been able to achieve? 
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You will get a s i t j path implies an s l t j path. But you know that in G - S prime there is no s l t j 

path. And this is where we use the fact that s l is the largest because s l needs to disconnect itself 

from each of the t i. So, existence of any s i t j is a path implies s l t l path which also my S prime 

needs which also S prime takes care and hence S prime is a solution. So, this is how you can 

show that.  
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So, this immediately implies the following algorithm for this let you fix an s l the skew multi cut 

has a solution that contains an important s t 1 to t l cut. And if so, rather than having if every 

vertex like if every request pair is taken care of then we are done. As you choose the largest amyl 

that needs to be separated from t 1 to t i branch on a choice of s 1 to t 1 t i important cut of size at 

most k delete that records and this. So, this will give you a photocopy (()) (33:24) algorithm for 

such that and that is it.  
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So, that implies a 4 to the power k algorithm for skew multi cut. So, this gives us a 4 to the 

power k algorithm for a skew multi cut. Why do we care about this?  
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We care about this because it allowed us or it helped us rejoint the parameterized complexity of 

one of the most important open problems in the area about directed feedback for edge set. So, 

what is the directed feedback vertex or edge set? So, this is a counterpart of let us say, this is a 

counterpart of undirected feedback vertex. So, what is this? So, directed graph G integer k and 

you have an objective of deleting k vertices or edges.  

 

So, that G - S is acyclic. It is known that the problem is what is that called it is known that the 

problem is FPT like not FPT but it is known that the edge version and vertex version (()) (34:23).  
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And what I mean by this. So, let us say directed feedback vertex set reduces in a parameter (()) 

(34:29) way to directed feedback S set and directed feedback S set reduce it in parameter (()) 

(34:35) in directed. The reductions are fairly simple. So, let me tell you the first one is basically 

based on the following fact that you look at any vertex V. So, you make V in V out and make 

every vertex which is in neighbours say A to V to V in and every out neighbour you make from 

V out.  

 

Now you can show that if you have a k vertex if and only if there are k (()) (35:07) x and the x 

which you will form in your solution are these are. You should be, and for the second one what 

is known as line graph. So, I believe that and I will ask check asked you to check. So, in directed 

graph these two problems are equivalent which is not the same an undirected graph. In 

undirected graph if you want to delete edges it is nothing.  

 

But just finding a maximum forex or basically, you find a forex you have to delete everything 

else. So, while edge versus poly time vertex versus NP complete in undirected or so, but for 

directed graphs, these two problems are basically same, but you can come up with the splitting 

operations.  

(Refer Slide Time: 35:47)  

 

So, this the first problem where we will apply more than one tool to solve the problem and we 

are going to solve the problem by applying it FPT compression. So, what is going to be at FPT 



compression? We are going to assume that you are given some k + 1 edges so, that our G - S is 

such that G - S is acyclic it is easier than the original problem as extra input W gives a useful 

structural information about G.  

 

So, we are going to show that the compression problem is FPT parameterize by k. So, let us 

reread the problem, you are given a set W of k + 1 edges G - W acyclic a set of edges a G - S. 

So, the moment we will be able to solve this problem we will be able to solve directed feedback. 

Now, you may say from where are you getting this k + 1 edges so, if you recall correctly for the 

for the compression algorithm, we were having these vertices we want to v n.  

 

And we took the first i vertices look at the graph induced on that so on and so forth. But now we 

will build this graph one arc by each and the moment we will add one arc will say hey. So, then 

you can if the smaller set of a smaller graph is a solution of size at most k, then that is correct 

you added the k + 1 arc and that will be freed up. But we will do this formula, but for now just 

assume that you are given a W, how can you solve this problem.  
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In fact, we are going to not assume, we are going to assume that what we are given is k + 1 

vertices, the G - W is a set. And we want to find out k edges G – S is acyclic and this is a useful 

trick for to have an edge deletion. You define a compression problem in a way that the solution 



of k + 1 vertices given and that is very easy, all you need to do is look at these k + 1 vertices. So, 

just pick one vertex each from this k + 1 edges.  

 

And then if you delete it, these edges are taken care of. And hence that forms a solution for many 

problems. It is not always true, but for many problems this trick will help you to reduce that you 

are not given edged but you are given a set W and you try to bring your compression problem 

with respect to edge. So, the way to look at it compression is that the extra set W is like a help or 

it provides an extra structure to our problem can be explained that a structure to design our 

algorithm.  
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So, before we go further, let me tell you what was a DAG? A DAG is a digraph that does not 

have any directed cycle and what an equivalent definition? That these a DAG if and only if there 

exists a topological ordering of D.  
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And what is the topological ordering? It is basically a permutation of vertices such that every R 

goes from a small index vertex to the higher index vertex. And so, these arcs are also called you 

must have seen these are arcs are also called forward arcs. But if I give you a normal digraph, I 

may not have I then it cannot have an ordering so, that every arc is forward. Then some of the arc 

may be going from higher to lower and these are called backward arcs.  
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So, if you are looking for G and we want to delete at most k arc and G - S is that.  
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Then basically what we are asking is that, can we find a permutation pi such that number 

backward arc is upper bounded by k. So, this automatically gives us a very simple algorithm 

which is like n factorial you look through all permutation and check if there is one permutation 

with utmost k backward arcs. Now we are it is an n factorial algorithm but what we are going to 

do is that we are going to explore this to design not n factorial but FPT kind of algorithm.  

 

But we will take this view of feedback arc set that give me a permutation of my vertices such 

that the number of backward arcs bounded by. 
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So, now, so, this is what you are given W 1 to W k + 1. So, we will talk about this splitting later, 

but we first I said look. If there is a solution of size at most k then so then what I mean by this.  
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So, we guess the permutation in G - S then I know that it is a permutation. I cannot guess all the 

vertices but I can guess how the vertices of w are ordered on then, so this is like a k + 1 factorial. 

Now, once I have achieved this, I guessed may be some vertices are here, I do not know what is 

vertices here only thing which I am guessing is w 1 comes before w 2, w 3, w k + 1, look if the 

vertices w are named w 1 to w k + 1 it may not be that this is the right permutation.  
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But I mean, you can assume that suppose the permutation is w 5, w 7, w 9, then let us call it the 

written w 5 as the first vertex w 7 is the second vertex so on and so far. Once you have done this 

you do the following trigger.  
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Off splitting the way when we give me our reduction some time back.  
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So, what do you this? Suppose W i have in arcs from A and B then you make, t i and s i given 

arc from t i to s i make A adjacent to t i, make B adjacent to s i. What and why are we doing this? 

We are trying to move towards giving or reduction to our skew multi cut you will see. 
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So, what is our claim? Our claim is G - S is our acyclic, and had an ordering with w 1, w that 

implies s covers every s i, t j path for every. So, if G - S is acyclic and this particular thing then s 

must intersect. So, let us see and suppose I deleted S G - S into ordering and this is this. Then 

why does S covers every t i t j is a path let us see.  
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Look at G - S is a cycling and so a cyclic and so look at G- S again a cyclic, so it has an ordering 

of vertices, of all the vertices. Not only this and W 1 is here W 2 is here W like which is like this 

come. Now I am claiming to you there is no path from s i to t j for every i greater than equal to j, 

what is the meaning that I have a path from that? So, think of this where this WI, I can write it, I 

can replace this WI with t 1, s 1.  



And you will notice that this that property is still holds t 2 is 2 so on and so forth. So, you replace 

W T by their t 2, s 2 and make every hour coming to t 2. Now, what is the meaning? So, and look 

still this is it. So, what is the meaning that I have a path from some s i to t j, where j is less than 

equal to 1 let us try to ask ourself. It means I start from here and say t j is somewhere here, I can 

only go forward I do not have backwards arcs.  

 

So, definitely s has killed all the s i, t j path that is it very simple, because there are no backward 

arc. So, this is very simple and now suppose you are given this instance of s i, t i and s covers 

every s i t j a path for every i get in the continuum then i claim to you G - S is a psi and that is 

also very, very easy why this is very easy?  
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Because, if j minus s is not acyclic then fix some W then, but remember w is a directed feedback 

vertex n. So, if it is not a cyclic there is a cycle and that contains a vertex W i, if it contains a 

vertex W i then you replace W i with some s i, t i here, and then you go along and wherever you 

see so what I mean to say is that, what do you mean by this? So, look at this. So, maybe here the 

cycle and suppose, this is W i W j.  

 

So, you replace W i with like suppose this is how it is then you know, you replace W i with t i, s 

i. Similarly, W j by t j, s j and you get a circular this. But it also a path from s i to t i and this is 

what you had assumed, this is what you have assumed that there is no power from s i to t j for 



every which implies G - S acyclic. So, that is it, so we have shown an equivalent so what is our 

algorithm our algorithm is going to be very, very simple. 
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Guess the ordering, split the vertices, and then call skew multicut property instance. So, we can 

solve the compression problem by k + 1 factorial application of skew multicut. So, you guess the 

permutation is split this, I say now this is my skew multicut, and then you are done.  
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But as I told you so we have given an f of K poly n algorithm for the following compression. 

First of k + 1 vertices G - w, how did you get such. So, now we will get it for free. I try to 

compression we have seen it several times, but let us just do it once more.  
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So, now we will let we want to be the editor G and the GI beta sub graph induced by first. So, 

what I am going to do for every i equal to 1 to n we find. Is a G minus SIS, I click and then do as 

follows. For I equal to 1 we have the previous solution SI equal to 5 suppose, we have a solution 

SI for GI and they WI contain the head of each other inside. Then clearly w 1 union. V i plus 1 is 

a set of at most k plus 1 vertices, which removal makes G. i + 1 is cycle.  

 

Use the compression algorithm for d i + 1 with the set. W i union V i plus 1. If there is no, such k 

for G + I size at most keyword done otherwise the compression of them returns a solution s i + 1 

or size, k but g i + 1 and you repeat the algorithms n times and everything else is polynomial. So, 

directed feedback is set is FPT using hidrotic operation. So, you saw these started with a multi-

way cut algorithm we try to generalize it we could not generalize it to either undirected multi cut 

or directed multi-way cut or to direct advantage.  

 

And what we were able to find a find or another something called skew multi cut and we were 

able to generalize that to a generalize our algorithm to that. And once we were able to do that we 

were able to show that one of the most important open problem; in the parameterized complexity 

can be FPT using this algorithm.  
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So, what we have seen in this week is definition of important cuts. Will bounce and the number 

of important cuts pushing arguments for that we can assume the solution. And decode and then 

we use iterative compression to reduce directed feedback vertex set or head set to screw multi 

cut. So, there is another technique called randomization of importance operators, which is there 

in the book, but we will not be covering. So, I request you to or maybe next version of this 

course if ever we do. So, I think with that we will end this week lectures.  

 

 

 


