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Last lecture we saw how to compute tree decomposition. Today we will how to compute tree 

decomposition approximately. In today's lecture we will see some further applications of 

treewidth. But before we do that let us try recall the argument for computing tree decomposition 

approximately because we did it slightly in the fast in the lecture.  
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So, what did we do? So, our algorithm had the following property, what the property of our 

algorithm? So, our algorithm took as input a graph G a number k and what does it output? It 

outputs two things either treewidth of G is more than k or T X t a tree decomposition of width 4k 

+ 4 or in other words outputs such that any bag has size 4k + 5. So, this is what our algorithm 

did. Either it outputs G, or so how did our algorithm?  
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So, if you recall we had this nice construct nice existential algorithm which basically because for 

the recursive nature of the algorithm. Actually, what our algorithm will do take our algorithm 

will take a graph G a set W of size 3k + 4 and output or tree decomposition X t such that W is 

contained inside X r the root value. So, this is how we designed our algorithm.  
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So, let us just try to so this is what we will try to do. So, what are the steps of our algorithm? So, 

the algorithm, it is a recursive algorithm, and it works as follows it just check so, first of all you 

know that if the graph has graph has treewidth k, then the number of edges in this graph is upper 

bounded by n times k. So, you could have a basic test basic test if number of edges in the graph 

is more than n k return treewidth of G is more than k.  

 

So, they are like some of the basic tests that we could perform at any point of time or just before 

even algorithm starts. And now what this algorithm does so algorithm will take a particular a 

graph G it takes a set W and it will construct the required so first thing we check. What is the 

number of vertices in my graph? If the number of vertices in my graph is upper bounded by if the 

number of vertices in this graph is upper bounded by 4k + 5. 
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Then the output or tree decomposition of one node. What is that? So, this is it and the X r 

because r is basically vertex set of G and it automatically satisfies all the property. Otherwise 

now we are in the case when vertex set of G is more than strictly more than 4k + 5 and we are 

given a set W.  
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So, if you recall correctly what how did our algorithm proceed at this point of time we said. Let 

us fix a function f from V G to 0, 1 and what is the property of this function is that f of v is = 1 if 

v belongs to capital w = 0 otherwise. And we know that if, what we know? If treewidth of G is at 

most k then there exist a set f of size k + 1 such that what happens is that?  
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Here is set S and look at any connected component C 1 to C m C i intersection W is upper 

bounded by w by 2. So, if a graph G did have a treewidth at most k, then there is a property that 

you can find a set f of size at most k + 1. Such that if I delete this then every connected 

component of G - S contains at most half the vertices of W. Now we did not know how to prove 

this algorithmically, but we observed something interesting. So, what was that? This is the place 

where say let us try to reduce. 
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Reduce the problem to S t separator. So, rather than whatever we are looking? We say look it is 

difficult to find S maybe but can we find say let us call it S star such that. 
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If you look at components now so you want to see a property? That C i intersection W say at 

most two-thirds of W. So, I am saying that look I cannot guarantee that I can find such a S 

efficiently of course we could have found like in n to the power big of k time we can find you try 

all possible case i subset k + 1 size subset and you have found it. But we do not want to do this. 

So, what we said so what could be.  
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So, basically the idea is that look here is your S and here is your; so let us. So, S here these are 

the vertices of W now our idea is that is it possible that look the w is small so we can guess 

which vertices, W has size 3k + 4. So, what we could do? So, guess W intersection is not a 

problem we can guess because this only 3k + 4. Now if we could partition W into W - S let us 



call this Y W-S into A and B such that mod A is at most say two third of W mod B is at most 

two third of W. 
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And then find a separator of minimum size such that this and this then find a then find a 

separator of minimum size. Then find a separator of minimum size then, it will guarantee that 

every component say minimum size say v that every component of G - Z union Y has either A 

vertices or B vertices. 
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And what is the property? So, that implies that that C like any component here C intersection W 

is upper bounded by either A or C intersection W is upper bounded by B which is two third of W 

and it is at most two third of W.  
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But the question arises. That is fine but why does a minimum separator of size k + 1 - Y exist not 

clear. This is true that a minimum separator will have the property that if I find an A and B 

grouping of W - S into A and B such that A is at most two third of W B is at most two third of W 

and then we find a minimum separator say Z. Them of course if I delete Z union Y then I know 

that no connected component will contain both vertices from A and B. 

 

Because we have find a separator, we have been able to separate this and this is very easy to 

make such a S t separator problem because this is like your A this is like your B this is like A, B 

you just make S make adjacent to is and then like then you can make a S t separate. But more 

importantly why does the minimum separator of size k + 1 - Y exist. So, to do that what we 

actually can show is look at this S and look at this one.  

 

Like we; will be able to group some of these patches into A and some of these patches into B. 

So, now if I can group some of these patches into A and some of these intersection into of B 

some of these intersection into B, then what we know? Then definitely the S which was the 

which was a half W by 2 separator it is also a separator of the kind which will separate A from B 



and that immediately implies that they just separate the mean separator has to have a size k + 1 – 

Y.  
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And last time we saw that look at these patches what we recalled it. So, we call these patches as 

let us call it x r x y is overly used so let us call these patches this is also overly use notation let us 

call it i. Let us call it D i is C i intersection W and if you recall correctly, we call this and 

suppose we had the size D 1 dot dot D m C i intersection. And suppose D i has side n 1 and D m 

has side n m and then we were able to show that.  

 

Then we can find a partition into A and B such that mod A is at most two third of W and B is at 

most two third of W. So, we knew how to do this we saw it. So, this is exactly what we do so 

look I cannot so which implies that that we have such a good S if we have a such a good S then 

actually there exists a S star with the property that each of this component has at most two thirds 

and in fact this can be done by partition of W S into A and B of size at most two third of W and 

finding a main separator.  
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So, the algorithm is very simple so whatever algorithm does at any point of time, it takes W 

partitions into three parts A, Y and B and how many such partitions are there 3 to the power 3k + 

4 and in G-Y, what it does? In G - Y finds a min separator between A and B and what did we call 

that we call that Z. 
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Now if cardinality of Z is greater than k + 1 - Y invalid partition and if all partitions fail what we 

know about it if all partitions fail what do we know. Like we know that if the treewidth has at 

most k then there exists a good partition. So, if all partition fails, we can immediately conclude 

that treewidth of G is more than k. Else, some partition succeeded and even if one partition 

succeeded you can make a progress. 
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So, how will we do this then you will look at Y union Z and this is your potential this is your S 

star and you look at your components C 1 C 2 C m and whatever guaranteed that Z intersection 

this C i is at most two third of W. 
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So, what you do? You recursively solve problem on G i which is graph induced on C i union S 

star and you assign W i. So, what is W i? W i is W intersection C i union is star. Now what is the 

size of w i? Well of course the size of W i is plus S star. 
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This is at most two third of W size of S star is at most k + 1. Well so what is this? Two third of 

W which is like 3k + 4 + k + 1 which is 3k plus so what is this going to be? This is going to be 8 

by 3 + 1 now 8 by 3 + 1, I claim is strictly less than 4 and this is easy to take. Because it is 8 by 3 

is less than 9 so this is strictly less than 4 which implies this is strictly less than 3k + 4 now. So, 

this definitely implies that W i satisfy this inductive like induct recursive like recursive definition 

of the algorithm that the cardinality of W i has to be at most 4k + 4. 

 

One thing which I missed out when trying to explain to you is that, this W at any stage if W size 

is less than 3k + 4 the arbitrary add vertices from outside to make it size 3k + 4 exactly. Now 

what are this implies? Two thing that look there it is some vertex of W some vertex this also 

implies that. Some vertex of W some vertex of W does not appear in G i which implies the 

cardinality of V G i is strictly less than V G.  

 

And hence we can we make some sort of progress. So, you recursively solve the problem on this 

smaller instance.  
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And you recall correctly once we got this small tree decomposition for all these components, we 

designed a tree decomposition of the whole graph by adding a root and making it adjacent to root 

of each of these guys and the what did we assign to X of r. So, we assigned X of r is nothing but 

W union star and this is where this is why the tree decomposition of this algorithm is upper 

bounded by cardinality W cardinality S star upper bounded by this which is 3k + 4 + k + 1 which 

is 3k + 4k + 5.  
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4k + 5 and hence we have been able to output decomposition of width at most 4k + 4 and then of 

course you could ask what about running time. So, well the running time of this algorithm is 

essentially if you notice is like T of n is like upper bounded by summation some T of n i like 



where that release plus some 3 to the power I would say 3k + 4 times some k to the power big of 

1 times n and this is like you have to be a bit careful. 

 

Because these are like, what is this a property? So, the property is that if you sum n i - k then it is 

equal to n - k + 1 actually n because in each of this component there is a k + 1 size which is 

common. So, this so you have to take max over all possible partition of this and by a simple 

induction you can show that this is actually an algorithm with running time 3 to the power 3k 

times n square. So, this will come to you 27 k big o of 27 k times n square. 

 

So, but I will leave this this is via induction. So, I hope this algorithm is little bit more clear to 

you now that we have readed it. So, basically this is an algorithm which we look at this we 

looked at this existential algorithm or the existential proof that gave us this upper bounded by 

tree k but notice that when we went to the constructive, we lost another factor by k + 1 because 

existential we could guarantee that the W gets split very balanced at most half.  

 

But algorithmically we could only get two third and there is no magic about two third, if you 

could only guarantee say even just slightly less than one. So, maybe say 4 over 5 then the factor 

of approximation will change but you still be able to get some C power k approximation 

algorithm. So, it will make progress even if the W is at most a constant fraction of what we 

started with in each of these things.  

 

But then you have to make whatever the initial bag that you started with big enough. So, that this 

math holds. So, I hope all this is good.  
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And so now what I want to tell is some applications. So, now we will move to applications. 
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So, some applications we have already see, dynamic programming algorithms over graphs of 

bounded treewidth, so we saw that we saw an algorithm for max weight independent set 3 

colouring, then we also saw an algorithm for dominating set. We saw an algorithm for 

Hamiltonian cycle and we showed that all these problems are FPT parameterized by treewidth. 

So, treewidth is an interesting object.  
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But one natural question arises. Like the art of doing Dp looked very similar. So, a natural 

question was, can this process be automated? Can could be proved some general meta theorem?  
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And what I mean by could prove some general meta theorem? So, in these things what happens 

is that you say look generally these meta theorems are like so if this part of the like this next 10 

minutes of lecture even if you do not follow completely, it is perfectly fine. So, we say could we 

find a fragment of logic fragment. Such that we can say if a problem is expressible in this logic, 

then our Dp algorithm can be automated.  

 



Or rather if a problem is expressible in this logic, then I would like to say then the problem is 

FPT parameterized by what by size of the expression plus the treewidth of the graph. 
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And this was proved by Coureselle’s and this is also called CMSO 2 like or extended monadic 

secondary logic. So, this is a logical language and graph and which has following properties. So, 

it has some logical connective like and or implication not equal not equal. There are quantifiers 

over like for all that exists over vertex and edge variables. There is a predicate to check whether 

2 u and v are adjacent they predicate to check whether some vertex is incident to some edge or 

not. 

 

And there is also a quantifier for all the exist over vertex or x set variables I think this is just 

repeated. So, this is and we can also check something is an element or subset of some vertex at 

subsets. So, for example look at the formula that if you C subset of V for all v in C there exists u 

1, u 2 in C such that u 1 is not equal to u 2. Adjacent of u 1, v and adjacent of v 2 is true what is 

the meaning of like what does this formula if a graph satisfies this formula what does this mean. 
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It will mean that if a graph G V, E is true only if graph has a cycle. Why? Because what are we 

saying C there exists C subset like who will satisfy this formula. So, only those graphs will 

satisfy this formula if it has a cycle. So, what are we seeing look C is a subset of V for all v in 

cycle for all there is just two other vertices in C which are not equal to 2 not equal and u and v 

are v adjacent to u 1.  

 

And so basically, I looked at V I say look for every vertex I can find two other vertices to which 

it is neighbour 2. So, that will only happen if a graph G has a cycle so for example this. 


