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Welcome to week 4 of parameterized algorithms. In this week we are going to be talking 

about how we can leverage the power of randomness to design some really cool and elegant 

FPT algorithms for some of our favorite NP complete problems, some of which you have 

seen multiple times in this course already and some of which are going to be new and we will 

be meeting them for the first time at least in this course. 

 

So, if you have never worked with randomized algorithms before then I would recommend 

checking out some of the links in the description of this video just to generally get a sense of 

how they work. Of course we will be starting with a quick overview with what it means for 

an algorithm to be randomized and how we are going to analyze them, but it is not going to 

be the big picture, it is going to be just about what we need to be able to follow the methods 

that we will be describing this week. 

 

So, for just watching these videos this introduction should really be enough, but if you do 

want a slightly more comprehensive introduction to how randomized algorithms work and 

how they are typically analyzed then please do explore a little bit further by looking up the 

links in the description of this video. So, with that said let us get started here. So, first of all 

what do we mean by a randomized algorithm. 

(Refer Slide Time: 01:36) 



 

So, we are not going to be talking about what it means for some event to be truly random or 

how do people generate randomness in the real world and so on. These are fascinating 

discussions on their own right but unfortunately they are well beyond the scope of this 

lecture. So, once again if you are interested I would urge you to actually explore these topics 

more fully. For now what we are going to assume is that our algorithm has free access to a 

random bit generator which is just truly random it gives you fair coin tosses at will. 

 

And let us say our algorithm happens to toss our such coins during its execution, it is 

designed to work with r of these coin tosses. Notice that once a coin is flipped or one of these 

random bits is drawn however you prefer to visualize this. The algorithm can choose to do 

different things based on the outcome. So, it might say that if the coin turns out to be heads 

then I am going to do this. 

 

But if it turns out to be tails then I am going to do this other thing. Given that the algorithm 

tosses r of these coins how many possible executions can the algorithm experience on a fixed 

input, in how many ways can the algorithm manifest based on all the possible outcomes that 

these coin tosses can have? This is not a trick question but if the answer is not clear then 

please feel free to pause here and just think about this for a moment. 

 

For instance if the algorithm was allowed just one random bit at some point during its 

execution and let us say that it used that random bit to decide 1 of 2 ways of proceeding 

further. Then clearly you can imagine that because of the presence of this one random bit 

there are 2 possible executions that this algorithm could experience on any fixed input. With r 



random bits just generalizing this further you can probably conclude that the number of 

possible executions is going to be 2 to the r. 

 

So, you can think of this as a space of all possible outcomes, you can think of this as the 

sample space of an experiment, the experiment being your algorithm and all the probability in 

statements that we make in the context of our randomized algorithms, all of them are with 

respect to this probability space. This is what we are going to be talking about. 
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So, typically we will say things like r algorithm does something with probability P and the 

something that the algorithm does is usually with reference to some task that we either 

wanted to accomplish or some situation that we wanted to avoid and if it is a task that we 

would like for it to accomplish then we think of this as a success probability that we want a 

lower bound. We usually want to say that it manages to do what we wanted it to do with 

probability at least P for some P. 

 

On the other hand if it is an error probability in the context of something that we are worried 

about then we want to come up with an upper bound, we want to say that the probability of 

this bad event is at most something. But the point of this discussion here is just to emphasize 

that all of these events are being spoken of in the context of the sample space that we 

described earlier which is all possible runs of the algorithm given the set of random bits that 

it is going to be flipping through its course. 

 



So, that is the context in which all of these probabilistic statements are being made. Now let 

us turn to a specific sort of a scenario. 
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Suppose I give you a randomized algorithm which has the following behaviour. So, if it gets 

a NO instance of the problem that it is trying to solve as input then it is guaranteed to output 

NO, it never makes a mistake on a NO instance. On the other hand if it gets his input a YES 

instance of the problem that it is trying to solve then it may or may not be able to get it right. 

But it does get it right with probability at least P. 

 

So, if it is dealing with a YES instance then it says YES with probability at least P and if the 

input is a No instance then it is guaranteed to say NO. So, you can think of that as an event 

that happens with probability 1. So, suppose you run this algorithm on some instance of 

whatever problem it is trying to solve and suppose the output is YES should you be 

suspicious about this output or can you be sure that it is right. 

 

On the other hand suppose the output is NO again can you be sure that this output is right or 

should you be worried. So, in one of the cases the answer is that if the output is x then you do 

not have to worry you can conclude that the algorithm's done its job correctly. For the other 

output though you do have to be a little bit concerned about whether something was a mess. 

So, again pause here to think about what the correct answer should be and we will discuss 

this in just a moment. 

 



So, it turns out that the output that you should be worried about is when the algorithm says 

NO. This can feel a bit counter-intuitive because we just said that the algorithm is good for 

NO instances it does the right thing on NO instances. But that is exactly why you can be sure 

that when the algorithm says YES it is not making a mistake, because if it said YES and it 

was making a mistake that means that the output is YES although the input was in NO 

instance. 

 

But that is not possible because the algorithm never makes a mistake when it is dealing with a 

NO instance. So, whenever it says YES you can be absolutely sure that it is done the right 

thing. However, if it says NO you are not sure about whether this was because it was truly 

dealing with a NO instance or because it was dealing with a YES instance but it made a 

mistake with probability say at most 1 – P. 
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So, such algorithms are called Monte Carlo algorithms with one-sided error and false 

negatives. So, the way to remember the phrase false negatives is that the NO answers could 

be wrong, that is how you think of it. Even though it can be again a bit confusing because it is 

an algorithm that performs well on NO instances that is the property but that also means that 

it is the NO output that you have to be suspicious about. 

 

And that is where the phrase false negatives come from. So, it helps you remember that 

whenever the algorithm says NO you have to scratch your head and think about whether what 

you had was truly a NO instance or not. You can be sure that it is probably okay with 



probability P but you still cannot be completely sure. Unlike when the algorithm says YES 

things are fine. 

 

That is partly why we also use the phrase one-sided error because you have a problem with 

only one of the 2 possible outputs. Now there are of course algorithms that have one-sided 

errors going the other way with false positives and there are algorithms where you might 

even have 2-sided error where you might make mistakes on both outputs but hopefully with 

bounded error probabilities both ways. 

 

But for the most part the algorithms that we are going to be discussing this week are going to 

be of this style where you can be confident about the YES outputs when you say YES you 

have found the thing that you are looking for sure, but whenever you say NO there may have 

been a missed opportunity and that is what requires further analysis. That is going to be the 

typical style of all the algorithms that we are going to see. 

 

Now suppose you do have a randomized algorithm maybe something that you came up with 

for your favourite problem which is of this kind it is a one-sided error Monte Carlo algorithm 

with false negatives with a success probability of at least P but let us say that it is a success 

probability that you are not very impressed with and it does not give you a lot of confidence. 

So, you are thinking about whether you can improve the success probability. 

 

And that is a very natural question to ask yourself, it is just like with traditional algorithm 

design, we keep thinking about can we do better, can we improve the running time etcetera. 

With randomized algorithms a very natural goal is to see if you can improve the chances of 

success. Now there are 2 ways that you can approach this question. One is to go back to the 

drawing board and try to improve the design of your algorithm. 

 

So, that you have a better success probability, but it turns out that there is a more general way 

of boosting the success probability of any randomized algorithm that has a non-trivial success 

probability to begin with. So, in some sense you can start off with the algorithm that you have 

but you can bootstrap it just by simple repetition. So, let us think about this a bit, why does 

repetition help? 

 



Remember you are dealing with these algorithms that have one-sided error with false 

negatives which again means that whenever the output is YES you can be completely 

confident about it but if the output is NO then that is when things may be a bit shady. So, let 

us say you run the algorithm once if the output is YES of course it is your lucky day and the 

story ends here you do not have to do anything. 

 

But if the output is NO then you are a little bit worried, so you say okay, let us run the 

algorithm one more time just to be sure. So, you run the algorithm again and suppose this 

time on the same input the output becomes YES then you say okay, so the last run was an 

error but at least we fixed it this time and then again you can go home. But suppose the 

output is again NO then you are still not very convinced so you run the algorithm again and it 

is the same story. 

 

If the answer is YES then you stop but if the answer is still NO then you may want to run the 

algorithm again and suppose you keep doing this and you run the algorithm say a 1000 times 

and it says NO every single time. At some point you start having an increasing confidence in 

the output of the algorithm, you start believing that maybe the reason this output is no is 

because it really was a NO instance to begin with because we have tried so many times. So, 

let us just try and formalize what is going on with this idea here. 
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So, remember we have a base algorithm which has a non-trivial success probability and that 

is at least P and let us say we repeat this algorithm t times and our overall algorithm is that we 

return NO only if each of these t runs of our base algorithm reported NO. But at any point if 



we saw a YES outcome then of course we report YES and we do that with full confidence. 

Now what is the probability that if you do end up saying NO at the very end you still made a 

mistake? 

 

So, let us think about when that can happen? That can happen if the algorithm made a 

mistake in each one of these t trials. So, if the algorithm made a mistake overall that means 

that it must have been that we had a YES instance to begin with but every time that we ran 

the algorithm we just fell into bad luck and we said NO each and every time. So, what is the 

probability that this happens? 

 

If you need to take a moment here just to figure this out for yourself but hopefully you will 

arrive at the same conclusion that I am going to show you here which is that the error 

probability is going to be at most 1 - P to the t because each individual run fails with 

probability at most 1 – P, remember that the success probability was at least P. So, the failure 

probability is at most 1 – P. And for the whole algorithm to fail this failure must happen in 

every single run. So, it is an end of t bad events, so the overall probability is at most 1 - P to 

the t. 

(Refer Slide Time: 14:31) 

 

Now let us just simplify this a little bit further. So, because of this inequality 1 + x at most e 

to the x we can say that 1 - P to the t is at most e to the - P t. So, just writing it out as a 

fraction hopefully it is visible that essentially if you do 1 over P repetitions of your 

experiment then you have a constant bound on the error probability. By a constant bound I 



just mean that there is no dependence on the input size it is a universal constant in this case 

something to do with 1 over e. 

 

Now if you want to boost your success probability even further you could run your algorithm 

say 100 times 1 over P if you like and in practice I guess there is a little bit of ah 

experimentation involved in trying to figure out exactly how many times you want to run the 

algorithm before you can be reasonably confident. But I can assure you that if you actually 

run the numbers then with a fairly reasonable number of repetitions you can get error 

probabilities that are so small that they are practically negligible and you do not have to 

worry about them. 
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Now what all this means in the FPT context is that we will typically be trying to design 

algorithms which have a FPT formatted success probability. So, we will usually end up 

designing polynomial time algorithms which have one-sided error with false negatives where 

the success probability is at least 1 over f of k poly n for some f of k. What this will ensure is 

that there is an algorithm which runs in FPT time which is because we are going to be 

boosting the base algorithm by running it f of k times poly n many times. 

 

That is the repetition strategy that we just discussed and if we run it so many times then we 

get an algorithm that has a overall constant error probability and that is just going to be our 

gold standard in the context of this discussion. So, if we get there then we are going to take 

that as pretty much a job well done and these are the kind of algorithms that we will be 

designing throughout this week. 



 

So, we will not come back to the same argument multiple times, so what we will basically do 

is talk about a problem and come up with the base algorithm which runs in polynomial 

diamond which has this kind of success probability and because of this discussion that we 

have just had that that also implies automatically an algorithm with a FPT running time that 

has a constant error probability bound. 

 

So, with all this background in place we are finally ready to design our very first randomized 

FPT algorithm. The problem that we are going to design this algorithm for is a problem that 

you are by now very familiar with and no points for guessing, it is vertex cover. 
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If you have noticed that this lecture was supposed to be about feedback vertex set, you might 

be a little bit worried by vertex cover showing up here, but do not worry. We really are going 

to be talking about feedback vertex set in just a minute, but it is a FPT tradition to start with 

vertex cover whenever possible and it turns out that vertex cover really does have a really 

nice randomized FPT algorithm and it makes for a perfect warm-up exercise. 

 

So, I will not actually be describing the algorithm in complete detail but I will give you a 

couple of hints, so that you can get started and I would really recommend pausing here and 

trying to work out the details for yourself before progressing to FVS. So, for vertex cover a 

useful thing to remember is that whenever you have an edge say between vertices u and v any 

vertex cover must pick one of these 2 endpoints. 

 



So, here is a natural randomized strategy. So, if your graph G is empty to begin with then 

there is no work to be done. But if it has at least one edge then just pick your favorite edge it 

does not matter which one; you know that at least one of these endpoints are going to be 

useful to you. But you do not know which one, but in a randomized algorithm whenever you 

are unsure you can toss a coin. 

 

So, you have an edge on your hands and you do not know which end point to pick, so let us 

toss a coin and let us say that if the coin toss turned out heads then we pick u which is to say 

that we recursively get into the instance G - u k - 1 and let us say that we had tails instead 

then we look at G – v, k - 1. So, this might remind you of the branching algorithm that we 

discussed in the second week. 

 

These recursively generated instances do look rather familiar. But remember that unlike the 

branching algorithm we are not exploring both of these possibilities simultaneously we are 

getting into just one of them based on a coin toss and the point is that you could imagine that 

these random bits that you are drawing are basically dragging you through the search tree that 

we had developed back then. 

 

They are taking you down a very particular path and if you were lucky then it would be the 

right path and how lucky can you hope to get? Well at every step you make a right choice 

with probability at least half. So, if all of these right choices sustain across levels then you 

have made it and you have made it with probability at least 1 over 2 to the k because this 

recursion only goes down k levels deep. 

 

Let me just briefly hint at how you might formalize this line of reasoning. So, suppose you 

were working with a YES instance that means that there is some vertex cover of size at most 

k in this graph G that you are working with, so let us fix some specific vertex cover of size at 

most k and let us call that S star. Now we know by virtue of being a vertex cover S star must 

contain at least one of u or v, it possibly contains both but it contains at least one. 

 

And we also know that with probability one half we get into the correct recursive call. So, in 

this case the right call to get into would be this one. Notice that S star - u is a witness for the 

fact that G – you, k - 1 is a YES instance. So, let us say that the recursive call invokes a run 



of the algorithm which works out with a success probability of at least 1 over 2 to the k - 1. 

This is our inductive hypothesis. 

 

So, G - u k - 1 will say YES with probability at least 1 over 2 to the k - 1. It might be because 

it is discovered a vertex covered different from S star - u possibly but that is not relevant 

here. The point is that it gives you the correct output with probability at least half to the k – 1 

and combined with the probability of getting into this invocation in the first place which is 

one half, you get an overall success probability of half to the k. 

 

Now remember that when you are convincing yourself about why everything works out make 

sure to fill in the little details like what the base cases are, what the possible terminations are, 

try to observe what happens when you start off with the NO instance and things like that. 

Once you have played around with this a bit and you are comfortable with what is happening 

then make sure to continue, join us back to talk about feedback vertex set. 
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So, let us begin by pulling up the definition for a feedback vertex set. By now this should be a 

pretty familiar problem, we saw it for the first time when we were talking about branching 

algorithms and if you remember back then what we did was apply some reduction rules after 

which we said we can comfortably branch on the top so many high degree vertices and that 

was the main idea there that led to a running time of the form k to the k. 

 

Then we saw it when we discussed iterative compression and there we improved this running 

time to 5 to the k and today we are going to improve the running time further to 4 to the k of 



course with the caveat that we are working in the randomized setting. I would not worry 

about this too much in practice because as we just discussed we can get the error probabilities 

down to a point where they are negligible in practice. 

 

But of course theoretically you would want to make a distinction between the best running 

time that you can achieve with randomization and the best running time that you have among 

deterministic algorithms. So, that it is always an apples to apples comparison. So, now that all 

that advertising is done and hopefully we have built up some anticipation for the algorithm. 

Let us actually talk about the algorithm now. 

 

So, remember that a feedback vertex set is trying to destroy all the cycles in the graph. So, 

you might want to take a moment to think about what would be a natural randomized strategy 

for coming up with an optimal FVS if it exists. Remember that we are designing these 

randomized algorithms with one-sided error. So, we are mostly concerned about the YES 

instances; we want to make sure that if the graph did have a feedback vertex set of size at 

most k that we get to it with a reasonable probability. 

 

So, we are going to be picking vertices at random and we are going to hope that these vertices 

end up being inside some arbitrary but fixed FVS of size at most k. So, to realize this hope it 

is often useful to visualize what a typical YES instance looks like. So, let S be some arbitrary 

but fixed FVS of size at most k and we know that the rest of the graph is of course a forest. 

 

And we want to hit the lottery by somehow being able to get to the vertices in S with 

whatever randomized experiment we come up with. So, that is clearly the goal, but how do 

we actually come up with such an experiment? Well let us think back to vertex cover where 

we actually managed to do this right. So, what helped us in vertex cover was the structure of 

G – S. So, what was happening in G - S was that there were no edges at all. 

 

So, every edge in the graph was either completely inside S or was going across S and G – S. 

So, if we pick any edge in the graph then with at least probability half we would actually get 

to a vertex in S. More generally you could say that if a good fraction of all of your edges are 

going across between S and G - S then if you do the same thing which is that you pick an 

edge at random and then you pick one of its end points at random then there is a good chance 

or some chance that you will end up inside S. 



 

Now this some chance will be quantified by the fraction of edges that go across relative to the 

total number of edges. So, hopefully this is clear if you need a moment to pause and absorb 

this please do because this is the main intuition that will drive our algorithm. But if you are 

observant about the structure of FVS you might already start pointing out that this strategy 

may not work very well. 

 

Because for example what if your graph was just one long cycle then there is a FVS that just 

picks 1 vertex, it has 2 edges going out of it and clearly this is not a decent proportion of the 

total number of edges in the graph, it is certainly not a constant fraction and it is a fraction 

that depends on n which means that we are not going to get the anticipated FPT running time 

for such instances. 

 

So, remember that we did have some reduction rules that were quite useful when we did the 

branching algorithm, in fact we also used reduction rules for iterative compression and it 

turns out here also it is these reduction rules that will come to our rescue. So, notice that even 

in this example of one straight long cycle, one of the issues is that you have a lot of these 

degree 2 vertices. 

 

But remember that we do know how to pre-process degree 2 vertices. Of course you might 

say okay look this is just one example and you took care of it like this, but in general why 

should I expect that a lot of edges will be crossing S and G - S for a generic reduced instance. 

So, that is exactly the thing that we will try to formalize but first let me tell you the algorithm. 

So, you know what is it that we are going to need for this algorithm to work. 
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So, as I said we are going to begin by doing some preprocessing. For now this is just because 

we can so why not it does not hurt you get it for free. But we will see that this preprocessing 

is crucial and really useful for getting to the probability bounds that we desire later on. So, 

just to be specific these are the same reduction rules that we had when we were discussing the 

branching algorithm for FVS 

 

So, let us just quickly review the 5 reduction rules that we introduced back then. In the first 

one we said that if there is a self loop at a vertex V then we will essentially remove V and 

reduce the budget by 1. In the second reduction rule we said that if you have more than 2 

edges between a pair of vertices then we reduce the multiplicity to exactly 2. The third 

reduction rule said that if you have a vertex whose degree is at most 1 then you delete this 

vertex and the budget remains unchanged. 

 

So, this applies to vertices of degree 1 and also to vertices that are isolated. So, you remove 

this vertex but leave the budget as it is. In the fourth reduction rule we discussed bypassing or 

short-circuiting vertices whose degree was exactly 2 and once again in this case what we did 

was we added an edge between the neighbours of this vertex and we also left the budget 

unchanged. 

 

And finally in the last reduction rule we said that if we run out of budget completely then we 

can simply say no. Another way of writing this would be to say that if k hits 0 and G is not 

already a forest then you can say no. These 2 ways of articulating this final reduction rules 

are pretty much equivalent. So, I leave it here these are the 5 reduction rules if you need some 



time to recap them and remind yourself why all of this works as you expect then please feel 

free to take a pause here. 

 

Now what these reduction rules do ensure as we have discussed before a few times is that 

when they have been applied exhaustively and you have not already resolved the instance 

then we know that we have a non-trivial graph where the minimum degree is at most 3. So, in 

the next step what we are going to do is to say that if these reduction rules fail and they 

declare that you have a NO instance then of course r algorithm can also stop and take 

advantage of this information. 

 

And also if these reduction rules stop and you get to a point where after these reduction rules 

have done their job the graph becomes empty then you say yes. So, for instance this would 

happen if your graph was just a cycle to begin with the example we were discussing earlier 

because what is going to happen is that you will keep applying the short circuiting rule to a 

point where you get to a cycle which is of length 2. 

 

At that point it is going to collapse and become a cycle of length 1, at that point if you had a 

budget of at least 1 then at that point you are just going to include that vertex and your graph 

becomes empty and in this situation r algorithm will also happily conclude that we were 

dealing with a YES instance and it is going to stop at this point. But on the other hand if you 

are starting budget was 0 then of course the last reduction rule will come into action. 

 

And it will inform you that on an input graph that is a cycle you cannot have a FVS with 0 

vertices. So, one way or the other this sort of a graph will be completely handled by the 

reduction rules themselves. Now for r algorithm what we are going to do is just keep track of 

the vertices that were forced by the reduction rule and let us say that we have not said YES or 

NO at the end of step 1. 

 

That means that we are left with a graph that is non-trivial in the sense that it has at least one 

edge and it has a non-trivial budget and at this point we can move on to the next phase of the 

algorithm where we actually perform the random experiment. So, hopefully with all this pre-

processing in place we get to a situation where we can have a decent congestion of edges that 

go across any hypothetical solution. 

 



And the forest that is left behind if this was a YES instance. So, the random experiment itself 

is very simple all that we do is we pick an edge uniformly at random and we pick one of its 

endpoints uniformly at random and this is the end point that we want to include in our 

solution. So, we are going to recursively invoke this randomized algorithm on G - V with a 

reduced budget of k - 1. 

 

So, this is our hope that this vertex rather that we have picked with this random experiment is 

actually sitting in some arbitrary but fixed solution if G, k was a YES instance. So, notice that 

there are really exactly 2 places where we do something at random. The first is when we pick 

the edge and the other is when we pick one of its end points. And let us now try to formalize 

the intuition that we have been discussing all along. 
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So, here is the statement that we would like to prove. If a graph has minimum degree at least 

3 then any feedback vertex set of this graph must actually have a lot of edges from the graph 

incident on it and in particular the way we quantify this is to claim that strictly more than half 

the edges of the graph must have at least one of their endpoints in the FVSX. So, with this 

specific statement let us go back to the algorithm and analyze the probability of the good 

event. 

 

Remember that the good event for us is that when we pick an edge at random and pick one of 

its end points at random what is the probability with which we choose a vertex in some fixed 

FVS. Remember that are working assumption is that we are dealing with a YES instance, so 

we can fix FVS of size at most k at the back of our minds and work with that. Based on the 



previous statement which was that any such FVS must in some sense absorb at least half of 

the edges that are there in the graph in fact strictly more than half what can you say about the 

probability with which we get lucky in the random experiment that we perform. 

 

Notice that the answer to this question here really drives the entire analysis about the 

probability with which your overall algorithm succeeds which in turn determines the running 

time of your randomized FPT algorithm. So, in particular suppose you are able to conclude 

that things work out with probability at least 1 over C then notice that you can actually 

establish a probability of 1 over C to the k for the success of the overall algorithm. 

 

And the reason you can do this is very similar to the inductive approach that we had when we 

were working with vertex cover. So, based on the induction hypothesis you can conclude that 

this recursive call will do the right thing with probability at least 1 over C to the k minus 1. 

And the entire algorithm works out if the recursive call works out and if your top level 

decision was the right one and the combined probability for that is going to be at least 1 over 

C to the k because it is just the product of these 2 terms here. 

 

Now there are some details that do need to be worked out and specifically the detail that I am 

skipping here is the one about how the pre-processing step interleaves with the randomized 

step. But the intuition here is that the pre-processing step basically cannot hurt because you 

have a fixed FVS in the back of your mind with respect to which you are working out these 

probabilities. 

 

And notice that these vertices x 0 actually belong to this FVSX for sure because by design 

our reduction rules only force those vertices which belong to any FVS. So, for these vertices 

in fact we can be quite sure that we are never making a mistake anyway. So, in some sense 

the idea is that the vertices that are chosen by the reduction rules they never hurt and for the 

vertices that you are choosing with the help of the random experiment you get the right thing 

with a decent enough probability that you can say something meaningful about the success of 

the algorithm overall. 

 

So, do make sure that you work through the details of how these pieces fall together to give 

you the whole argument but for now let us try to concentrate on what this constant C should 

be. So, that we know that we have an algorithm whose running time is C to the k based on the 



boosting arguments that we had set up earlier. So, once again keeping in mind that you 

promised that more than half the edges of the graph G have at least one of their endpoints in x 

what can you say about this constant C. This is a perfect time to pause and think about this 

and come back when you are ready let me just clean up the slide in the meantime. 
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So, if you are ready for it the answer turns out to be one-fourth and the reason for this is that 

each of the 2 experiments that we are performing individually work out with probability at 

least one half. The first step where we are picking an edge at random in fact works out with 

probability strictly more than one half based on the lemma that we stated before. Of course 

we are yet to prove the lemma but if you believe the statement then this step gives you an a 

good edge with probability more than half. 

 

Now having landed on a good edge which is an edge with at least one of its endpoints in x we 

pick the correct endpoint the one that sits in x with probability at least half. Of course if you 

are really lucky it may be an edge which has both of its endpoints in x in which case this step 

will actually work out with probability 1, but even if you are unlucky in the worst case you 

will still get to a vertex which sits in x with probability at least half. 

 

So, the overall probability is certainly at least one fourth and this is what gives you the 4 to 

the k algorithm modulo the correctness of the key lemma. So, of course hopefully we are now 

fully motivated to actually prove this key lemma here and that will truly complete the 

description of this algorithm. So, let us get started on this. 
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To begin with let us depict the FVSX and the forest G - X with this picture and the first thing 

we are going to do is classify the vertices of the forest into 3 categories. So, these are the 

vertices that have degree at most 1 degree exactly 2 and degree at least 3. Now of course you 

might complain a bit because you might say it was not this a graph which has minimum 

degree at least 3. So, what do you mean by vertices that have degree at most 1 or degree 2? 

 

Well I am going to be talking about the degree in G – X. Notice that G - x is a forest, so when 

I talk about the degree here it is the degree that these vertices have only inside G - X and in 

fact that brings me to my next point because G overall has minimum degree at least 3 we 

know that these vertices must have their deficit degree many neighbours in x because that is 

the only other place that they can find these neighbours. 

 

This is what we need to ensure that it is true that G has minimum degree at least 3. So, all the 

leaf vertices and isolated vertices of the forest G - X must have at least 2 and at least 3 more 

neighbours respectively in the FVSX and every vertex that has degree exactly 2 in G - X 

must have at least 1 neighbour in x. If this is just based on the assumption that G has 

minimum degree at least 3. 

 

So, notice that this picture is already looking pretty promising because we are able to 

generate some edges that are going across and the number of these edges is actually of some 

subset of vertices in G – x. That is all that we have for now, but let me also say that we will 

actually be proving this lower bound on just the number of cross edges, we will not even 



worry about edges with both of their endpoints in x will say that even just the number of 

cross edges happen to be more than the number of edges that sit inside the forest. 

 

And in fact instead of working with the number of edges in the forest let us work with the 

number of vertices in the forest because that is just going to be slightly more convenient and 

it is again good enough because in fact the number of vertices in a forest is anyway more than 

the number of edges. Remember that in a forest the number of edges is at most n – 1. So, if 

we show that the number of cross edges is more than the number of vertices in the forest then 

anyway we have that the number of cross edges is more than the number of edges in the 

forest. 

 

So, if you do not like thinking about things in terms of pictures we will anyway write this 

down again in terms of inequalities in just a couple of minutes. But I am saying all this here 

right now just so that you have some intuition for what is it that we are trying to do. So, just 

to recap what we will try to show is that the number of edges that go across is strictly more 

than the number of vertices in the forest. 

 

And notice that this will actually imply the claim that we want to prove. So, we already have 

that the edges that are incident on the degree 2 vertices are in 1 on 1 correspondence in 

particular every degree to vertex is any way sending one edge to x, so there we are pretty 

much done in terms of what we want to show. The vertices that have degree at most 1 are 

actually sending at least 2 edges. 

 

But the vertices that have degree at least 3 are sending no edges. So, this seems like we are in 

a very good situation with respect to vertices of degree at most 1, but we are in a bad situation 

with respect to vertices of degree at least 3. But remember that in a forest we also have a 

relationship between vertices that have degree at least 3 and vertices that have degree at most 

1. Intuitively vertices of degree at least 3 can be thought of as branching vertices. 

 

And the more branching vertices you have the more leaves you end up spawning because of 

them. So, formally you can prove this by induction but it turns out that the number of degree 

at most 1 vertices is strictly more than the number of degree at least 3 vertices in any forest. 

So, with that we know that because these vertices that are highlighted in green are anyway 

sending at least 2 edges. 



 

In some sense they take the responsibility of accounting for the vertices of degree at least 3 as 

well. So, hopefully this establishes the intuition for everything that we are trying to do and 

now let us just go over the same argument one more time. This is going to be a recap, but in 

notation and with inequalities written out. 
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So, remember what we are trying to show is that the number of edges that are incident on a 

feedback vertex at x is strictly more than m by 2 and keep at the back of your mind that we 

have a graph where the minimum degree is at least 3. So, this is the same as trying to show 

that the number of edges incident on x is strictly more than the number of edges which are 

not incident on x. That will say that these edges account for more than half of what is 

available. 

 

Now the first thing we said is that it is enough to just focus on the crossing edges. So, we will 

in fact show that even if you just had the crossing edges they alone account for more than half 

of the total number of edges and in particular we will show that the number of crossing edges 

is more than the number of edges in the forest and the next thing we said is that instead of 

worrying about the number of edges in the forest let us work with the number of vertices in 

the forest because again that is enough and that is just more convenient. 

 

So, finally the thing that we will show is that the number of edges that cross x and G - X 

which is to say they have 1 endpoint in x and 1 end point in G - x the number of such edges is 



strictly more than the number of edges which have both of their endpoints in G - X which is 

the forest. 
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So, let us just work through this now, remember we had this partition of the forest into 3 

classes which here I will denote by V 1, V 2, V 3 for convenience. So, V 1 is the leaves and 

the isolated vertices when we focus on the graph induced on G – x, V 2 is all the degree 2 

vertices of the forest and V 3 is all the vertices that have degree at least 3 again in the forest. 

So, the first thing is that we have the number of crossing edges being lower bounded by 2 

times V 1 + V 2 this is just based on the fact that G has minimum degree at least 3. 

 

So, these guys must have respectively at least 2 and at least 1 neighbour in x. The next thing 

is that you can just write out 2 times V 1 as V 1 + V 1 and the reason we are splitting it this 

way is so that we can substitute one of these V 1’s with V 3 and remember we said that the 

number of vertices that have degree at least 3 in the forest is strictly more than the number of 

vertices that have degree at most 1. 

 

So, with this written out this is going to be very clear now because V 1 + V 2 = V 3 I mean 

when you account for the sum of their sizes you get exactly the number of vertices in the 

forest G - X and that is exactly what we wanted to show. So, with this we have the proof of 

the key lemma and based on the key lemma we have a 4 to the k randomized algorithm for 

finding a FVS of size at most k. 

 



Again remember that the algorithm itself was really simple we just applied the 5 reduction 

rules that we already had when we were discussing the branching algorithm. So, you just get 

rid of vertices with loops on them; you reduce the multiplicity of high multiplicity edges 

down to 2, you short circuit the degree 2 vertices, you eliminate or delete vertices that have 

degree at most 1 and you say no whenever you run out of budget. 

 

So, these were the pre-processing rules that ensured that we either were able to completely 

resolve the instance or we ended up with a graph where the minimum degree was at least 3 

but this minimum degree at least 3 gave us enough structure to ensure that r random 

experiment which was simply pick an edge at random and pick one of its end points at 

random worked out and gave us a vertex from the FVS whenever it exists with probability at 

least one fourth. 

 

And this is what gives us the 4 to the k randomized algorithm. So, with this we come to the 

end of this lecture, thanks so much for watching. I hope you enjoyed this and as usual we will 

see you either on the mailing list or on the discord channel if you have any questions about 

this at all and in the meantime I will see you in the next module. 


