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Hello and welcome to lecture 59 of the course computational complexity. This also be the 

beginning of week 12 and in this week we will see an exciting and interesting topic called 

interactive proofs. So, or in other words this will help us understand the power of interaction. So, 

to begin let us consider the very the verifier model for NP. So, we had this verifier model 

whenever x was in the language there had to be a proof or a witness or a certificate we use 

different terminologies. 

 

Why such that a verifier machine the verifier is a deterministic polynomial time turing machine 

that could verify that x is in the language using the certificate. So, for instance when the 

language was 3 colourability the certificate could be the a proper 3 colouring. So, whenever the 

graph is 3 colourable there x is a proper 3 colouring that could be provided which can with which 

it can be verified that the graph is indeed 3 colourable. 

 



If the graph was not 3 colourable whatever colourings you may provide one the it cannot be 

verified that the graph is 3 colourable because the graph is not 3 colourable. So, here we have 

this notion of somebody providing a certificate or a proof that the graph was 3 colourable or a 

given string x is in the language. So, one question that we could ask is now somebody is 

providing us this information what if it is.  

 

So, now somebody is just giving us the certificate string. Now instead of giving it like that what 

if we had the capability to hold a conversation with that somebody who is providing us this 

information could we do something more. So, instead of just a deterministic polynomial time 

verifier that just verifies a given given x with a given proof y what if we could hold a 

conversation with the person who is providing the certificate. So, this is the main question that 

the area of interactive proofs ask. 
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What if we could have a conversation with the person who provides a proof. So, the person who 

provides a proof is called prover and the person who is actually sitting and verifying is called the 

verifier. So, let us let us try to see ah. So, let us we will slowly try to understand this and try to 

develop a model for this and then we will see various details and based on that various sub 

models of this of interactive proofs.  

 



So, the model that we have is. So, in the NP we did not ask how we got the proof how the prover 

got the proof for the certificate if the graph was 3 colourable somehow magically the prover 

could give you a certificate which is a proper 3 colouring. If the formula was satisfiable he will 

just give an assignment that could be verified. So, the prover is considered to be all powerful and 

if something needed to be computed does not matter how much time it takes how much space it 

takes. 

 

Whatever like he is not constrained by any resources he will just be able to execute the 

computation. The thing is the prover has this motive that or may have this motive that he wants 

you to convince to be convinced that x is in the language. So, you are you're trying to um. So, his 

goal is to by hook or crook to convince you that x is in the language. So, the problem there is that 

he may resort to undishonest methods to convince you that way. So, now the goal of the 

interactive proof systems is to develop ways where even we have to safeguard ourselves against 

dishonest provers. 

 

But an honest prover and for an ex in the language should always be able to convince you that x 

is in the language. But when x is not in the language there could be dishonest provers who will 

try to convince you the text is in the language but the proof system has to be robust that he 

should not be able to convince you that way. So and they could hold a conversation. So, now 

how could that work.  

 

So, and the prover is all powerful and the verifier will be bounded. So, we will say the verifier 

can only do polynomial time computations. So, the model that I have drawn here. So, the verify 

of ask a question q 1 the prover replies a 1. So, both of them know the input x both prover and 

verifier know the input x they know that the goal is to convince the verifier that x is in the 

language but the idea of the protocol or the system that we designed should be that an honest 

prover should be able to easily convince the verifier that x is in the language. 

 

But a dishonest prover when x is not in the language should not be able to convince the prover 

that x is in the language or if they try to do that it should be with limited success. So, both of 

them know x. So, maybe the verifier asks queries q 1 and to which prover responds a 1. So, 



prover just is responding something based on what he knows which is x and the query that was 

asked and then prover again asks another question.  

 

So, this question could be a function of x and the response that he received in the first query and 

then to that query maybe prover again responds with another a 2 which is another response and 

this may go on for a while. 
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And finally some something like what we had in communication complexity. If the entire 

transcript is visible to both of them of course if the verifier can verify that access in the language 

using the entire transcript he did not use the entire thing but the entire transcript is there available 

for him to take made use of to be made use of. So, if the entire transcript can be used to convince 

the verifier that x is in the language he will accept.  

 

So, some things again a bit more formally the verifier is polynomial time bounded he should 

compute everything in polynomial time. This also means that the prover cannot send huge 

messages or the messages the prover sends cannot be bigger than polynomially long 

polynomially meaning polynomial in the length of the input x because if he sends a long message 

that is super polynomial or exponential the prover does not have enough time to read the 

responses.  

 



So, the transcript also has to be polynomial not just a single message even the entire transcript 

has to be polynomially wrong. Then the prover is all powerful he and as I said he need not be 

honest the goal for him is to simply show that x is not in l regardless of whether x was in l or x is 

not in l he will try to show that x is in l or he may try to show that x is in f. The system has to be 

has to be able to safeguard against such dishonest provers and the number of rounds is the 

number of times they communicate.  

 

So, here q 1 is the first round a 1 the second round q 2 is the third round a 2 is the fourth round. 

So, like that I have seen in some places they count 2 ways communication is one round. So, q 1 a 

1 together form one round but we will stick to the terminology where one way communication is 

one round. So, what I have marked in this figure q 1 a 1 q 2 q 2 a 2 together make four rounds 

sure. 
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So, to begin with let us consider the case when the verifier is deterministic. So, remember the 

goal the goal is to generalize NP where we just got a certificate and then we are verifying it. So, 

there is no interaction the prover just gives you a certificate and vanishes and now it is up to the 

verifier to do whatever he wants to do with a certificate. But now we are able to have a 

conversation. So let us say that the prover is deterministic.  

 



So, it is called deterministic interactive proofs or DIP. So, we say that a language l has a 2k 

round 2k round deterministic interactive proof system if there is a deterministic verifier V. So, 

the verifier is just a polynomial time turing machine and in this case it is a deterministic turing 

machine that that just looks at the entire input. So, and basically it looks at x and all the 

responses that the prover gave a 1 a 2 etcetera I am not writing the q 1 q 2 because q 1 and q 2 

were a functions of x, x and a 1 q 1 is a function of x q 2 is a function of x a 1 etcetera.  

 

So, but then you could make the verifier recompute this function. So, the deterministic verifier 

just looks at all of this all of the responses and x and if x is in the language the prover should be 

able to come convince that x is in the language. So, that so, what we say is that there should be a 

prover that can convince the verifier to accept x. So, that there exists is a prover that can 

convince a verifier that x is in the language. 

 

If x is not in the language no prover should be able to convince the verifier to accept x. So, for all 

provers verifier should reject x. So, it is kind of like the definition of NP but just that in NP we 

just had one certificate and that is it. So, if x was in the language there should be a certificate that 

leads to an acceptance there is one certificate. If x is not in the language whatever certificate you 

give it should not be we should not be able to verify that x is in the language.  

 

So, it is kind of like that but instead of a static certificate we have the transcript of an interaction 

with the prover that is the only difference and somewhat it is not. So, difficult to see that this 

model where it is a deterministic interactive proof this model is no more powerful than NP why 

is that well um. So, if it is a deterministic verifier. So, the verifier keeps asking queries. So, if the 

prover. So, recall that the proverb is all powerful.  

 

So, prover if we model the verifier to be a deterministic verifier. So, this means even the 

questions that he asks in each of these rounds all of this are part of the verifier. So, when the 

verifier is modern all of these queries are also deterministically generated. Now if the prover 

knows this the way the verifier is constructed the algorithms that go into the verifier and these 

are usually no secrets what these are usually not a secret.  

 



So, in that case the proverb sees x and he instead of making the verifier ask the first query prover 

could himself ask the first query and output the answer or and figure out the answer that he 

would have answered anyway a 1. Then and because he can figure out the answer he can also ask 

the next question that the verifier would have asked because he knows the algorithm of the 

verifier and he can himself produce the next answer which is a 2. 

 

Then he can himself the prover can himself ask q 3. So, the prover can himself generate q 1 q 2 q 

1 a 1 q 2 a 2 everything. So, maybe just, so, prover on his own can generate q 1 a 1 q 2 a 2 q 3 

and so on and at the end he will just send this entire transcript to the verifier look you would 

have asked me this then I ask you this then I will answer this then you would ask me that. So, the 

verifier just has to verify that yes correct I would have asked q 1 first the verifier can verify that 

then now if you give me a 1 as an answer then I would ask you to that again the verifier can 

verify because he would have generated this queries using a deterministic procedure.  

 

So, he can verify that q a was q 1 followed by q 2 followed by q 3 and so on and finally he can 

also say that if you had given me all these responses a 1 to a k the verifier would have accepted. 

So, instead of having a conversation because verify the prover is all powerful the prover can 

himself provide the entire transcript for the verifier to just sit and verify in one shot. So, there is 

no need to have a conversation instead the prover just provides the entire transcript using his 

unbounded computational power and accepts if the entire.  
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So, this is what I said the verifier just checks if the first query is correct second query is correct 

and so on and finally if the transcript can be verified leading to x being in the language. So, if x 

is in the language there is an interaction which will lead to a certificate a transcript and if x is not 

in the language there is no interaction that will convince the verifier. So, there is no transcript. 

So, instead of having this conversation it could just be the proverb is giving this one short 

transcript.  

 

So, in one shot he could give it. So, which is the same as NP where you just give a certificate and 

the verifier verifies it. So, same thing here, so, the verifier, so, deterministic interactive proofs is 

just the same as NP. So, we built up. So, much at the beginning about what if we could have a 

conversation with the prover and so on and somewhat disappointingly it does not really help if 

the deter the verifier is a deterministic turing machine.  

 

So, let us see what else can we do if in this in the setup is it a useless thing. So, let us consider 

randomized verifiers. So, where the verifier has access to random coins and can generate can and 

execute random algorithms. So, all the queries that he generates could be a result of a random 

process the final verification could be result of a random process could be. So, all of this could 

use random coins. So, verifier has access to randomness.  

 



So, just to given a an informal example which is also there in the Arura Barak. So, let us say that 

let us say that there are some socks. So, let us say red and blue coloured socks. So, and let us say 

I am colour blind which means I cannot tell them apart I cannot I have a red sock and blue sock 

and I cannot tell which one is which let us say I have red sock in my hand and blue sock in my 

left hand and let us see the prover is there but the prover knows is not colour blind and he can tell 

the difference between the red and blue.  

 

So, proverb will say ok he will he will move away he will not look at me and what I can do to. 

So, but then he wants to convince me that these are 2 coloured socks because I am colour blind I 

cannot tell whether these 2 are different colours of the same colour but the prover says he can 

convince me that these are indeed 2 different colours. So, so I am colour blind I cannot really 

look at these socks and tell that they are the same. So, what we will do. So, this is an example of 

how randomness and interaction could together convince the colour blind person that these are 2 

indeed different colours.  

 

So, what we could do is I could just randomly decide to either keep the red at the and blue at the 

left or I could decide to swap them. So, I will randomly decide to do one of these and maybe I 

toss a coin if it is heads I will retain them tails I will swap them and then I will ask the verifier to 

approve her to come. So, prover knows the initial situation and then he sees then he can because 

he is not colour blind he will be able to tell oh yes you have swapped them or no you have not 

swapped them you have retained them.  

 

So, the first time we do this I will see that if there are 2 if they are indeed 2 different coloured 

socks he will be able to correctly say that I have swapped them or not but if I repeat it let us say 

10 times and if he gets it all the 10 times then I will probably be convinced how can he be able to 

say correctly each of these 10 times. Whereas if they were both the same coloured socks let us 

say they were both blue then he would not be able to tell them apart regardless of whether i 

swapped them or not.  

 

So, it is like a random thing so I will just swap them or not randomly. And he has to tell me if I 

have swapped but then there is no indicator for him to decide whether I have swapped them or 



not both of them are blue. So, the best he can do is just simply guess something but whatever he 

does he will be with probability half because I may have or may not have swapped. So, the 

prover is powerful because I have the limitation of being coloured blind but the prover does not 

have that limitation.  

 

So, that is the separation of powers that the prover and verifier have. So, this is an example of a 

protocol that the prover and verifier can together execute. So, the same thing we will exactly the 

same idea ok there is nothing more fancy but we will use it to address a problem called graph 

non-isomorphism. 
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In fact we have seen a similar or related problem called graph isomorphism in lecture 22 as a 

candidate problem which was NP intermediate I think we saw it in the context of Landers 

theorem. So, what are graph isomorphism’s? Is isomorphism is 2 graphs. So, the problem in 

sense contains 2 graphs which are isomorphic. Graph of us non-isomorphism is a complement 2 

graphs that are not isomorphic. 

 

What do we mean by isomorphic it is just the same graph drawn differently or relabeled or 

whatever or if you would like to think in terms of matrices. Let us say take the adjacency matrix 

which you permute them in some way the rows in some way and columns in the same way. So, 



you get a like it is like a relabeling of the vertices. So, just to give an example, so, here I have 2 

graphs by the side 1, 2, 3, 4 is a graph and a, b, c, d are the vertices of another graph. 

 

But if you look at them closely they are isomorphic. So, one may be mapped to c, 2 may be 

mapped to d. So, maybe I will just one may be mapped to maybe I will just write them by the 

side 1 to c, 2 to d, 3 to b, and 4 to a. So, you can see that here 3 and 4 are adjacent. So, b and a 

are adjacent c and b are adjacent. So, 1 and 3 are adjacent. So, you can you can verify that they 

are just the same graph relabeled and may be redrawn in a different way.  

 

So, the question is if I give 2 graphs are they not isomorphic. So, because it is an estimate it is 

not really. So, we will look at graph non-isomorphism. So, are the given 2 graphs not 

isomorphic. So, these 2 graphs are isomorphic. So, we can do exactly the same thing that I said 

in the case of socks. So, before that what is it trivial algorithm for graph isomorphism trivial 

deterministic algorithm.  

 

So, suppose they are both n vertex graphs. So, if one of them is n vertex and one of them is let us 

say n + 1 vertex graph then they are clearly not isomorphic because the number of vertices itself 

do not match. So, the issue arises only when they have the same number of vertices. So, suppose 

both of them have n vertices the one easy thing to do could be to try to generate all possible 

relabelling of one of the graphs and see if any of these relabel links match the other graph exactly 

but there are n vertices.  

 

So, there are n factorial potentially n factorial mini relabellings for one of them and that is a is a 

is a lot of re-labeling to test. So, that is why it is in deterministic polynomial time but graph 

isomorphism is in NP because if you give me to isomorphic graphs I can give you a certificate. 

So, I can tell you the which relabeling maps G 0 to G 1. So, graph isomorphism is an NP 

consequently graph non-isomorphism is in co-NP but here we are looking. So, graph 

isomorphism is an NP.  

 

So, clearly you can also do graph isomorphism in interactive proofs. So, a prover could just give 

the certificate but what is interesting is that graph non isomorphism we cannot seem to think of a 



certificate that tells you that these are different. But there is a there is a proof system interactive 

proof system where the prover will be able to convince the verifier that the graphs are not 

isomorphic. So, we do the exact same thing in as we did in the case of socks. 

 

The verifier picks a random 0 1 bit and he picks a permutation which is a relabeling of the 

vertices and if he got 0 if b is 0 then he will permute G 0 with the with the permutation that he 

got if he got b equal to 1 then he will promote G 1 and the resulting graph of the permutation. So, 

the permutation the resulting graph is H notice that H is a result of both choices the random bit 

and the permutation random permutation because he permutes G 0 or G 1 based on which 

whether b equal to 0 or one based and the permutation is done by on the basis of the random 

permutation and the resulting graph is called H.  

 

So, H may be just to be concrete H is equal to sigma of G b, H is sent to the prover and the 

proverb is all powerful. Now because he is all-powerful he is not computationally restricted he 

could look at H he could try out whatever he wants and if G 0 and G 1 are indeed different 

graphs he could try out various things with h and see which one it came from. But if G 0 and G 1 

are indeed isomorphic graphs H could have come from either of them. 

 

There is no way that the prover could tell where it came from because he does not know the 

random choice the b and the permutation. So, it could it could be a scrambled form of G 0 or 

scrambled form of G 1 because they are both the same thing if you relabel G 0 in some way you 

get G 1. So, you scramble G 0 in some way you scramble G 1 in some other way you could end 

up with the same graph. 

 

So, there is nothing that the prover can do if they are the same graph except randomly get guess 

that b equal to 0 or something or b equal to 1, one of them. So, and the verifier will accept. So, 

verifier is expecting the prover to tell where the graph came from did h come from G 0 or G 1 if 

the verifier if the prover can correctly say this 0 or 1 each time then the prover the verifier will 

accept. If not he will reject.  
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So clearly if the graphs are not isomorphic as I said then verifier can tell you because he can just 

like the colour blind case he could distinguish in the in the non-isomorphic case he can 

distinguish. But if they are the same if they are the same graph if they are isomorphic so the 

notice that the non isomorphic case is is a yes instance for the language graph non-isomorphism 

and the isomorphic case is a no instance.  

 

So, he cannot in the case of isomorphic case he cannot do better than half. So, if it is a yes 

instance he will make sure that the verifier accepts with probability one because he will always 

be able to correctly output the answer. If it is isomorphic he the best he can do is half. So, the 

best proverb whatever you try to do with the proverb the best one can do is half. So, there is a 

distinction here.  

 

So, the probability that of acceptance by the verifier given whatever the prover could do if it is a 

yes instance there is a prover that can make him accept with probability one if it's a no instance 

whatever the prover does whichever approval it is the best he can do is half. So, there is a gap 

between the essence and no instance and notice that here we use the fact that the choice of b the 

random bit and the choice in the permutation were both withheld to the prover they were not 

provided to the prover.  

 



So, the random choices made by the verifier were private they were not told to the prover. So, 

note this is very important aspect of this proof if either b or sigma was revealed to the prover 

then the prover could immediately tell where it came from. So, this is an example of an 

interactive proof 2 for graph non-isomorphism and clearly as I said the graph isomorphism is 

already has an interactive proof.  

 

So, this is an example of a language which is not known to be an NP, G n graph non-

isomorphism is in co-NP and we do not know if it is an NP yet but we have an interactive group. 

So, this already indicates that the class of languages that have interactive crew systems seems to 

be more powerful than NP because we do not have it we do not know whether graph non-

isomorphism is NP.  
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So, just to formalize the setup of interactive proof systems again we have verifier and prover the 

the prover. So, the verifier poses quest queries 1 q 1 q 2 q 3 and the verifier provides sorry prover 

provides responses a 1, a 2, a 3. So, q 1 is the verifiers sorry verifies first query using x and a 

random string the random input. So, the random input you could think of it as maybe a long 

random input and prove a verifier using different chunks of it each round some response comes 

back a 1, q 2 is depends on the input x the random string r the first query q 1 and the response 

first response a1 and so on. 

 



And at the end based on the entire transcript it is decided to accept or reject. So, we say that a 

language L is in IP k. So, what is IP k? IP k is the interactive proofs with of k rounds. If there is a 

probabilistic polynomial time machine V, so, we are not going to talk about deterministic 

verifiers from. Now once everything is going to be probabilistic or randomized verifiers V that 

has a K round interact interaction with approver P such that if x is in the language there is a 

prover that can convince the verifier to accept with probability at least 2 thirds. 

 

And if x is not in the language any prover that you that; you can think of can convince a verifier 

to accept with probability at most one third. So, the first part is called completeness and the 

second part is called soundness. So, completeness corresponds to when x is in the language 

soundness corresponds to when x is not in the language. So, there is a probabilistic polynomial 

time verifier we that that has a k round interaction with approver such that when x is in the 

language the prover makes the verifier accepts. 

 

There is a prover that can make the verifier accept with probability at least 2 thirds and when x is 

in the not in the language. So, when x is in the language there is a prover that can convince a 

verifier to accept the probability at least 2 thirds and when x is not in the language any prover the 

best they can do is to convince the verifier with the probability at most one thirds to accept the 

string x. 

 

And we will when we say IP without so I said L is equal to IP k for a k round interaction when 

we simply say IP without a cave associated with it this indicates IP of polynomial number of 

rounds. So, they can they can have potentially polynomial mini rounds of communication and 

what we have seen. So, far is that graph non isomorphism is in IP 2 because there was 2 rounds 

of communication the verifier conveying the random bit the not the random bit the permuted 

graph H and the prover conveying the purported random bit or the random bit that was that he 

thinks was used.  
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So, 2 rounds some comments so far some remarks. So, we will close this lecture with these 

remarks. So, first of all this was a generalization of NP which should not be that difficult to see 

because instead of verifier just or the provers is giving a certificate. Now there is an interaction 

going on. So, and it is we saw deterministic IP is equal to NP randomize has only has more 

power. So, there is something that the NP is contained in IP because a language in NP the prover 

could just give the certificate and make the verifier verify that is one proof system. 

 

Another thing BPP is also an IP because the verifier himself has the ability to use random coins. 

So, he could just disregard the prover and do everything himself and this will be a BPP machine. 

So, if the verifier just ignores the prover he is like operating as a BPP machine if the verifier just 

ignores randomness it is like deterministic interactive proof which is NP. So, both NP and BPP 

are sub classes of IP interactive proofs. 

 

And another way to say it is that interactive proof generalizes both of these and like in BPP we 

could improve the probability. So, that nothing is special about 2-thirds and one-thirds we could 

improve this probability to very close to one and very close to 0. So, one example is one one like 

one minus one divided by 2 power m and one divided by 2 power. So, it could make them 

exponentially close to 1 and 0 respectively by exactly the same argument as BPP boosting we 

can do multiple rounds of this.  

 



So, you do one round you do 2 rounds you do 3 rounds and take the majority whichever one it 

comes. Exactly the same arguments bound everything goes through one small point which I will 

state but which actually requires a very sophisticated proof is that whatever I just described is a 

CDL process and this can be made into a parallel process also. Now 2 points or one point rather.  

 

So, we said that the verifier when we moved from a deterministic verifier to a randomized 

verifier the power the capability is increased. So, deterministic verifier was NP but randomized 

verifier seems to be able to do more things what if we made the prover also randomized or what 

if the proverb was able to do probabilistic stuff well this does not really help because as it is the 

prover is considered all powerful.  

 

So, as we know BPP is contained in sigma 2 for instance. So, there is a which means there is a 

higher class of non-randomized machine that can do whatever BPP does. So, there is nothing 

much to be gained or in other words if there are multiple options available to him and if he if the 

proverb is executing a random protocol then because he is all powerful he can he can also see the 

best best possible out of the many things that he does, so, he can always choose the best option 

best random coin.  

 

So, there is no benefit gained by making the prover randomized another point is that the entire 

transcript is a polynomially many rounds and then each round has polynomially wrong transcript. 

So, entire transcript is a polynomial sized. And and the verifier can just verify that this is this 

corresponds to something a proper proof or not. So, suppose there was no proverb suppose the 

verifier had to do the work of the prover.  

 

So, in other words what is the how powerful can the proverb be beyond which it doesn't really 

help the answer is we can replace the prover by a P space bounded machine the space machine 

because. So, the prover can see what is the best way to convince the verifier by just going 

through all the possible transcripts? In other words another way to look at it is that if a language 

is accepted because of this interaction. 

 



We can just another way to decide the same language is to just try out all the possible transcripts 

and that all the possible transcripts is of polynomial size. So, I can try out all the possible 

polynomially long transcripts and check that this is a valid transcript and then accept or not 

accept x based on all of this and this process requires only polynomial space because the length 

the size of the transcript is polynomial.  

 

So, the entire process this entire if a language is has an interactive proof this language also has a 

can also be decided in P space. So, this is one another point now 2 further points that I would like 

to state one is perfect completeness which means. So, recall that completeness is the case when x 

is in the language. So, we said that the probability of acceptance of x should be at least 2-thirds 

can we and we already saw that 2-thirds can be pushed very close to one. 

 

Can we push it to exactly one and the answer turns out to be yes using some ideas similar to the 

proof that BPP was in sigma 2 and appropriately modifying the verifier we can make perfect 

completeness meaning the completeness part here this probability 2 thirds this can be pushed to 

one. So, perfect completeness. So, any interactive proof you can replace with an interactive proof 

of perfect completeness and the next thing is perfect soundness.  

 

So, soundness is the situation where x is not in language. So, can we push the probability of 

acceptance when x is not in the language from one thirds down to 0 we already saw that we 

could make it exponentially close to 0, 1 by 2 power something can we push it to 0 and this turns 

out to be this looks unlikely we do not know how to do that because if we have perfect 

soundness and perfect completeness this is like a deterministic interactive proof system which 

we already know is equal to NP.  

 

So, unless the entire class of IP is equal to NP perfect soundness will not be possible finally one 

more point we used private coins for the protocol where for graph non isomorphism meaning it 

was important that the random bit b and the permutation sigma were withheld from the brewery 

that protocol would not have worked if this had to be made public this had to be told to the 

brewer. So, can we have interactive proofs where the random coins are public.  

 



So, this one may think that this weakens the entire system because the key power in the graph 

nano isomorphism protocol came from the fact that some information was hidden from the 

approver the random coins the prover is all powerful but he does not know the random coins 

because he can do any computation but there is some input the random coin that he did not 

know. So, if when we move when we insist that the random coin should be made public we may 

think that the prover will lose some power or the proof system may rule may not be able to do 

some things.  

 

So, interestingly it can be shown that whenever there is a private coin protocol you can get a 

public coin protocol sometimes with a bit more rounds but whenever there is a private coin 

protocol you can also get a public growing protocol. So, protocols with public coin proof system 

are as powerful as those with private coin proof system. So, this is a slightly interesting 

somewhat surprising fact and some small notations. 

 

And before I conclude this lecture the private coin setup is called IP as we defined already and 

the public coin model is called am it is short for Arthur Merlin. So, I will explain when we talk 

about AM and there is a one small interesting fact is that when I say IP without any number of 

rounds specified the implicit the what I want to say is that it stands for ip in with polynomially 

many rounds but when one says M what they imply what they want to say is aim with 2 rounds 

through our send something verifies in something 2 rounds.  

 

So, this is a bit of an inconsistency with the notation that but then that seems to be the standard 

thing that people are following inconsistent notation but unfortunately this seems to be the 

standard. So, we will have to just get used to this and uh. So, in the coming few lectures we will 

see IP what how powerful IP is we already saw that IP can do some things that possibly are not 

there in NP we already saw that IP is contained in P space.  

 

So, it is not more powerful than P space but how far powerful it is we will actually see that IP is 

as powerful as P space or I will at least mention that and then we will see different aspects like 

how different aspects with about in public coin and private coin protocols how they relate to each 

other and how sometimes interactive proof systems can have also been used to infer something 



about other aspects of complexity we will derive at this one statement which has nothing to do 

with interactive proofs but proved using the interactive proof systems and yeah that.  

 

So, that in this lecture we just defined interactive proof system we formally defined it and we 

saw deterministic interactive proofs. The interactive proofs which were the verifier can be 

randomized and then we saw a bunch of remarks and that's all i want to say, thank you. 

 

 


