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Hello and welcome to lecture 58 of the course computational complexity. In the previous lecture 

we saw Karchmer Wigderson relation, where we could relate the deterministic communication 

complexity of a certain relation with the depth complexity of a function, when it is represented as 

circuits. In today's lecture we are going to use the Karchmer Wigderson relation. In order to get a 

lower bound on the depth complexity of a certain function being given a graph determining 

whether the graph has a perfect matching or not.  

 

And this result is by Raz and Wigderson from 1992, so it is a very interesting and somewhat of a 

surprising application of the communication complexity. Because, we are getting a depth lower 

bound on a problem that is on graphs. So, before we start let me just recall monotone functions 

and monotone circuits. So, monotone functions are those where, if there are two inputs x and y, 

if x is greater than or equal to y, then f of x is greater than or equal to y.  

 



So, remember all of this is in the Boolean function, so n bits to 0, 1 output. And, when I say x is 

greater than or equal to y, I mean bit wise. So, the function the output of 01101 should always be 

greater than 001011. Because, here x is greater than y, so f of x should be greater than equal to f 

of 1. Another way to view the same thing is that, if you change one input bit from, if you flip it 

from 0 to 1, then the output cannot go from 1 to 0, the output cannot decrease.  

 

Output may remain same at 0 or 1, the output may increase from 0 to 1. But it cannot go from 1 

to 0. This is another way to view monotone functions. And monotone circuits are just whatever 

we can implement with just AND and OR gates. In fact, we had seen these definitions in lecture 

35 and in fact, there was also an exercise where I had asked you to verify that a function f is a 

monotone function.  
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If and only if it can be implemented by a monotone circuit. So, hopefully if you have not 

convinced yourself of this simple fact already you may want to try that out and then listen to the 

rest of the lecture. So, the point here is that any function, if it is a monotone function, then it can 

be implemented by a monotone circuit and anything that can be implemented in a monotone 

circuit is a monotone function. So, it is an equivalent characterization.  

 

So, given a function, given a monotone function, I can construct a given a monotone function, I 

can construct circuits that implement this circuit families, and I can look at the depths of these 



circuits. Now, what I am further restricting it is, so this is the depth of the function. What I am 

further restricting it into is the monotone depth denoted by d superscript m of f. So, this is the 

monotone depth.  

 

This means you restrict yourself to only the monotone circuit characterizations of f, or monotone 

circuit realizations of f. So, even if f is monotone perhaps you could have a very compact circuit 

using NOT gates, using negations and some things like that. And perhaps when you try to 

implement it using a monotone circuit alone without using NOT gates; perhaps the size 

increases, so the monotone depth could be more than the depth of the function.  

 

Because I am only looking at functions or circuit implementations that do not have NOT gates. 

So, d m, the superscript m of f, this stands for the depth of the monotone circuits that implement 

f, so this is the monotone depth of a certain function, which is the depth using monotone circuits. 

And last lecture we defined the Karchmer Wigderson relation, which was x y i such that x i and y 

i are different.  

 

So, let me just go to the previous lecture and show you what it was. So, Karchmer Wigderson 

relation was set of all x y i such that x i is not equal to y i. And here we are defining the 

monotone Karchmer Wigderson relation. So, everything is same except that in the case of 

Karchmer Wigderson relation, we said that x i not equal to y i. In the monotone variant we say x 

i = 1 and y i = 0.  

 

So, I am telling x i should be 1 and y i should be 0, and we cannot have x i not equal to y i in 

general. So, we cannot have x i = 0 and y i = 1. So, this is a monotone Karchmer Wigderson 

relation.  

(Refer Slide Time: 06:01) 



 

And just like what we saw in the last lecture, we can also define the monotone variant of the 

Karchmer Wigderson theorem, which is that the monotone depth of a certain function is equal to 

the deterministic communication complexity of the monotone Karchmer Wigderson relation. So, 

it is exactly the same theorem, but for the subscripts m in the left hand as well as the right-hand 

side.  

 

So, you can work out the proof, it is exactly along the same lines but then, you just have to take 

care of the fact that f that the depth is of the monotone circuit and so which means in the case of 

monotone circuits as I explained the previous lecture all the negations, all the inputs are in the 

positive form. So, I will not have inputs of the forms that I complement z 2 complement and so 

on. It will all be z 1, z 2, z 3 and so on.  

 

So, the monotone depth is equal to the communication complexity of the monotone Karchmer 

Wigderson relation, so this you can try out.  
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So, now let me come to the main topic. So, given a graph, so you can think of giving a graph as 

an adjacency list or adjacency matrix. So, I can view a graph as a big vector, so for instance here 

I have a graph on four vertices, let me number these vertices let us say 1, 2, 3, 4. So, now I could 

represent this graph as a 6 bit vector, so I would say it is a simple graph, so let me represent it as 

a 6 bit vector.  

 

So, the first bit indicates whether there is an edge from 1 to 2, then second bit indicates edge 

from 1 to 3, 1 to 4, 2 to 3, 2 to 4 and finally 3 to 4. So, in for this graph it will be 1 to 2 there is 

an edge, 1 to 3 and 1 to 4 there are no edges. So, we put 0 0, 2 to 3 there is an edge, 2 to 4 there 

is an edge, 3 to 4 there is an end. So, this is the vector that indicates this graph. So, now the 

question is given this n choose 2 bit vector, which is an entire description of the graph.  

 

So, there are no self-loops, assume there are no self-loops an undirected graph, so h from i to j is 

same as h from j to i and no self-loops. So, given this vector, one has to determine whether there 

is a perfect matching. So, you can check this graph, does it have a perfect matching? Yes, indeed 

it does, so you could pick the edge 1 to 2 and maybe the edge 3 to 4. In fact, this is only perfect 

matching. But, let us say if I had a couple of more edges let us see 5 and 6.  

 

Now does this graph have a perfect matching? Even this does, because you could consider 

something like this, this is a perfect matching, in fact I think this is the only perfect matching of 



this graph. But, if it was let us say if we did not have this edge 2, 4 then, we do not have a perfect 

matching. Because 5 has to match with 1 and 6 has to match with 3. So, 2 and 4 do not have 

pairs. So, this for the vector of this particular graph there is no perfect matching.  

 

So, the MATCH n function is just given this vector n choose 2 length long vector. It will map to 

0, 1 depending on whether the graph has a perfect matching or no perfect matching.  
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So, now let us move to the theorem by Raz and Wigderson, which is a lower bound on the depth 

complexity of this function. This says that the depth complexity of this matching function is at 

least linear. The depth complexity of the matching function is at least linear you have to have a 

linear depth circuit to compute this. So, you may recall that we saw an RNC circuit, to determine 

whether the given bipartite graph has a perfect matching.  

 

But, so in RNC circuit it is like polylog depth circuit. But here we are saying that, if we restrict 

the circuit to a monotone circuit, again that was RNC. But here it is monotone circuit and 

deterministic. Then, the circuit has to be of depth, linear depth. So, we will this is proved where 

the Karchmer Wigderson relation. So, given the matching function what is the corresponding 

Karchmer Wigderson relation?  

 



So, one way to think of it is that Alice and Bob get vectors, Alice has a vector which outputs 1. 

So, which means he has a graph, so this vector is a representation of a graph. Alice, she has a 

graph that has a perfect matching, because the matching function evaluates to 1. And, bob has a 

graph that does not have a perfect matching. So, the matching function evaluates to 0. So, this 

means that Alice must have an edge that is not there with Bob.  

 

Because, matching is a monotone function, if you put an additional edge the perfect matching 

that was already there does not vanish. So, Alice has a perfect matching, Bob does not have a 

perfect matching. So, they have to determine one specific edge that Alice has and bob does not, 

this is the requirement. Alice and Bob needs to determine that one edge that is in Alice’s graph 

but not in Bob's graph. So, this is the requirement of the function.  

 

We will show that the disjointness function, so the disjointness function we already said that, it is 

you require at least n bits. We will show that this there is a randomized reduction from the 

disjointness function to this this relation, this Karchmer Wigderson relation on matching. So, you 

can reduce the disjointness function in a randomized fashion to this Karchmer Wigderson 

relation.  

 

So, if there is a Karchmer Wigderson, if the relation a protocol for the Karchmer Wigderson 

relation on matching. We will correspond to a randomized protocol for disjointness, because 

given a disjointness instance we transform it to a matching instance or an instance of computing 

the Karchmer Wigderson relation. So, this transformation is randomized and then run the 

protocol for the Karchmer Wigderson relation on matching, we run the protocol in R MATCH.  

 

And then using that, we will be able to determine whether the inputs were disjoint or not. So, it is 

a randomized process to decide disjointness, randomize protocol to decide disjointness. And, the 

interesting thing is that, this will involve no extra communication. Whatever this reduction 

entails, this will be done locally at Alice’s end and Bob's end. They will not need to 

communicate with each other to perform this reduction.  

 



So, the communication complexity of the resulting randomized protocol for disjointness will be 

exactly the same as the communication complexity of the complex of the protocol that decides 

the Karchmer Wigderson relation or the computes the Karchmer Wigderson relation. So, this 

gives us a randomized protocol for disjointness.  
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But then there is a result, which I will not prove, I will just state that the randomized complexity 

of disjointness is linear, is at least linear. So, this was a result in 1992 by Kalyan Sundaram and 

Schnittger, who showed that the randomized complexity of disjointness is at least linear. And, 

here we have a randomized where this reduction to the Karchmer Wigderson relation, we have a 

randomized protocol for disjointness, without any extra communication complexity.  

 

So, this means that, since we know that randomized complexity of disjointness is at least order n, 

at least omega n, this means that the complexity of R MATCH is also at least order n. And by the 

Karchmer Wigderson theorem in the monotone setting, this means that, because the determinacy 

complexity of R MATCH is equal to the monotone depth of matching as well. So, this implies 

that the depth complexity of the matching, circuit that computes matching in the monotone 

setting is also linear.  

 

So, that is the overview of the proof. Once again, I will just quickly go through, we reduce 

disjointness in a randomized fashion to the R MATCH. R MATCH being the Karchmer 



Wigderson relation on matching. So, a protocol for R MATCH gives a randomized protocol for 

disjointness with the same complexity, because it involves no extra communication. But we 

know that randomized complexity of disjointness is at least linear.  

 

So, the protocol for R MATCH should also be at least linear. But, by the Karchmer Wigderson 

theorem we know that, the complexity of the protocol R MATCH is equal to the depth 

complexity of the function, so the depth complexity, the monotone depth complexity of the 

matching function is also at least linear.  
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So, now what remains is to see the reduction, this this particular reduction is what is left. So, in 

fact it is we will present a slightly simpler reduction, but it is not very difficult to see the idea 

from this, so the core idea I will just present in reduction. So, instead of asking whether n vertex 

graph as a perfect matching, we will ask whether a graph with 3 n + 2 vertices has a matching of 

size n + 1, so a graph with 3 n + 2 vertices has a matching of size n + 1.  
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So, how will the reduction happen? So, Alice and Bob get 2 strings of length n and they will 

construct matching instances locally. So, but they will construct different graphs and that will 

help us do the; reduced disjointness to this matching function. Both of them will construct graphs 

on 3 n + 2 vertices and their construction will be dependent on the strings that they have. So, the 

3 n + 2 vertex graph looks like this, so 3 n + 2 vertices are in this form for each.  

 

So, let us say n = 4, then we have 4 such n tuples or 4 such 3 tuples sorry this is 1, this is 1, this 

is 1 and this is 1. Four such 3 tuples a 1 b 1 c1, a 2 b 2 c 2, a 3 b 3 c 3 and a 4 b 4 c 4, so that 

corresponds to 3n and then there is a single edge or there are two vertices called d 1 and d 2. That 

is there by the right side two words is called d 1 and d 2, so this is the 3 n + 2 vertices. Now what 

are the edges? So, let me first describe.  

 

So, the vertices are common to the graphs of both Alice and Bob, the vertices are common only 

the edges will differ. So, let us see what is the graph, Alice’s graph, let us call it G A. So, let us 

look at this Alice’s string, let us say the string is 0 1 0 1. So, the first bit is 0, so x i = 0 means, 

add edge between a i and b i. So, you adjust you make ai and bi adjacent x i = 1 mean you add an 

edge between b i and c i and that is it.  

 

So, Alice’s graph and finally also add edge, this you always add for Alice d 1 and d 2. So, 

Alice’s edge, Alice’s graph has exactly n + 1 edges, so there are n + 1 edges for each bit whether 



it is 0 or 1, she adds an edge between either a i and b i or b i and c i and finally there is an edge 

between d 1 and d 2. So, this is the graph of Alice, it is just so in fact the graph itself is just a 

perfect matching, there is no other things going on here a lot of vertices without any edges.  

 

This is Alice’s graph. So, x is 0 1 0 1 so you connect a 1 and b 1, but second bit is 1 so you can 

have b 2 and c 2, third bit is 0 so you connect a 3 and b 3, fourth bit is 1 you connect b 4 and c 4 

and finally you connect d 1 and d 2.  
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Now let us see Bob's graph, so again it is on the same set of vertices, a 1 b 1 c 1 and a 2 b 2 c 2 

and so on. So, same set of vertices we call this graph G B, and what are the edges, so what we do 

is, we have these universal vertices. So, what do universal vertices mean? So, we mark b 1 as 

universal, so what we do is you have an edge from b 1 to a 1 c 1 b 2 a 2 everything. So, to all the 

vertices, so you make b 1, so you make so this notation where I have a red circle.  

 

These vertices are made universal meaning you make them adjacent to all the remaining vertices 

of the graph, so even including like d 1 d 2 everything. And which vertices are made universal? y 

i = 0 means you make b i universal, and y i = 1 you make ai universal. So, in every group, every 

3 tuple or a 1 b 1 c 1, a i b i c i group you make one vertex universal depending on what ith bit is. 

So, you can see the string is 0 1 1 0, so since the first bit is 0 b 1 is made universal.  

 



Second bit is 0 so a 2 is made universal, so second bit is 1 so a 2 is mainly universal, third bit is 1 

a 3 is made universal, fourth bit is 0 so b 4 is made universal. So, because it will get messy, I am 

not drawing all the edges because, a universal vertex means it is connecting to all the remaining 

edges, the 3 n + 2 vertices. So, a universal vertex is just is result in 3 n + 1 edges, so many edges 

it will just get messy. So, there are four such universal vertices.  

 

And this is the graph G B, Bob's graph. What I want to mention here is, look at Alice’s string and 

Bob's string. The claim is this so notice that Alice’s graph has a matching of size n +1 in fact it is 

just a matching of size n + 1. What can we say about Bob's graph? We know that any edge in 

Bob's graph, one of the endpoints is the universal vertices. So, for instance there will not be an 

edge between a 4 and c 4 because, neither vertex is universal.  

 

So, this edge will not be there, a 4 and c 4 will not be there. So, and how many universal vertices 

are there? There are overall n universal vertices. So, any edge has one of these n universal 

vertices as its endpoint, there could be edges that just that have both of them as universal vertices 

and n points, but that is okay. Every edge has at least one of its n points as a universal vertex.  
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This means that, you cannot have a matching of size bigger than n because, if you have a 

matching of size bigger than n, that means you have n let us say n + 1 edges, that means you 

have n + 1 edges and each one of them can should have one of the universal vertices as its n 



points, and you cannot share an n point. But then you have only n universal vertices. So, any 

matching in b in graph b, Bob's graph G B has size at most n.  

 

And G A has a matching of size n plus, in fact it is a matching, G A itself is a just a matching, 

there is nothing else. But any matching in size and G B is of size at most n. So, now Alice’s 

graph has now by construction it is a yes instance, and Bob's graph is a no instance. So, the 

function matching function applied to Alice’s graph outputs 1 and applied to Bob's graph output 

0. Because, now we are trying to determine whether, is there a matching of size n + 1.  

 

That is what we said, we will do a simpler reduction. So, now I want to point out something 

about the way these things were constructed. So, the point is that if x and y are disjoint meaning, 

there is no index where both x i and y i are 1. Then what happens is that? There are three 

possibilities, x i = 0 and y i = 0, x i = 1 and y i = 0, x i = 0 and y i = 1. In each of these case the 

universal vertex of that group of the group i is an n point of the edge added by Alice.  

 

So, let us see so in fact in this figure all possibilities are covered. So, for the first group x 1 = 0 

and y 1 = 0, so the universal vertex is b 1 and that is an n point of Alice’s edge a 1 b 1. For the 

second bit x 2 = 1 and y 2 = 1, so it is not disjoint. But let us see what happens. The universal 

vertex is a 2, but a 2 is not an end point of b 2 c 2, which is edge added by Alice. In both the 

third group and fourth group, Alice and Bob are disjoint.  

 

Alice has 0 and Bob has 1 for the third index, Alice has 1 and Bob has 0 for the fourth index, and 

you can see that in the third group a 3 covers a 3 b 3 and in the fourth group b 4 covers b 4 c 4. 

So, any possibility if x and y are disjoint then all the end points of Alice’s graph are covered by 

Bob's graph. So, what I mean is that? When if Alice and Bob are disjoint, then all the edges 

added in a 1 b 1 a 2, b 2 c 2 a 2, a 1 a 2 b 2 whatever all these groups.  

 

All the edges added in these groups a 1 b 1 c 1, a 2 b 2 c 2 are covered by the universal vertices 

added in Bob's graph. The only edge in Alice’s graph that will not be covered is the edge d 1 d 2, 

because Bob is not going to add a universal vertex in d 1 or d 2. So, this is the key observation I 



just written down that here, if x and y are disjoint the universal vertices in G B cover Alice’s 

edges, so this is the key point it covers Alice’s edges.  

 

If x and y are not disjoint, then there is at least one edge in Alice’s graph, at least one edge that is 

not covered by the universal by a universal vertex in G B. So, if x and y are disjoined, then the 

universal vertices in G B cover Alice’s edges, in fact this one more point except d 1 d 2, it covers 

all the edges except d 1 d 2. But if they are not disjoined then there is an edge apart from d 1 d 2, 

that is not covered by the universal vertex in G B.  

(Refer Slide Time: 28:46) 

 

And if this point is clear the entire the rest of the proof is very straight forward. So, all that now 

it boils down to is that, if it is disjoint the only edge that Alice has, but that is not there in Bob's 

graph is d 1 d 2. So, if Alice and Bob are disjoint the only edge that Alice’s graph has, but Bob's 

graph does not have is d 1 d 2. If they are not disjoint, then there are multiple edges that Alice 

has that Bob does not have including d 1 d 2.  

 

At least one more edge apart from d 1 d 2 is there with Alice. So, the correct execution or correct 

computation of the Karchmer Wigderson and protocol of the Karchmer Wigderson relation on 

matching, should output an edge from Alice’s graph. So, if Alice’s and Bob’s input are disjoint, 

then it will always output d 1 d 2. Because, everything else is already covered by Bob's graph. If 

they are not disjoint, then it could be d 1 d 2 or it could be some other edge.  



And that is a key thing. So, what is the protocol? Alice and Bob build their graphs G A and G B 

and there is one small step that they do, this is to remove any bias of the algorithm. So, you can 

come think about it later that, what they do is using shared randomness they permute their 

vertices and edges, with the same permutations. So, this is just think of it as this relabelling, this 

is to make sure that some the protocol does not have any bias towards looking at some set of 

edges or some other set of edges.  

 

But, both of them do the same permutation. So, if; Alice re-labels a 1 to x and b 1 to y then Bob 

also will make the same re-labelling. So, if their inputs are disjoint, if Alice’s and Bob's inputs 

were disjoint, then the protocol must output d 1 d 2. If they are not disjoint, then there are other 

edges at least one other edge that Alice can output. So, the; probability that d 1 d 2 but even d 1 d 

2 can be output, so what is the probability that d 1 d 2 can be output?  

 

It is at most half, because there is at least one more edge and this probability that of outputting d 

1 d 2, this can be further reduced by boosting you could repeat that.  
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So now all that they need to do to distinguish whether x and y are disjoint. So, again recollect 

that we are trying to reduce disjointness to a computation of the Karchmer Wigderson relation. 

So, they will compute the Karchmer Wigderson relation, which means they will arrive at an edge 



that Alice has that Bob does not have. They will look at the edge. If this edge is d 1 d 2 they will 

say that the strings are disjoint.  

 

If this is not d 1 d 2, they will say that the string is are not disjoint, x and y are not disjoint. And, 

we can improve this probability by boosting, by repeating and boosting. So, the bottom line is 

that we can distinguish the case when disjointness is 0 and disjointness is 1 by using this 

protocol. It is a random protocol, because we do this random permutation. So, we transform x 

and y into graphs and if they are disjoint the only output possible by Alice and Bob is d 1 d 2.  

 

Otherwise, there are multiple outputs possible. So, if they if Alice output some other edge, like in 

this case she may output b 2 c 2, because they are not disjoint. Alice and Bob know that the 

strings are not disjoint. So, what is the conclusion? The conclusion is that we are computing 

disjointness using the Karchmer Wigderson relation on matching. We are computing disjointness 

using the Karchmer Wigderson relation on matching.  

 

This means that the complexity of computing the Karchmer Wigderson relation in matching is at 

least that of the randomized complexity of disjointness which we know to be at least linear. So, 

that gives us that complexity of R MARCH is at least linear and by the relation between the 

complexity of R MARCH and the depth of the matching. We know that the depth of matching is 

also linear, the monotone depth of matching.  

 

So, that completes the proof. I will just do a quick recap. So, we first saw monotone functions 

and monotone circuits again this was a recap and then we said that the Karchmer Wigderson 

theorem that we saw in the previous lecture has a monotone analogue. The monotone depth 

complexity is equal to the deterministic complexity of the monotone Karchmer Wigderson 

relation.  

 

And then we defined the matching function and then we saw that R MARCH, which is the 

Karchmer Wigderson relation applied to the matching function, from disjointness there is a 

randomized reduction to R MARCH. So, a protocol for R MARCH will give a randomized 

protocol for disjointness without extra communication. And since the randomized complexity of 



disjointness is at least linear, this implies that the deterministic complexity of R MARCH is at 

least linear.  

 

And hence the monotone depth complexity of matching is also linear. And the reduction was just 

a simple graph, Alice’s graph was just a matching of n + 1 edges and Bob's graph is just a bunch 

of universal vertices. So, we by construction we ensure that Bob's graph does not have a 

matching of size n + 1 and Alice’s graph has a size of matching of size n + 1, and the key thing 

was that, if the strings were disjoined then Alice will always output d 1 d 2.  

 

If the strings were not disjoint then Alice could potentially output other things or Alice is sure to 

be able to output at least one more string or one more edge. Alice has other option, so the 

probability of outputting d 1 d 2 is at most half and which could be further improved by 

boosting. The protocol is if Alice and Bob output d 1 d 2, then say it is disjoint. If they do not 

output d 1 d 2 and output something else it is not disjoint.  

 

And that completes the summary of this proof that monotone depth complexity of matching is at 

least linear. Just to summarize what we saw this week, you saw communication complexity, 

what is communication complexity, the communication complexity model. Then we saw a bunch 

of techniques we saw the protocol tree, we saw the matrix, we saw lower bound techniques such 

as the tree in the bound on the number of monochromatic rectangles.  

 

Then we saw fooling set, then we saw size base bound, and we saw a fooling set size based 

bound, and then we saw rank bound and then we stated the log rank conjecture. We did not prove 

the rank triangle bound. And, then we saw this connection between circuit complexity, depth 

complexity and communication complexity by the Karchmer Wigderson theorem and then we 

saw this application into for matching that computes the lower bound for matching in this 

lecture.  

 

And that completes the part about communication complexity and also completes week 11. So, 

that is all, thank you. 


