
Computational Complexity

Prof. Subrahamanyam Kalyanasundaram

Department of Computer Science and Engineering

Indian Institute of Technology, Hyderabad

Lecture - 54

Introduction to Communication Complexity: Part 1

(Refer Slide Time: 00:15)

Hello and welcome to lecture 54 of the course computational complexity. This is also the

beginning of week 11. In this week we will see the topic of communication complexity. So, I

have highlighted, it is the key aspect here is communication. So, far we have seen models of

computation where the complexity classes are based on a certain resource, how much of a

certain resource is used it could be time, it could be space, it could be size of a certain circuit.

It could be randomness in the case of a randomized algorithm and so on. In this model the

resource that is under consideration is communication, how much communication happens.

So, what do I mean by communication? Well, in the setting of communication complexity

there is another fundamental difference from what we have seen so far. So, in the models we

have seen so far, all the input is provided to the Turing machine or the circuit as the case may

be.

And it is up to the Turing machine or the circuit to decide or to output accept reject or to

compute a certain function. However, in this model we assume there are two parties or two or

more parties actually who are sitting in different places or it could be geographically separate

and they have to compute and they have both have their own inputs. So, the in the two-party

setting these two parties are called Alice and Bob usually.

And Alice has a certain input x Bob has a certain input y and together they have to compute a

joint function of x and y. So, it could be it could be the product of x and y it could be the sum

it could be the difference or it could be certain other things. So, the function could be

anything that depends on and it could also be just output Alice’s last bit. It is also technically

a function of x and y.

And the one way in which this differs from whatever we have seen so far is that there is no

bound on the computation power, so both Alice and Bob are considered all powerful. They

can do any computation that is decidable or that is doable or even perhaps undecidable things.

The problem is that we are charging them on the communication. So, since the function they

have to compute is a joint function to actually execute the computation they will have to send

some bits across.

So, perhaps I will just send some to Bob perhaps Bob send some back to Alice perhaps there

is a back and forth and what we are interested in is a total amount of communication that has

happened so this is the model of communication complexity.

(Refer Slide Time: 03:25)

So, as you can check the see the red part here. So, Alice has the input x from it from a domain

capital X and bob has an input y from the domain capital Y and they have to compute a joint

function f which is f x is a joint function of x and y and the joint function belongs to the set

capital Z. And in most of the I think at least in this we will in this set of lectures we will

restrict that to be binary or Boolean, Z will be just 0 1 function.

So, the function that they will have to compute will be a 0 1 function at least for our purposes

in the in the in the few set of lectures that we will have in our course. So, how can Alice and

Bob jointly compute the function? So, well they could have some kind of an arrangement so

depending on so they know what function they have to compute they just do not know the

inputs.

So, rather Alice knows Alice's input but she does not know Bob's input, Bob knows Bob's

input but he does not know Alice's input. So, well one way is so they could do some

communication so one simple way is Alice sends everything to Bob, Alice sends her entire

input to Bob and then Bob can compute the function and then Bob sends the function the

computed function value back to Alice, this is one way.

So, but then sometimes there are better ways of doing this, whatever I just said is available

regardless of whatever function it is but there may be better ways for certain functions. So, in

general what could happen is Alice sends something to bob, let us say a1 is what she sends

and then bob upon seeing a 1 he gets some information, so a 1 could be 1 bit, 2 bits whatever

depending on the protocol that they have agreed upon.

So, depending on what a 1 is bob sends back b 1, so b 1 could depend on a 1 it need not

depend on a 1. So, b 1 is a function of both what Bob has and also what Alice has sent and

then maybe Alice send something back a 2, a 2 will be a function of what she has combined

with what function Bob sent so what input bob sent. So, like this back and forth could go on

for many rounds.

But what we care about is not how many rounds of back and forth happen rather how many

total bits have been communicated. So, it does not matter if they come communicated 10 bits

over 10 rounds or 10 bits over one round, what matters is how much of communication has

happened.

(Refer Slide Time: 06:18)

So, again the same thing I have written down in pros each communication a i depends on so a

i is the in input sent by Alice to bob, it depends on x and all the prior communication she has

received. Similarly, b j depends on y and all the prior communication Bob has received. At

the end just by looking what has been transmitted, what Alice sent, what Bob sent and what

Alice sent back and etcetera.

Now one should be able to compute the function just by looking at the message transcript. So,

message transcript is the set of all the messages that have been communicated. Of course, if

you must know the protocol without the protocol you cannot make sense of the transcript. So,

the message transcript is the entire set of messages that have been sent back and forth by

looking at the transcript one should be able to determine what the function is.

So, obviously Alice and Bob both of them know the entire transcript because Alice either all

the a i's were sent by Alice so Alice knows a i's, all the b j's were received by Alice all and it

also knows b j s, similarly Bob also. So, at the end the function value should be clear from the

transcript meaning there should not be any confusion on the function value, it should be one

should be able to determine the function value from the transcript, this is the requirement.

So, what is the deterministic communication complexity? So, in these few lecture that we will

see we will only see deterministic communication complexity. We will briefly describe

something called randomized communication complexity later. But we will see mainly

deterministic communication complexity. So, there is a corresponding randomized notion as

well. It is denoted by the symbol D f capital D of f.

It is a so basically given a certain protocol, protocol is a certain protocol an agreement

between Alice and bob to communicate in a certain way to compute the function to jointly

compute the function. So, let us say pi is a protocol pi so given a certain protocol so we want

to minimize over all the possible protocols. So, there could be protocol that does a lot of

communication but we do not want that we want the protocol that does the smallest

communication.

So, what do I mean by communication done by a protocol so what so consider all the

possibilities what input Alice can have, what input Bob can have? So, what is the worst case

over all pairs of inputs that they have. So, it is it is possible that in some inputs some x some

pairs x y without much communication they are able to compute the function. So, what we

are interested in is what is the pair x y that causes them to communicate the most.

And that is what we will consider so max of all max over all the pairs x, y the number of bits

communicated by the protocol pi to compute the function. And we want to choose pi such

that pi minimizes the maximum communication for all pairs x, y. So, this may seem

confusing if this seems confusing, think of any algorithm. How do we measure algorithms

running time? We let us say we want to say sorting can be completed in order n log in time.

Or the complexity of sorting is n log n, what do I mean by that what do you mean by that is

that you consider so consider any algorithm for sorting and we want to consider we will say

the complexity of sorting is n log n because that is the fastest or most efficient algorithm that

can come that can come perform the sorting. So, that is like the minimum overall pi the

minimum over all procedures that do sorting.

And then within that once what do we want, for a certain algorithm we want to maxim we

want to consider the worst case input. So, that is what is happening here as well. So, certain

given once the protocol pi is fixed, we want to consider the worst case input pair x y. So, it is

exactly in parallel to what we know about computational problems and algorithms how we

say that a certain problem can be done in a certain time.

(Refer Slide Time: 11:01)

So, this may seem so things will become clear with some examples that we will see very

soon. And so, one may wonder why is this why are we studying this? So, the other models

that we have seen so far had some motivation like they were real models of computation or

they look like what we think are real models but what is this like why would like why would

Alice and Bob be so powerful but then they have to pay so much for communication that is

the model.

We do not charge anything for their local computation but we charge further only for the

number of bits that are being sent. So, there are situations like distributed computing where

the major choke point becomes the communication rather than the local computation and

interestingly even without appealing to distribute computing etcetera. There are other areas of

complexity other sub areas of complexity where communication complexity finds

applications.

So, for instance streaming, streaming algorithm is a class of algorithms where you have such

a large amount of input that you cannot possibly store it in your memory. So, you can make

passes through the input but cannot store the entire input. So, in these passes you have to

compute certain function of the input, so you cannot store the input in the memory. So, this

may seem surprising but you can use lower bounds from communication complexity to arrive

at lower bounds for streaming.

So, if you want you can say things like because function f takes this much communication

complexity or requires at least this many bits of communication that means that a certain

function let us say g to compute in the streaming setting requires at least order this much

space or these many passes. So, if once you learn about it will be it will be fairly natural but

the idea is that in the streaming you have a limited memory.

So, you could think of as communicating between the current memory and the future

memories. So, you could think of or rather you could think of the memory beings used as a

vehicle to communicate between the present and the future or present and the past. So, that is

a very high level picture of why communication complexity is applicable in streaming.

Another surprising application is we saw the model of computation called circuits.

So, we will actually see one circuit lower bound using communication complexity. So, it will

be a very specific setting and for the certain class monotone functions but still it is interesting

to see how what we have already seen such as circuits has a lower bound coming from

something communication complexity. So, you one may think that communication has

nothing to do with circuits but then there is a way to use this to get an application as in

circuits. So, in fact this part we will actually see in the upcoming lectures.

(Refer Slide Time: 14:37)

So, let us see some examples, so one simple function is the equality function. So, Alice has x

bob has y and they have to compute the equality function. What is the equality function?

Equality function is simply 1 if and only if Alice's input and Bob's input are the same. So,

only if and only if x = y the output is 1 otherwise it is 0. So, if x is not equal to y is 0. So, one

very simple protocol is for Alice to send x her entire input to Bob.

So, this is the entire input Alice is sending to Bob and now that Bob has x and he already had

y, he can just check whether x and y are equal and once that happens, she Bob sends a 0 or 1

back he sends 0 if they are not equal, he sends 1 if they are equal. And what is the complexity

of this protocol. So, this is a specific protocol so Alice sends her entire input, Bob sends the

function, so the entire input so again the let me just be a bit more give a bit more details.

So, both Alice's input and Bob's input are considered to be n bit binary vectors and they have

to compute the 0 1 function. So, Alice sends her entire n bits so that is n bits of

communication, Bob sends one bit back so that is n + 1 bits of communication and regardless

of whatever pair x y in happens in this case they use n + 1 bits of communication. So, n + 1 is

the number of bits of communication for this protocol.

But there could be better there could be other protocols that do even better. So, what we

know is that the deterministic communication complexity of equality so denoted by EQ

subscript n equality of n bit numbers is at most n + 1. So, this protocol gives you a

complexity of n + 1 but specific maybe there are better protocols. So, we know that

deterministic communication complexity of equality is at most n + 1.

And some of you who are paying close attention may already be thinking that this protocol

had nothing to do with equality. We did not use any special properties of the function

equality. Alice sends her entire input Bob computes a function and sends it back. So, with

any function whose output is 0 1. We can implement this protocol so this means any Boolean

function that when they jointly compute Alice can send her entire input and bob can send 1

bit output.

So, this is true for any f. In fact, maybe I just write it over here, in fact b f is at most n + 1 for

any function let us say 0 1, 0 1 to 0 1. So, we did not use any specific properties of equality.

So, now let us see another function called parity. So, parity of x y is the total number of bits

so it is x i y i parity of that and then parity of the entire thing. So, in other words this is

simply one if and only the total number of bits in x and y the total number of 1s in x and y is

odd.

So, maybe I just write here 1 if and only if there is an odd number of 1s in x and y combined.

There is an odd number of ones in x and y combined this is a parity. So, of course we could

do whatever we did with equality we could just send have Alice send everything to Bob and

then Bob could send it back so this this would take n + 1 bits.

(Refer Slide Time: 19:23)

But however, in this case there is a better algorithm better protocol. So, notice that parity of x

y is actually you can also write it like this you could compute the individual parity of x and

compute the individual parity of y and then take parity of these two things. So, it is because

the parity is distribute so you could take the individual parity of x and individual parity of y

and you could take the parity of both of them together.

So, one thing that you can do is Alice can send the parity of her entire input and Bob can send

the parity of his entire input and now both of them can compute the function and so can

anybody who is just looking at the transcript. Alice just needs the parity of Bob's input and

Bob just needs the parity of Alice's input. What is the complexity here the communication

complexity here?

It is simply two because Alice just sends one bit and Bob just sends one bit back. So, we have

shown a protocol where the maximum communication required is 2 bits and so this is an

upper bound. So, just coming back to equality in fact we will later see that the

communication complexity of equality is actually equal to n + 1 even though here we showed

an upper bound.

(Refer Slide Time: 21:00)

Another function say average, so let us say Alice gets a set S of 1, 2, 3 up to n a subset of 1,

2, 3 up to n t gets a set, Bob gets us at t which is subset of 1 to 3 up to n. So, and they have to

compute the average of the multi set between them so just let me give an example. Let us say

Alice gets the set S which is 1, 2, 5 and Bob gets a set of t which is 1, 2, 4, 6 then the S union

t the multiset union is actually if a element is common to both then it will be counted twice.

So, it will be the s the multiset will be the multiset union will be actually 1, 2, 5, 1, 2, 4, 6. So,

we retain the multiple copies so 1, 2, 1 and 2 appear two times so we retain the multiple

copies and then the average of this set. So, it is simply 1 + 2 + 5 + 1 + 2 + 4 + 6, so 1 + 2 + 5

is 8 1 + 2 + 4 is 7 15 + 6 is 21 divided by 7 is 3. So, the average of the multiset s union t is 3,

so how can Alice and bob come up with a protocol.

So, this is something I am just I am not going to explain how but I would like you to think

about it and one more point that I want to mention now. So, till now we talked about Alice

and bob getting a binary string but here we are talking about Alice and Bob getting sets or

subsets but it is essentially the same thing so for instance. If Alice's set is just let us say the

set of all odd numbers let us say S is 1 3 5 and so on this corresponds to the binary vector 1 0

1 0 etcetera.

Basically, the first bit indicates whether 1 is that 1 is there second bit being 0 indicates 2 is

not there third bit b one indicates that 3 is there fourth bit being 0 indicates four is not there

and so on. And another example is let us say this is just a set 1, 2 two element set, this

corresponds to the binary string 110000. So, the first two bits are 1 and followed by a bunch

of 0s.

So, you can see how there is a correspondence between a subset of 1 2 3 up to n and an n bit

vector. The all ones vector will correspond to the set 1, 2, 3 up to n. All 0s vector will

correspond to the empty set. So, again here also the input is a 0 1 vector of length n but the

output is actually a number.

(Refer Slide Time: 24:18)

So, I would like you to think of how to come up with a protocol for this. So, each one of them

can compute their average and send but that may not work out. How will they communicate

the average all these things need to be thought about? So, just try to work it out and try to

compute exactly how much of communication is required. Another problem is of median. So,

again Alice and Bob have sets S and T denoted the way.

I said about like here there is another example set 1 3 4 is 1 0 1 1 0 let us say over 5 bits. And

how do they compute the median how can they compute the median of the multiset union?

(Refer Slide Time: 25:20)

Again, multiset union like we said before. So, one protocol is based on binary search, let us

explain the protocol. So, here Alice and bob will always retain or always maintain; an

interval within which the median should lie an interval i j. So, to begin with they will say that

the median will lie anywhere between 1 to n because those are the elements under

consideration. And then what Alice does is Alice sends the number of elements above the

midpoint.

And number of elements below the midpoint, so Alice sends both. Because there is no

requirement that Alice has a contiguous set or some anything. So, Alice sends the number of

elements above as well as below the midpoint in her own set. Now Bob knows the midpoint

Bob also can see how many elements are above the midpoint and below the midpoint in his

own set and depending on that he can see where the larger number of elements.

So, what I am saying is that if this is a range let us say i and this line j and this is the midpoint

i + j by 2. Alice can send how many elements are there in her set in this range and Bob can

also do this and depending on where and let me repeat. Alice send how many elements are

there in the range above i + j by 2 not in this range alone above i + j by 2 and below i + j by 2

and obviously Bob also knows how many elements that he has in his range.

He does not need to send it but he knows. So, now after this he knows the total number of

elements and he also knows how many so which side it is above i + j by 2 or if it is below i +

j by 2 or the median is equal to i + j by 2. So, depending on that he will inform Alice that the

median is above or below, so now maybe let us say he says it is above. Now Alice can refine

the range let us say he says it is above.

So, now you set i to be this and i to be the new i to be i + j by 2 and then repeat. So, every

time the range of where the median is being narrowed and how many times do, we will we

have to narrow? Because every time we are at least making the range half of the original size

so, we can we do it at most log n number of times because initially the range is of width n and

at each time, we are sending i + j by 2.

We are sending the count; the count of numbers will be some the number of elements that we

know there are at most n elements so the count will be at most of a number of size order log

n. So, order log n many bits and order log n log exactly log n many rounds.

(Refer Slide Time: 29:13)

So, it is order log n multiplied by log n the complexity is order log n squared or order log

square. So, this is another example of a protocol. So, now let me explain another important

notion say in the case of communication complexity. It is called a protocol tree, so this is just

another way of representing the same protocol that we already explained. So, the nodes are

the states it is a binary tree the nodes are the states and the leaf nodes are all marked 0 1.

So, assuming that the function is a 0 1 function. So, let us say Alice is the one to speak so

whenever Alice is the one to speak then the function will be a something and whenever Bob

is the one to speak the function will be b something. So, suppose Alice says a u x which is

some function on her own input and she may compute the function and transmit it to Bob. Let

us say the function is 0 or the function is 1.

Bob, so now what I am saying is that if the function is 0 then Bob may respond and if the

function is one perhaps. So, it is not always necessary that the protocol has Alice saying

something followed by Bob saying something even in the same protocol that I have drawn

here. When Alice says 0 Bob responds and when Alice is 1 Alice continues to transmit. So, it

may not be every branch need not have the same kind of communication interchange.

So, when Alice goes to the address says 0 initially Bob speaks and when Alice is 1 then it

means that Bob knows to wait that and allow Alice to speak as to speak. So, you can at the

bottom you have these leaves which are marked terminals mark 0 or 1 and when you have

another function here like a q here which means there is another sub tree beneath a q. Again,

some a q will be 0, something will happen a q 1 something else will happen and so on.

So, the leaves mean that let us say when I have it when I reach a let us say a u is 0, b b is 0

and then you reach this left most leaf. What it means is that? At this stage the function is

determined and the function is 0. So, Alice and bob can stop communicating because at this

stage it is there is only one way to or there is this me if they have both send 0 initially this

means the function has to be 0 and both of them know that and then they can stop

communicating.

This is what it means and it is easy to see that the total bits communicated it is actually the

height of the tree. So, the what is the longest route to leaf path for whichever leaf it is, that is

the height of the tree and that is also the depth of the protocol maybe not really depth

complexity of the protocol. So, the complexity of the protocol is not is denoted D f by this is

the complexity of the protocol not of the function.

The complexity of the function will be D of f is actually minimum over all protocols D f pi

and D f pi is a complexity of the protocol. So, which is the maximum so the height of the tree

means it is the maximum length of the path. So, here the in this picture that tree is of length at

least 1, 2, 3, 4, we do not know how deep this tree goes. But even though there is a root leaf

path of length 2 that is not the maximum.

So, here we know that D f pi is at least 4, so this is a way to represent the protocol by a binary

tree.

(Refer Slide Time: 33:39)

So, let me just see one protocol or one specific function and the protocol tree to understand.

So, let us consider the function equality function over 2 bits so let us say x 1 x 2 is the input

of Alice and y 1 y 2 is the input of Bob. So, let us say Alice sends the first bit that she has x 1

itself and there are two possibilities at 0 or 1 and Bob sends his input the first bit of his input

y 1 0 1.

So, now consider what would have happened? Let us say Alice's first bit is 0 and Bob's first

bit is 1 means that they already can conclude that their functions are that their inputs are not

the same. So, there are four possibilities here Alice could be having 0 0 and Bob could be

having 0 1. Alice could be having any of these 2 inputs 0 0 0 1 because the how do you read

this no here that that is circle with the green circle, x 1 has to be 0 and y 1 has to be 1.

So, it could be any of these 4 possible combinations x could be 0 0 or 0 1 and y could be 1 0

or 1 1. So, in all these combinations we know that x and y are not equal because the first bit

itself is not equal. Similarly, in this no also there are four possibilities x is so here x 1 is 1 and

y 1 is 0 so x 1 is 1 0 or 1 1 and y 1 is 0 0 or 0 1. Even then it is not equal but suppose, x 1 and

y 1 were equal.

So, suppose x 1 and y 1 were both 0 then we have a similar interchange or similar exchange

of x 2 and y 2. Suppose we have a similar exchange for x 2 and y 2, so let us see what

happens so suppose x 2 and y 2 are the same x 2 and y 2 are both 0, what does it mean? This

means that x is 0 0 and y is 0 0. Suppose x 2 and y 2 are both 1 in this case we know that x is

1 1 and y is 1 1 and there are two other cases where x2 is 0, y 2 is 1 so which is 0 0 and 0 1.

Or another case when x 2 is 1 y 2 is 0 so it is 0 1 0 0. So, in this case so you say the answer is

yes and no as per the input combination. So, when they are equal, we need to say s when they

are not equal, we say no. And similarly, we have a sub tree marked in the red as a red triangle

in the right side as well. So, this is the protocol tree for Alice and Bob when they compute

equality or this is one protocol tree for a certain protocol, so this is the protocol tree.

So, you can see that in some cases it is possible for one node of the protocol tree one leaf of

the protocol tree to capture multiple input combinations. So, the circled leaf here at the height

at the depth 2 is capturing four combinations x is 0 0 01 and y is 1 0 11 and this one also this

second no is also capturing four combinations. But the leaves at the depth of four are only

capturing one combination each.

So, sometimes the leaves capture more sometimes the leaves do not capture more and so can

we say something about what do like what are the inputs that reach each node of the protocol

tree and what can we infer about the complexity of the protocol from that. So, that; and some

inferences is from that we will see in the next lecture. So, what we have seen so far or maybe

I will just say one more thing is that what we are mostly interested in is bounds on the

complexity.

So, here we saw equality and this particular equality protocol the tree has depth 4, even the

this this red part is that is shaded is not 8 filled but that will be symmetric to the one in the

right in the left so this tree has depth four so this is a protocol for equality that uses four bits.

So, is this the best protocol? No, because we already saw that there is a protocol where Alice

sends her entire input to Bob and Bob just computes the function so that is just 3 bits n + 1

bits.

But this is just to illustrate what can be done with a protocol or how to represent using a

protocol tree and we will be seeing how to bound the communication complexity of a certain

function using various techniques. So, but perhaps I should do it in the next lecture so just to

summarize what we have seen. We have seen the communication complexity model; we have

seen some examples and we have seen what is a protocol tree.

How we can be used to represent a certain protocol for it to compute a certain function with

the example of equality. Next lecture we will see some bounds arising out of this. Thank you.

