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Hello and welcome to lecture 53 of the course computational complexity. In the previous lecture, 

we saw the Toda’s theorem; we started seeing the proof of Toda’s theorem. Toda's theorem 

shows that, any language in polynomial hierarchy can be simulated by a query by a deterministic 

polynomial time machine, along with a query to a sharp P oracle. And what we saw in the 

previous lecture was that any language polynomial hierarchy has a randomized reduction to 

parity SAT.  

 

Or in other words, it can be simulated by a BPP machine with one query to a parity P oracle, 

parity SAT oracle.  
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Just to for the sake of completeness, I am restating it, if k and m are greater than 0, there is a 

probabilistic polynomial time reduction, such that any sigma k instance psi can be reduced to A 

psi. So, the reduction rate outputs A psi, where A is a reduction. If psi is a true yes instance, then 

with high probability yes, I will be a yes instance of parity SAT, if psi is no instant, then with 

high probability is, I will be a no instance of parity SAT.  

 

In other words, it is you can represent it as polynomial hierarchy is contained in BPP with parity 

P oracle and we need to go from here to this polynomial hierarchy is in P to the sharp P. So, we 

are weakening the base machine, but we are going to a stronger oracle. So, BPP to P means you 

are losing randomness parity P to sharp P means instead of counting, just the parity we are 

actually counting the actual number.  

 

So, let us see how to do that and in this particular lecture will be relatively shorter as compared 

to the previous one. And, so let us see what is happening here. So, A psi is in parity SAT and 

with a certain probability. So, A psi being in parity SAT itself is saying that the number of 

satisfying assignment for A psi is odd or even. And then, we are saying that the probability that 

this is accepted is greater than 1 - 1 divided by 2 power m.  

 

So, let us say we use r random bits or something like that. And so, which means 2 power are 

possible choices and out of that, we are saying that 1 - 1 divided by 2 power m fraction of all the 



possible choices. So, if you had another machine to count, how many of these choices lead to an 

odd parity. Then we could do that. So, basically, so to count the number of satisfying 

assignments of A psi we need one level of one counting.  

 

And then apart from that we need another level of counting to count the number of A psi, the 

fraction of random strings that, random choices that lead to A psi being accepted. So, there are 

two levels of counting. One for the choice of one for deciding whether A psi is in parity SAT and 

two for checking whether, this number of accepting computations is at least 1 - 1 by 2 power m 

and same for the no case as well. So, there are two levels of counting here.  

 

So, when we want to say that, we want to simulate it with just deterministic polynomial time 

machine with one sharp P oracle, we want to simulate using one level of counting. So, that is the 

task at hand. So, let us try to understand where we are. So, suppose psi is true and in that case 

most of the A psi has an odd parity of satisfying assignments. If psi is false means most of the A 

psi has an even parity.  

 

But most having odd means, if you look at let us say so you can consider two levels. So, one for 

the choice of A and then another level where the number of satisfying assignments for A psi. So, 

if you want to, just if you want one thing that you may want to try is just to add up the number of 

satisfying assignments over all the possible choices of A. But then, what we know in true in the 

case, when psi is true is that most cases had an odd number of satisfying assignments.  

 

And the case of false most cases is an even number. But then even odd could be interspersed 

mixed up, we cannot really tell it apart. We even if most cases are odd the sum could be even or 

would be odd and maybe even the yes instance and the no instance, the total sum could be. So, I 

am talking about the sum over all possible choices of A and all assignments like satisfying 

assignments of all possible choice of A number of satisfying assignments of A psi. 

  

So, this sum may not really give us much information about whether psi was true or false. 

Because, this could be mixed up or it could the same value could result from yes instants as well 

as the no instance.  
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So, let us try to engineer away, where this sum will tell us the answer and that is what is going to 

happen. So, instead of A psi from A psi, we will go to another formula which will make sure that 

the sum itself will tell us whether it is yes instance or no instance. So, in order to get there, so 

here we have just parity, so odd and even. So, odd and even are mixed, so they are interspersed. 

There is no real difference.  

 

So, we want to get a more significant difference and from that will be our starting point. So, in 

other words we want to amplify the gap between yes instance and no instance. So, what we do 

here is given, so that is our theorem two. This says that given an input formula alpha and given 1 

power l which is just the number of or which is just l for the sake of an input l. There is a 

deterministic polynomial time reduction that outputs a formula beta.  

 

Such that if A is a yes instance of parity set then, B will have minus 1 mod 2 power l + 1 

satisfying assignments. So, think of l as some big number, so if l is 10 or if l is 5 then beta has 

minus 1 let us say if l is 5, then 2 power l+ 1 is 64, 2 power 6, 64. Then beta has 63 mod 64 

satisfying assignments. So, which is very close to the 64 and if alpha is not a yes instance of 

parity SAT, then beta has 0 satisfying assignment 0 mod 64 satisfying assignments.  

 



And this is going to create a gap. Why is it going to create a gap? So, in theorem one, given A 

psi we had two possibilities. One where the number of one where the probability if psi is true, the 

probability that A psi is yes instance of parity SAT happened with probability at least 1 - 1 by 2 

power m, which is a high probability. And, if psi is false, it is yes instance with a low probability, 

1 by 2 power m. So, if given psi in theorem 1 we compute alpha.  

 

Alpha is basically psi and with a bunch of random strings we do some processing. That is what 

we saw in the previous lecture to get an alpha. And we knew that the probability of psi and the A 

psi agreeing was 1 divided by 2 power m. So, let us set m to be equal to 2, so the probability that 

psi is true is sorry the probability that A agrees with psi is three-fourths and the probability of 

error is one-fourths. And, r is the number of random strings used by usage reduction.  
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So, what we will do is, so we have a formula, we have we start with psi and we have all this A 

psi. So, these are generated by different randomness, and then for each of these, we will count 

the number of satisfying assignments and we will take the total count. So, let us see what 

happens. So, if it is a yes instance so now let us apply theorem 2. Theorem 2 is this theorem that, 

if alpha is a yes instance of parity SAT beta has - 1 mod 2 power l + 1 satisfying assignments.  

 

And if alpha is a no instance, beta has 0 mod 2 power l + 1 satisfying assignments which is what 

I have just copied down here. So, if so, we apply theorem 2 on alpha to get beta, which has this 



condition. And what does this mean? If psi was a yes instance, most of the A psi like three-

fourths of the A psi will produce yes instances. Which means three-fourths of the random 

fraction, three-fourths of the random choices will have alpha as yes instance of parity SAT and 

for this alpha we get - 1 mod 2 power l + 1.  
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And, if you add up this, we know that the number of satisfying assignments over all the different 

choices of A psi, so we know that at least three-fourths are yes instances. So, it could be the 

three-fourths of all the random choices. And, it is - 1 mod 2 power l + 1 and that is at least and at 

most it could be all of them could be yes instances. So, it is all of the 2 power r prime. So, let r 

prime be the number of random bits, r prime used in the theorem one.  

 

So, we know at least three-fourths of multiplied by 2 power r prime choices give - 1 modulo 2 

power l + 1 or all of them give yes instances which is - 1 multiplied by 2 power r prime. So, the 

total number of satisfying assignments is anywhere between - 2 power r prime and - 3 by 4 

multiplied by 2 power r prime because each yes instance contributes a - 1 modulo 2 power l + 1. 

All of this is modulo 2 power l + 1.  

 

So, either minus three-fourths 2 power r prime or - 2 power r prime or anywhere in between and, 

if psi was a false formula if it is no instance, then similarly we can do the same calculation, so we 

know that the number of yes instances at most is at least 0 0 anywhere between 0 and one-



fourths. So, if all the instances are no instances, then we get 0 modulo 2 power l + 1. Otherwise, 

we could have up to one-fourth fraction yes instances.  

 

So, it is - 1 by 4 multiplied by 2 power R prime yes instances. So, in this case the range is 0 and -

1 by 4 2 power r prime. So, mod 2 power l + 1 so there are two ranges.  
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So, let us look at the entire thing modulo 2 power l + 1. And, just for the sake of easiness for 

concreteness, let us set R prime to be equal let us set l to be equal to R prime. So, this is from 0 

to range 2 power l + 1 which is the same as range 2 power R prime + 1. So, yes instance could 

lead to - 2 power R prime and - 3 by 4 multiplied by 2 power R prime. So, 2 power R prime is 

roughly - 2 power R prime is roughly midway point - 2 power R prime is equal to + 2 power R 

prime in the case of modulo 2 power R prime + 1.  

 

And - three-fourth 2 power R prime gives somewhere here so the yes instances are in this range. 

The total number of satisfying assignment in the case of yes instances are in the green range. 

And the no instances are from - one-fourth times 2 power R prime till 0. So, this entire range is 2 

power R prime + 1. So, this is the midway point and this green portion is roughly one-fourth of 

the half portion or one-eighth of the entire portion.  

 



And, similarly the red portion is also roughly one-eighth of the entire portion. The point is that 

the green the yes instance contributes the green zone and no instances contribute to the red zone. 

And the red zone and green zone are disjoint are separated. So, now we can safely so in fact I 

think, even if you had tried l to be equal to R prime - 1, even then we could have worked. If l 

was, so we would have got some so if this is set aside, if l = R prime – 1.  

 

Then we would have got something like this, I think. So, let us say this is the midway point is 

this then we would have got the green zone to be here and the red zone to be here. But anyway, 

even l = R prime works, so in both cases it works. But, if l is smaller than R prime - 1, I do not 

think it will work, because then I think the zones will start merging and then we will not be able 

to tell them apart.  

 

So, now all that we need to do is to take the first reduction first reduction in second reduction put 

it together. And ask how many satisfying assignments are there for this entire process. So, even 

the first reduction instead of doing it as a randomized reduction with random coins we have to 

view it as non-deterministic choices. So, over all the non-deterministic choices how many 

accepting computations are there? And, if we can do that, we can tell which case it is, so this one 

counting is required.  
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So, I am just written down the entire thing here, so given the sigma k instance psi is input. So, 

you construct a non-deterministic Turing machine that takes r 1, r 2 which is a random choices as 

non-deterministic choices. In fact, I think I said r R, so maybe I will just change it to r R. And, 

the first it builds the non-deterministic Turing machine builds alpha using the reduction shown in 

the previous lecture using psi r 1 r 2 up to r R.  

 

And, now alpha is obtained and now we build beta which is deterministic using T and alpha 

which is using the process T and you accept if beta is satisfiable. We accept if beta has a 

satisfying assignment, so now there are two levels. So, one is the choices of r, r 1 r 2 up to r R 

and then choices inside beta. So, how many accepting computations are there using both these 

non-deterministic choices with?  

 

So, even the random reduction in theorem one or the previous lecture we are now viewing it as a 

non-deterministic set of choices. So, the two sets of non-deterministic choices, so psi and then A 

psi or alpha and then we get beta which is still random and then how many accepting 

computations are there for each level of beta. So, at the end we are counting all the accepting 

computations of all the betas that are situated like this.  

 

And you count the number of satisfying assignments and see which band it lies, whether it writes 

in the green band or in the red band and that is all. So, just with one counting we know whether 

beta is in the green or red and beta is satisfiable and that tells us whether alpha was a yes instance 

or not. No, we do not look at individual beta or alpha. So, just look at the total number of 

satisfying assignments overall.  

 

So, that tells us whether psi was yes instance or a no instance because the green, red bands 

correspond to only psi. And, that is all that we need so now there is no randomness, the 

randomness has been replaced by just the amplification and then in one counting, just one 

counting. And, this non-deterministic Turing machine, we just want to count the number of 

accepting computations.  
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So, all that we need to do is ask the oracle all that needs to be done, ask the sharp P oracle the 

number of accepting computations of this NTM for the given input and that is it and check 

whether it is the green or red. So, this completes the proof assuming theorem 2. So, this is 

complete the proof of the Toda’s theorem. So, all we are doing is build this non-deterministic 

Turing machine.  

 

So, building this non-deterministic Turing machine is entirely deterministic polynomial time 

process. So, we do not even need to know what is r 1 r 2 anything we just build on a non-

deterministic Turing machine. And, so what is alpha the process to construct alpha and the 

process to construct beta, is all that the non-deterministic Turing machine needs to do. So, it is 

like writing a program and then asking, how many ways that can this program succeed.  

 

So, build this Turing machine, which completes the reduction and then check and ask the oracle, 

how many accepting computations it has. So, that is it. It is a very interesting thing, all that we 

are doing is one amplification going from 0 1, to this big 0 1. So, this parity SAT is like 0 1 mod 

2, or 0 - 1 mod 2, and from there we are going to 0 - 1 mod 2 power l + 1 and that is what is 

giving us this big range.  

 

If it was 0 1 so if l was really small here, it would not have helped. If l is in fact l is 0 means it is 

just again parity.  
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So, now let us see how to do the amplification. So, given alpha we need to build beta so alpha is 

like 0 1, yes instance of parity or no instance of parity from there we need to move to 0 or - 1 

mod 2 power l + 1. So, yes instance of parity means we need to move to - 1 mod 2 power l + 1, 

no instance of parity means we need to move to 0 mod 2 power l + 1. So, recall we in the 

previous lecture, we had shown given a formula phi and phi prime that has m and m prime 

satisfying assignments.  

 

We could build formula with m + m prime satisfying assignments, m multiplied by m prime 

satisfying assignments and a constant number of satisfying assignments. So, we could do m plus 

constant satisfying assignments, as long as it is a positive constant. So, these are the tools that we 

have, you could add two formulas to get a formula with which has the number of satisfying 

assignments is the sum or the product and we can even add a positive integer.  
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So, given alpha, the alpha is either in parity SAT or not, it is either odd number of accepting 

computations or even number. So, given a formula, so now let us try to understand we given a 

formula tau. Consider this formula 4 tau cube, maybe I will just move it, 4 tau cube times + 3 

times tau power 4. So, think of this as because, so by this I mean that given a formula tau, we 

could build a formula that let us say tau accepts 10 satisfying assignments.  

 

Now, I could build a formula that accepts 10 squared satisfying assignments, just by what we 

saw about by constructing some product etcetera and similarly I could build a formula that 

accepts 10 cubed. So, consider the formula this means, what I mean by this is that a formula tau 

prime, that has 4 m cube + 3 m power 4 satisfying assignments where tau has m satisfying 

assignments. So, that is what I write mean by the shorthand notation.  

 

So, if tau has m satisfying assignments, this new formula must have 4 m cube + 3 m power 4. 

But then this is just simpler to write 4 tau cube + theta. This is not exact equal to 4 tau cube + 3 

tau power 4 in the strictest sense. So, let us try to understand, suppose tau the number of 

satisfying assignments of tau was 0 mod k. Then 4 tau cube + 3 tau power 4 is 0 mod k square 

because, number of satisfying assignments is a multiple of k.  

 

Then here we are taking tau cube and tau power 4. So, clearly this is a multiple of k squared. So, 

if k divides m then certainly k divides 4 m cube + or k square divides 4 m cube + 3 m power 4. 



That is all that I am doing here. Now, suppose tau is - 1 mod k. That is the condition - 1 mod k. 

Then the claim is that 4 tau cube + 3 tau power 4 is - 1 mod k squared. Let us see why this is the 

case.  

 

So, suppose let us say tau is a k - 1, so where a is some constant, so 4 a k - 1 whole cubed + 3 a k 

- 1 whole power 4. Let us see what each of this is. If you do modulo, if you expand the cube you 

will get something like, a cube k cube + 3 or maybe not + - 3 a square k square + 3 a k - 1.  
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That is for the first term, plus maybe I will just write this a bit differently 3 a square k square, so 

I will just write it as a k - 1 maybe I will just write a bit differently here also - 2 a k + 1. So, I 

have written it as a k - 1 squared squared. So, now this one if you look at it modulo k square, I 

can ignore all the terms that are multiples of k square. So, this is just 4 times 3 a k - 1 + 3 times - 

2 a k + 1 whole squared modulo k squared.  

 

And, this is fine 4 times 3 a k - 1, if you again expand this you will see that the k square term 

vanishes, so what will remain is so the 3 remain outside, 3 - 4 a k + 1 and modulo k squared and 

what will remain is that the 12 a k + and - will cancel. So, this term will cancel and what will 

remain is - 4 + 3, which is - 1. So, if you started with something - 1 modulo k, so the operation 

this 4 tau cube + 3 tau power 4.  

 



Meaning which is a corresponding formula, that has this many satisfying assignments. If you 

started with tau, that has 0 modulo k satisfying assignments the new formula has 0 modulo k 

square. If we started with - 1 modulo k satisfying assignments the new formula has - 1 modulo k 

square. So, from modulo k we are moving to modulo k squared. And, this is for any k this works 

for any k.  
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And, we started with alpha being in either parity SAT or not parity SAT. So, which means the 

number of satisfying assignments was either 0 or 1 modulo 2 or 1 modulo 2 is the same as - 1 

modulo 2. And we could repeatedly apply this operation I could go from 0 and - 1 modulo 2 to 0 

and - 1 modulo 4 and 0 and -1 modulo 4 to 0 and - 1 modulo 16. Every time the modulus thing is 

squaring. So, every time it is squaring, so 4, 16, 16 square 256 and so on.  

 

And, we will we need to get to 2 power l + 1. So, but, every time we are repeatedly squaring so 

we are going something like 2, 2 squared 2 2 power 4, 2 power 8 and so on. So, we need to go to 

2 power l +1, so we need to do log l + 1 many steps, log l + 1 many steps, iterations. And so, we 

had want l to be roughly equal to R prime. That is what we said here, so this ranges red and 

green ranges remain separate.  

 

So, and R if you remember from the previous lecture, it was roughly the number of it is the 

number of random bits, and this was roughly the size of the original formula. So, it may be a 



polynomial in the size of the original formula. But, the number of iterations that we do is log l + 

1. But if you do whenever we do one step the size of the formula kind of also becomes roughly 

blows up by some constant.  

 

So, we do log l + 1 step, so there is always a some constant power log l + 1 blow up happening in 

the size. But since log l + 1 is something polynomial in the size of the formula, the resulting 

formula will also be polynomial size in the original formula. And this so which means from the 

original formula that we had we are constructing a new formula which is polynomial size of 

original formula but with the amplification.  

 

So, original was the result of theorem one construction and now we have the theorem 2 formula 

beta. And finally, we as I said already, we combine theorem 1 and theorem 2 and we count all 

the number of satisfying assignments or we do not count that is counted by the sharp P oracle 

and we just check whether which range does lie in the red or the green range. So, just to 

summarize the whole.  

  

The second part of the proof was just mainly this modulus amplification where we moved from 

yes or no instance of parity SAT the 0 and - 1 modulus some high modulus 2 power l + 1 by 

using this trick. And, then after that we just cascaded this or compose these two reductions, the 

randomized reductions and the formula beta. And we after the amplification the yes instances 

would result in the total number of satisfying assignments being in a certain range.  

 

And the no instances would result in the total number of satisfying assignments being in some 

other range. So, the yes instance and the no instance are separate from which we could tell 

whether the original formula which was a sigma k instance was a yes instance or a no instance. 

And, so that is a deterministic machine with just one query to a polynomial with a sharp P oracle, 

to a sharp P oracle, deterministic polynomial time machine with one query to a sharp P oracle. 

And that completes the proof of the Toda’s theorem.  

 

So, perhaps I will just revise just to summarize this entire week. We had basically just two 

results, one was the permanent is sharp P complete which was variance theorem. So, we saw 



what was permanent and then we saw that we could convert sharp 3 SAT into a problem of 

counting the permanent or estimating the permanent. So, this was a somewhat involved reduction 

with a too many gadgets.  

 

And the second lecture was a continuation of the same. So, it is interesting because permanent 

and is, we saw that it is only definition was it is not that far away from determinant. If you put 

the sign here it is a determinant, if you do not put the sign here it is permanent. So, the sign 

makes up all the difference, the sign this - 1 power sign component. But then, determinant is very 

nice in the sense that it allows these row operations.  

 

You can add a copy of a row or a multiple of a row to another row, still the determinant does not 

change you can do Gaussian elimination and all this makes the computation very tractable. But 

permanent does not allow most of these operations. So, and as you have seen, if you can compute 

the permanent, we can solve any problem in sharp P and we have also seen that, sharp P can 

simulate or one query to sharp P can answer any question in the polynomial hierarchy.  

 

So, that is the power of sharp P, so hopefully we appreciate the theorem that permanent sharp P 

complete even more now. So, even though the small the sign; adding the sign changes the 

complexity of determining or computing the determinant to computing the term permanent so 

much. So, this lecture 51 was just a continuation, lecture 52 and 53 were Toda’s theorem which 

was a kind of involved even perhaps even more involved theorem.  

 

And perhaps one of the most involved theorems that we see in this entire course. That showed 

that, a language in the polynomial hierarchy can be simulated by a deterministic polynomial time 

Turing machine, with just one query to the sharp P oracle. And 53 was continuation of the same 

and that is all that we have for week 10 and thank you. 

 


