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Hello and welcome to lecture 52 of the course computational complexity. We have been 

seeing the power and complexity of counting over the past few lectures. In this lecture we 

will see Toda’s theorem which was a surprising result. And this stated that the entire 

polynomial hierarchy can be captured with the sharp P by sharp P. So, let us see the 

definition, let us see the statement.  

 

So, the statement is that polynomial hierarchy is contained in P with a sharp P oracle. So, if 

there is a sharp P oracle which can answer queries from the function plus sharp P. A 

polynomial time machine for deterministic polynomial time machine with a sharp P oracle 

can simulate a polynomial hierarchy any level of polynomial hierarchy. So, why is this 

interesting?  

 

So, we know we have already seen that a sharp P is at least as powerful as P, NP, BPP, RP 

and so on VP. Because if we can count, we can decide whether there is at least 1 accepting 

path or 0 accepting path. So, it is you can decide you can make it an NP language and 



certainly you can decide whether at least two thirds of the paths are accepting or at most one 

third.  

 

So, you can decide BPP and similarly you can decide PP, RP any of the randomized classes. 

Another thing that we know is P with an NP oracle, is contained in sigma 2 because P with an 

NP oracle can simulate both NP as well as co NP. So, it is bigger than or seems to be bigger 

than NP but both NP and co NP are contained in sigma 2. So, P to the NP is contained in 

sigma 2 in fact NP to the NP we saw that it is con it is equal to sigma 2.  

 

So, now the question is, when we had P with an NP oracle, we got some language that is we 

got a class that is bigger than NP. Now what if we replace NP with sharp P here? We know 

sharpie can simulate NP but from sigma 2 in the right-hand side how far do we go. 

(Refer Slide Time: 02:39) 

 

So, that is the question, and the answer as I already stated is that the entire polynomial 

hierarchy can be simulated with P, with access to a sharp P oracle. So, what we will see is 

that any language in sharp P sorry, polynomial hierarchy. So, the kth level of polynomial 

hierarchy we can call it sigma k. So, and the complete problem of that class we already 

mentioned is q k SAT, with k quantifiers.  

 

So, let me in this lecture let me just call it sigma k SAT which is the same thing and just 

calling with a different name. So, it is satisfiability with k quantifiers k alternating 

quantifiers, this is the complete problem for the kth level of sigma k, kth level of the 

polynomial hierarchy sigma k. So, pi k will have the negation complement problem of this. 



We will show that this language can be simulated by a polynomial time deterministic 

polynomial time Turing machine with access to a sharp P oracle. So, which is what we are 

saying here. 
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And not only that a sharp P oracle it is a Turing reduction, you could ask multiple queries. 

What we will show is that this oracle we can make with, it is enough to just ask one query to 

this oracle. All we need to do is just ask one query not even multiple queries. So, now let us 

see the proof. So, I will try to explain the high-level details and then go into the final details 

of the proof.  

 

So, I will be happy and the proof is kind of long it will be spread over two lectures. I will be 

happy so please try to understand the high-level picture of the proof first and then try to 

understand the lower-level details. So, I guess that will give a better understanding of the 

entire what is going on. So, let me just let us just first see some operations. So, suppose there 

is a formula phi that has m satisfying assignments.  

 

So, this is and phi prime has m prime satisfying assignments. So, the objective is to show that 

if you have phi with m satisfying assignments and phi prime with n prime satisfying 

assignments you can do some kind of arithmetic in this sharp P world. So, you can for 

instance you can produce a formula, so consider this AND so you instantiate phi with the 

variable set x and phi prime with a different variable set y.  

 



And take the AND of these two very these 2 formulas. Then any satisfying assignment of this 

phi x and phi prime y has to have it could be any of the satisfying assignments of phi and any 

of the satisfying assignments of phi prime. So, and x and y are independent set, so there is no 

dependency across. So, it could be any one of the m satisfying assignments of phi multiplied 

by and any of the m prime satisfying assignments of phi prime.  

 

So, the number of satisfying assignments of this formula is m times m prime. So, we are 

trying to show that we can do such arithmetic if you are given a formula with m and formula 

with m prime then you can do something to produce a formula with m times m prime. And 

similarly, if you can do this, you can instantiate phi and phi prime with the same set of 

variables even if it is the same set of variables.  

 

What you can do is? You can do this kind of thing where you and phi x with z or phi prime x 

with z complement. So, phi prime is another and the formula so either z has to be true or 

false, when z is true it does not matter what phi is what x are chosen as far as this the first 

clause is always true. But when z is z is true then the second clause, we need phi prime x to 

be satisfied.  

 

So, any satisfying assignment of phi prime have to be will is necessary to satisfy the second 

class. Similarly, when z is false the second clause is automatically true. But any satisfying 

assignment of phi is required to satisfy the first loss. So, when z is true then the second cross 

n phi prime needs to be satisfied when z is false the phi needs to be satisfied. So, this has m + 

m prime satisfying assignments. 
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And one more point is that we can build a formula that has a constant number of satisfying 

assignments for any constant. So, let me just show some simple things so just a single 

variable formula x has one satisfying assignment, something like this x and z or x bar x 

complement and z complement has 2 like both 0 1 and 1 0 works are the 2 satisfying 

assignments. And now you have two formulas that have 1 and 2 satisfying assignments. 

 

Now you can multiply to get 2 and 2 to get 4, 4 and 2 to get 8. And then you can get all the 

powers of 2 and then you can add to get any natural any positive integer or any natural 

number. So, even if you have a formula 5 with an unspecified number of satisfying 

assignments now you can get another formula with let us say phi hat x or m number of 

satisfying assignments. We could have another formula with m + 10 satisfying assignments. 

 

Because we can make another, we can construct another formula that has exactly 10 

satisfying assignments and then you can do this add operation. So, we can get any constant, 

so you can we can do 5 + 1 or we can do an + 1 operation. So, to if I had m satisfying 

assignments then you can build a formula that has m + 1. So, this kind of arithmetic with the 

number of satisfying assignments you can do.  

 

So, what can we do? Into multiplication we can do addition and we can construct all positive 

integers. 
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So, we can do add positive integers. So, coming back to Toda's theorem we will do Toda's 

theorem in two parts. So, the first part will be covered in this lecture and second part in the 

next lecture. So, consider the language called sharp SAT sorry parity SAT. So, parity SAT is 

simply asking, so this plus with the circle plus inside the circle is called parity. It is simply 

asking if the given formula or it is a class of language or class of formulas that have exactly 

an odd number of satisfying assignments. 

 

So, any formula it has a some number of satisfying assignments that number it could be 0 

could be 1 could be 2 power n it could be odd or even. So, whatever that has odd it is in 

disparity SAT and clearly parity SAT is contained. So, it is a language, because it is 

everything is odd or even. So, parity SAT is a language it is not a promise problem or 

anything. It is not a function as well.  

 

So, anything so clearly parity SAT is contained in P to the sharp P, P with a sharp P oracle. 

Because if you can count the number of satisfying assignments all you need to do is just 

decide whether the count is odd or even. So, clearly parity set is in P to the sharp P. So, again 

our goal was to show that polynomial hierarchy is in P to the sharp p, but this is something 

that we are just saying parity chart parity SAT is in P to the sharp P.  

 

And what we will do is to show that any quantified Boolean formula with k levels of 

quantifiers. So, again this language is called sigma k SAT, so which has k quantifier starting 

with an existential quantifier. We will reduce it to sharp parity SAT and this reduction will be 



a randomized reduction. So, if given k, there is a given k where k is the sigma k the same and 

given in number m there is a randomized reduction, randomized polynomial time reduction.  

 

That given a sigma k instance psi it outputs a parity SAT instance A psi. So, you can think of 

a being the reduction, such that the sigma k it has quantifiers and eventually it has a truth 

value true or false. If sigma is true or if the sigma k instance psi is true then the output 

instance A psi is very likely to be in parity SAT to be A sense instance of parity SAT 

meaning it is very likely to be very likely to have an odd number of satisfying assignments.  

 

And notice that A psi is just a Boolean formula. It does not have quantifiers or anything. And 

then we are just checking how many satisfying assignments does it happen. And similarly, 

when psi is false the sigma case at instance psi is false then A psi will is very unlikely to be in 

a parity SAT. And the probability is like with probability 1 - 1 by 2 problem with very high 

probability it is likely to be this correspondence is maintained.  

 

So, it is not a deterministic full proof correspondence like a sense here is always mapped to a 

sense and here. But if psi is true then we are very likely to have A psi being a P sense of 

parity SAT and if psi is false, we are very likely to have A psi being a no instance of parity 

SAT. Another way to see this is that, so the left-hand side we have a sigma case SAT which 

is a like arbitrary language from the polynomial hierarchy.  

 

So, polynomial hierarchy is contained in BPP with access to a parity P oracle so you can 

think of a parity P oracle instead of an oracle that counts the number of satisfying 

assignments. And oracle that just tells you, whether the number of satisfying assignments is 

odd or even. So, it is a weaker oracle than sharp P oracle because if you can count you can 

certainly determine the parity.  

 

And now what we are saying is that but the reduction is not deterministic in the sense it 

direction is not full proof the correspondence allows some error. So, because of that we say it 

is BPP with access to parity SAT oracle. 
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So, what we are saying here is that polynomial hierarchy is contained in BPP with a parity 

SAT oracle. And what was our target? Our target was to show that polynomial hierarchy is 

contained in P to the sharp P oracle. So, P is a weaker class than BPP seemingly and sharp P 

is a stronger class than parity P. So, we want to come to the deterministic polynomial time 

but we are okay to use a counting oracle rather than a parity oracle.  

 

So, this is what this is where we want to go to so ultimately, we will prove the statement in 

the right-hand side which is polynomial hierarchy is contain P to the sharp P but in this 

lecture, we will show the first statement. So, in fact like the this reduction that I just said 

when psi is true implies A psi is in a sense of parity SAT we have seen as somewhat of a 

similar statement in one of the previous lectures. 

 

So, the statement being Valiant Vazirani theorem. So, what we showed there was given a 

Boolean formula phi. We have a randomized algorithm to construct another Boolean formula 

such that if phi is satisfiable then the other Boolean formula has exactly one satisfying 

assignment with high probability. So, it is a unique SAT instance, unique SAT is satisfiable.  

(Refer Slide Time: 15:52) 



 

Phi is satisfiable then the reduction gives a unique SAT instance with a certain probability. If 

phi is not satisfiable the reduction will give you a unsatisfiable formula. So, if you recall the 

reduction was something like you mapped phi to phi and some kind of hash function. So, 

basically its phi and something. So, whenever the phi was unsatisfiable the formula in the 

right-hand side was also certainly unsatisfied it is because it is phi and something.  

 

And the right where n is the number of so the probability of success in the first part was 1 by 

8 n. Second part, it is a one-sided error. And notice that if, phi are satisfiable then it has then a 

phi has exactly one satisfying assignment with a certain probability. So, a phi having one 

satisfying assignment means it is a yes instance of parity SAT as well, one is an odd number. 

if i is not satisfiable then a phi does not have satisfying assignment, so it is a no instance.  
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So, we can actually view it like this if phi is satisfiable then this is sorry a phi is a yes 

instance of parity SAT. And if phi is not satisfiable then, phi is not in the parity SAT or rather 

it is a no instance of parity SAT, we can say it like this as well. Because 1 is an odd number 

and 0 is an even number. And so that is fine so with the Valiant Vazirani lemma theorem we 

are already somewhat close to here somewhat like what we have here.  

 

What are the differences? The difference is that Valiant Vazirani lemma took one simple 

Boolean formula without any quantifiers. Here we are taking Boolean formula with k 

quantifiers everything is quantified there is no free variables. Second thing is that the 

probability of success is one-sided in Valiant Vazirani. So, the no instances are sure to go to 

no instances yes instances are going go to yes instances with a very small problem with a 

small probability 1 by 8 n.  

 

Whereas here in the target statement we want the correspondence to be much stronger the 

probability that if, i is true then a phi is in parity side is 1 - 1 by 2 power m. So, we need to do 

some kind of boosting and of course the third thing is that Valiant Vazirani deals with unique 

set so it is exactly one but whereas here we are okay with odd even thing. So, the reason we 

want to go to the odd event the parity from the unique SAT thing is that there is no clear way 

to boost the probability of success with the unique SAT setting.  

 

So, in fact it is an open question to boost the probability of success beyond this 1 by 8 n even 

we are in the unique SAT setting. So, what we will do is to move to the parity set setting, 

which is automatic from the unique SAT because 1 means odd parity and 2 means even 

parity. 
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So, already the Valiant Vazirani give something like this if a formula psi is true meaning psi 

is satisfiable then A psi is so I will just say true or satisfiable false or unsatisfiable. The 

reason being when psi is true, I have to it has to be a simple Boolean formula. It cannot have 

quantifiers but then I use psi for a quantified fully quantified Boolean formula. So, when I say 

psi is true think of it as something like some there x x some phi of x or something. 

 

So, there is some way to satisfy psi if that is the case then A psi has a maps to a plus instance 

of yes instance of parity SAT if it is false then A psi maps to a no instance of parity SAT or a 

sentence with 0 probability. 
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So, this is automatically this is what Valiant Vazirani, already gives us now we will see how 

to boost this probability of success. This is kind of what this valiant was running giving us 



because the only issue is that this psi is not strictly speaking a Boolean formula. But we can 

view it as the first there exists you can you can take it as and fix the rest of the variables. Now 

suppose we have just like we performed arithmetic over the number of satisfying 

assignments. 

 

We can also perform arithmetic over the parity of the satisfying assignments. Suppose we 

have formulas phi and psi. Now we can create formulas depending on if I you can do a 

Boolean arithmetic with phi and psi, let us see how. So, let us before that let us denote this 

symbol this notation as parity subscript x phi x denote the parity of the count of the x as the 

satisfy phi. So, phi is a formula that has x as a free variable.  

 

Then this indicates the parity x phi x denotes the parity of the number of x as the satisfy phi. 

So, x could be a vector x need not be just one variable. So, just to give some examples so if, x 

is just two variables x 1, x 2 then parity of x 1 or x 2 = 1 because x 1 or x 2 has 3 satisfying 

assignments x 1 true x 1 false x 1 true x 2 true x 1 false x 2 true. At least one of them have to 

be true the non-satisfying assignment is when both of them are false. 

 

Another formula is when x is x 1 x 2 consider this x 1 or x 2 and x 1 complement or x 2 

complement. This has only 2 satisfying assignments 0 1 and 1 0 0 0 and 1 1 are not satisfying 

assignments so the parity is 0. This is just to give you an illustration of what this the symbol 

the parity x symbol is. So, you can think of it as a quantifier, just like there x is x something 

or for all x something you can think of parity access also as also a quantifier. 

 

Parity x is just saying considering all x. So, there x is x is asking out of all the x is there at 

least one x that satisfies. For all x is saying are all the x is satisfying parity x is saying is 

exactly an odd number of x is satisfying. So, you can think of it as a quantifier as well.  
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So, now let us let us come to the arithmetic using these quantifiers. So, suppose you are given 

so basically, we want to say that we can do Boolean arithmetic using this you and still remain 

still give a parity instance. So, consider parity phi and parity psi and you want to take AND of 

them and it will still be a parity because you can take the multi you can take the product or 

the AND phi x AND psi y.  

 

And as already mentioned this, the number of satisfying assignments of psi x sorry phi x and 

psi y this will be the product. So, if this has m and this has m prime this will have m times m 

prime satisfying assignments. So, the parity the AND says both of them are of positive parity 

meaning both of them have odd parity. So, but then that is true when m and m prime are m, m 

prime is odd if and only both of them both of m and m prime are all.  

 

So, that is what it is if you want to negate the parity of psi x or phi x you can just add 1 to that 

we already saw how to manipulate the formula Boolean formula such that you can add 

something to get one more satisfying assignments or ten more satisfying assignments. So, if 

you add one more then the parity flips because odd becomes even with addition of 1 and even 

becomes odd.  

 

So, negation can be written as just adding 1 when I add 1 I do not mean to say that you add 1 

to the formula what I mean here is add or do the transformation that adds exactly one more 

satisfying assignment, that is what I mean by this. And finally, OR if you want to do OR of 

this if you have 2 formulas and you want to do OR the easiest so, we already saw negation 

and the easiest thing to do is de morgens.  



So, you can do a negation and then again, a negation. So, negation is just adding 1. So, we do 

5 + 1 AND psi + 1 and then you take in you add 1. So, basically, it is negation and then again 

indication. So, this is OR using de morgens, so basically what we are saying is that using 

parity we can perform the Boolean operations and still it will be a parity of some Boolean 

formula.  

 

So, I can write the parity as I can write I can do logical Boolean operations. And still, it will 

be and get yet another parity Boolean operation Boolean formula.  
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So, all these building blocks will be useful in the remaining steps. So, just to just to 

summarize what we have is the Valiant Vazirani theorem and this was our target. Given a 

sigma k instance sigma case at instance we want to get to a Boolean formula such that there is 

a high correlation. If the instance the sigma k instance is true, then the reduced instance 

should be a sense of parity side with high probability.  

 

And the other way as well and this is a randomized reduction. So, now as I said there were 

the one of the things that we needed to do was to boost the probability of success in the 

valiant vazirani and I promise that I said that by moving from unique side to parity set we can 

boost the probability of success. So, let us see how we can do that? So, if you recall the 

valiant vazirani reduction, what did we do?  

 

We had a Boolean formula and it may have it had it could have had many satisfying 

assignments. Let us say this is satisfying assignments and this is a set of all assignments. But 



what did we wanted to transform to a formula which has exactly one satisfying assignment 

with high probability or with some probability. So, we can we what we did was we took 

AND with some so we took a hash function.  

 

And we took AND with that hash function maps to 0. So, 0 power m, so sum phi became phi 

AND h of x = 0. So, h of x = 0 is I am just somewhat abusing notation but I am just saying 

that this is how we transformed it. So, the point here is that this h of x was just chosen 

randomly so first if you remember we just chose m from 2 3 up to n + 1 and then for the 

range of number of satisfying assignments of phi.  

 

And then so that what then that was done randomly. And then for that m we chose a hash 

function from a hash function pairwise uniform hash family. So, this was completely 

independent of this phi. So, it does not look at what phi is it just looks at phi to get the 

number of variables. So, this is what I am calling tau here, this is the same thing that I am 

calling tau here. So, what we can do is to repeat these many times.  

 

So, we may get tau 1 tau 2 and so on, and the variant wizard and reduction was psi and tau. 

So, now for this purpose for this part think of psi as a Boolean formula, given psi. So, later in 

the main theorem in this lecture we will think of psi as a quantified Boolean form now you 

think of it as just Boolean formula. Now we want, so now we can repeat and boost so if psi is 

satisfiable then with some probability it gets mapped to unique satisfying assignment.  

 

So, how do we boost this one-sided errors? So, if you repeat it and you check for any of the 

instances does it have at least one SAT or exactly one satisfying assignment. And if any of 

the instances has exactly one satisfying assignment then psi also had exactly one satisfying 

assignment because we know it is one sided if, psi had no satisfying assignment then all tau 

and tau 2 everything none of them will have any satisfying assignment.  

 

Because psi itself does not have. So, it is one sided error so this is how you do it. So, 

basically you are doing OR of any of this psi and tau 1 psi and tau 2 does any of them have 

exactly 1 satisfying assignment. And in order to boost it this exactly 1 does not scale. So, we 

will do it we will consider the parity so exactly once mean odd parity and no satisfying 

assignments mean even parity.  

 



So, you want to take an OR of all this psi and tau i disparities the formulas. If any of them has 

a satisfying assignment then has an odd parity satisfying assignment then psi was a yes 

instance, so psi was also satisfiable this is what we know. And we already know how to do 

this? We already saw how to take OR of 2 formulas 2 parity formulas phi and psi so same 

thing we will do here.  

 

We take psi and tau 1 + 2 psi n tau 3 + 2 and so on, psi n tau r + 1 which is r is the number of 

times we repeat this and finally you do plus 1 and take the parity of all and this entire thing 

you can convert it into 1 formula. The parity sign will be outside and it will be just formula. 

Let us say the formula the variable in the formula is z and your z is the collection of all the 

variables and you are taking parity over z.  

 

So, now we can this repeated tau 1 you and this ANDs you get this one formula and psi is 

true or psi is satisfiable if and only if this gamma formula gamma had a has an odd number of 

satisfying assignments. So, not; if and only with a certain probability so now we need to 

compute the probability. 
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So, I will come to the random bits soon. So, what we can do is, so the probability of success, 

what is the probability of success? The probability of maybe I will just write it here 

probability of success is probability of error may be easier to calculate it is actually, if psi is 

not satisfiable there is no error, we will always say no. What is the probability that when psi 

is satisfiable there is an error?  



So, it is satisfiable but every instance we try we get a yes instance is mapped to no. So, this is 

at most so the probability of error in a single trial is 1 - 1 by 8 n and now let us say we raise it 

by some constant times c sorry some constant times m n. So, this will roughly become some e 

so e power some constant times m and if you choose the constant carefully this there will be 

negative sign you will get 1 by 2 power m.  

 

So, because its single sided error by repeated trials you get that the probability of error can be 

reduced to 1 by 2 power n. And the number where n is the number of variables, m is the m 

depends the target probability that you are seeking and c is some constant it will not be much, 

it will it not it will not be dependent on m or n or anything. So, what we have now is that if 

psi is satisfiable then gamma is in the parity SAT with a higher probability with a high 

probability.  

 

If psi is not satisfiable then gamma is in parity SAT with 0 probability. So, again it is one 

sided error but the error probability has become very small the property of success has 

become very high so from 1 - 1 by 2 power m, so we that is very close to 1. We started with 

one divided by 8 n. So, this shows that if psi is a so what we have actually shown is that if psi 

is a simple Boolean formula.  

 

So, the first level of polynomial hierarchy let us say psi is a Boolean formula so whether 

satisfiable or not is like an NP question, NP complete problem. That problem we are saying 

that we can reduce to checking deciding parity SAT and that will do with high probability. 

And the error is even 1 sided here and this looks very much like what we wanted to show this 

is what we wanted to show.  

 

If psi is true then instead of psi is true now, we showed size satisfiable and the probability of 

success was 1 - 1 by 2 power m in the case of yes instance and no instance it was actually 0. 

So, it was better than the no the case here but the only difference is that we showed the case 

when psi is a formula with a single quantifier there exists x now, we want k quantifies we 

want to extend to k quantifier so how do we do that. 
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So, how can we move to k quantifiers? So, what we do is we just basically, it is what we saw 

already Valiant Vazirani and then we will do induction on top of that. So, it is just a bit more 

formal and I will be happy if you can understand what we have said so far. So, if you if you 

are trying to prioritize which part I want to follow and which part I will learn later then try to 

understand whatever we have seen so far. So, the next the next part gets a bit technical. 
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So, but it is more of what we have done already. So, now this is again the valiant vazirani 

theorem, but just stated in a bit different form. So, I already mentioned this already the other 

points here already. If there is a formula beta on n variables Valiant Vazirani says if beta is 

satisfiable then we will produce another formula probabilistically such that the other formula 

has an exactly 1 satisfying assignment with height with some probability. 

 



And we notice that this beta, this formula is independent of beta except for the number of 

variables the only thing that it. So, it works for any beta over n variables over the same 

number of variables. So, that same thing that I am writing here in fact I already said this over 

here I said this over here. So, we can so basically there is a polynomial time randomized 

reduction a that 1 puts input one power n which is just to obtain the number of variables in 

beta. 

 

It outputs a Boolean formula tau, that has x and y as a variable. So, y's are the additional 

auxiliary variables it creates, where x is in x is the variables used in beta and y is some new 

set of variables such that if beta has a satisfying assignment, then the probability that the new 

formula has beta and tau has a satisfying assignment or has a unique satisfying assignment is 

1 by 8 n. 
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And if not if it is not satisfiable, beta is not satisfiable then it the probability that it has a 

satisfying assignment is itself 0. So, here it is just stated in the parity form if it has a unique 

satisfying assignment then the parity is 1. If it has no satisfying assignment the parity is 0. So, 

in fact this is actually Valiant Vazirani theorem says it is unique here and here it is 0. So, but 

then unique means parity 1 and 0 means parity even. 

 

So, it helps to view the Valiant Vazarani in this setting because we already used the trick but 

I am just stating it again because we will apply this idea of getting this tau again and again. 
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So, the main theorem we are given, so let us come to the proof of the main theorem. As I 

already mentioned the main theorem states that you can take a sigma k SAT instance and get 

A psi instance a parity SAT instance. Such that if the sigma k instance psi is true then the 

parity SAT instance is true with high probability and if the sigma k psi instance psi is false 

then the parity SAT instance A psi is false with high probability. 

 

And we already saw this when k = 1, when k = 1, it is just satisfiability and we already saw 

how this boosting can be done. So, this boosting is we use the fact that it is a parity and we 

could not do this boosting otherwise. We do not know how to do this boosting if it was this 

unique SAT setting. So, now let us say it is a sigma k instance psi and the so we say 

polynomial hierarchy if it is a pi k instance.  

 

You can take the negation or you can view the pi k instance as a sigma k + 1 instance. 

Because if you can do that if you can decide this you can decide the negation as well. So, 

suppose this is sigma k instance psi and suppose psi is there exists x phi x, where phi x itself 

has k – 1 quantifier. So, the first quantifier is x are there exists and the variables that are 

quantified by the first quantifier. We call them x, so phi x itself has other variables that that 

have that I am not specifying here. 
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Now by induction so again the base case is done base case is what we already showed before 

this. Now by induction hypothesis we are doing induction on k by induction hypothesis there 

is a randomized reduction that given k and m it maps to an equivalent parity SAT instance. 

So, given k - 1 for this phi x that has k - 1 quantifiers it constructs a parity SAT instance 

called parity SAT instance called rho x, z and where x is for any fixed x. 

 

So, once you fix the x, phi x for a fixed x phi x just becomes a Boolean formula or a Boolean 

formula on the remaining variables. Because x is fixed it is a formula with k - 1 quantifiers on 

the; remaining variables. So, now on the same values of x I could write rho x, z. So, when for 

a fixed x that is fixed on the left-hand side the x will be fixed on the right-hand side. So, for 

this, such that with high probability phi the truth value of phi x will be the same as truth value 

of parity rho x, z. 

 

So, what I am saying is that given phi x so think of phi x is just a k - 1 quantified Boolean 

formula. We are getting rho x, z where x is fixed and z are the remaining variables. So, if you 

add up z or add up the number of ways to satisfy rho, upon so x is fixed so the things that can 

vary are just z. So, if you count the number of z for which rho x, z is satisfied. Then there is a 

phi x is true if and only if rho x, z has an odd parity with high probability. 

 

Maybe I will just explain once again rho x, z means for fixed x parity of number of z that 

satisfy rho x, z. A parity of number of z let me just write it again that satisfy rho x, z for a 

fixed x it is the number of the parity of this. Again, this is just the induction hypothesis. It is 



the same statement, as a theorem but applied to a formula with k - 1 quantifiers phi and 

because phi has some free variables x. So, let us fix the x to something and then then say this. 
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Now it is what we did already here what we what did we do above here we just took an OR 

with many tau’s we can do the same thing again. We can run the valiant vazirani oblivious, 

that we already stated about order m n times and we each time we get different tau values tau 

x, so tau 1 tau 2 and so on. And so let me denote this, the parity value of rho x, z by beta x. 

So, where the beta x denotes the truth value of parity of this it is just a Boolean formula.  

 

So, what I will do is to, so maybe I just may be easier so just I just replace here that may be 

easier to view, think of it as a shorthand not as a separate formula. So, beta x I will actually I 

will use another colour to make it stand out, parity z rho x is it this is what it is. And this I am 

calling it as beta x. So, basically again I can with high probability phi x being true 

corresponds to beta x being yes instance of parity SAT.  

 

So, think of beta as just a shorthand way of writing this. Now we just do the standard thing, 

we take n instances r instances of valiant vazirani the tau and check whether and when we 

know that valiant vazirani has a one-sided error and we can boost the probability of success. 

So, we consider the formula alpha which is the OR of these multiple instantiations of beta 

and tau z. And we know that for each tau we have this one-sided error probability.  

 

That if beta is true then we have this there is some probability of it being a yes instance of 

parity SAT and if beta is false, it is not going to be a sense as a parity SAT. 



(Refer Slide Time: 49:43) 

 

So, now let us consider psi which was the original formula, from sigma k SAT. Now we 

assume that psi was there exists x phi x and we already know that by induction hypothesis. 

There is a correspondence between the truth correctness of phi x the satisfiability of phi x and 

beta x being a sentence of parity SAT or beta x being a sentence of parity SAT. So, the 

probability of that being 1 - 1 divided by 2 power n + 1.  

 

So, now given beta is yes instance of parity SAT now let us see how let us see how alpha 

performs. So, now what is the probability that alpha is a yes instance of parity SAT. So, 

remember alpha is this OR of these multiple instantiations of beta. So, now what is the 

probability that alpha is a yes instance of parity SAT? It is 1 - it is not a no instance. And 

what is the probability that beta is? It is a no instance.  

 

It is a problem so remember the assumption is that beta is a yes instance. And so, what is the 

probability that it is alpha is a no instance? 1 - each of these r times that we instantiate tau, all 

of them lead to a no instance. So, the probability of error is 1 the probability of success of 1, 

1 such trial is 1 – 8 n, and the probability of error is 1 - 1 by 8 n. And the probability all of the 

r trials or failures is 1 - 1 by 8 n whole power r or the term that is over here.  

 

And from this over here, and so that is the probability that beta for the correct beta alpha 

turns out to be incorrect and then we have also this term which is - 1 divided by 2 power n + 

1 term which is coming from the beta itself the probability of beta itself being incorrect. And 



we can choose r such that the first term this term we can choose r such that this term is also 1 

divided by 2 power n + 1.  

 

We can choose r I have written in the bottom r to be order m n such that 1 - 1 divided by 8 10 

whole power r is 1 divided by 2 power n + 1. So, this can be done and so 1 - 2 power n + 1 

sorry 1 divided by 2 power n + 1 and again 1 divided by 2 power n + 1 you add that up to get 

1 divided by 2 power m. So, the whole probability that psi is a true instance yes instance and 

yet the alpha is no instance is 1 divided by 2 power n. So, that is the probability of success 

when psi is true.  
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When psi is false which means there is the does not exist in x for which phi is satisfied. Now 

what is the probability that beta is the correct beta? Again, this is coming from the previous 

level of induction so that the probability of error is 1 divided by 2 power n + 1. Now suppose 

so which means beta is a no instance the probability that beta is a yes instance is 1 divided by 

2 power n + 1. And what is the probability that alpha is a yes instance? 

 

So, we know that if alpha beta is a no instance, then all the alpha will always be no instance 

because you are taking no instance and add of that it will always be a no instance. The error 

in this process is one-sided. So, the only error can happen only when beta itself to begin with 

was a yes instance. So, recall we are talking about no instance of psi. And what is the 

probability that beta was in yes instance? 1 divided by 2 power m + 1. 

 



And that is the only probability of error that can occur. So, 1 by 2 power n + 1 is at most 1 by 

2 power m. So, in either case whether psi is a yes instance or no instance the probability that 

alpha is consistent with psi is at least 1 - 1 divided by 2 power n. So, that is how we get these 

probabilities and that proves the probability that we wanted in the main theorem. If psi is true 

the probability that.  

 

So, the a phi here will be alpha is a yes instance of parity SAT is 1 - 1 by 2 power m and phi 

is false psi is false means the probability that yes instance 1 divided by 2 power n. 

(Refer Slide Time: 54:52) 

 

Now the final small thing that I wanted to mention is that alpha is this formula. It is an OR of 

many parity SAT instances AND with tau j. So, the only thing to note is that alpha itself is a 

parity SAT instance. So, this is not really that difficult to see because we have already noted 

that we can operate we can do all these operations we can do AND, OR negation everything 

can be done in the parity world itself.  

 

So, it is just that is remaining just one second, so alpha is this and we can write alpha is OR 

of this parity of rho x, z and tau j and maybe it see simpler to write this entire thing the entire 

highlighted thing as parity of theta x, y, z theta j x, y, z. And we have already seen how to 

take the OR inside the parity, basically we use the de Morgan’s law. So, we added one then 

had the product and then added one again.  
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So, we can do the same operation again. So, we can have a new parity sign outside maybe 

call it w just to take care of additional variables if any and then priority of theta 1 x, y, z + 1 

parity of theta 2 x, y, z + 1 and so on and finally we add another + 1 outside. So, we will get 

another big Boolean formula and we can take all the parities inside because what one can 

notice that parity of parity is also parity.  

 

So, if you sum up some items sum up some integers and if you know the sum is odd then you 

know that exactly odd number of the inputs must be odd. Odd number of the terms must be 

odd if you have an even number of terms that is all then the sum will be even. So, you can 

merge these parities to get 1 big parity and you can represent alpha as one big parity formula. 

So, that completes the proof.  

 

So, the main ingredients of this proof again what we want what we have shown is that 

polynomial hierarchy is in BPP to the parity P oracle BPP with the parity P oracle. And we 

wanted to show that given a sigma such instance we can reduce it in a randomized fashion to 

a parity SAT instance. Such that if the input is a yes and since the output is a yes instance 

with high probability.  

 

So, the main ingredient was repeatedly the fact that valiant vazirani was an oblivious 

reduction that the input we just took an AND with some Boolean formula. And the Boolean 

formula was just completely oblivious of what the original formula was except for the fact 

that it looked at the number of variables. And then we noted that using parity operation. We 



can do all this operation again we can represent AND we can represent OR all of this can be 

accomplished using parity.  

 

And therefore, this allows us to boost the probability of success. So, starting from the Valiant 

Vazirani, we boosted the probability of success to get the first base case of the induction 

which was over here this is what we had. And then for the remaining sigma k SAT we use 

induction. And assuming the previous levels formula by induction hypothesis if that is a 

parity SAT formula already.  

 

We could we could again use the same trick, we could again use the valiant vazirani 

sensation to get sorry again to get a new formula that is a parity, parity SAT formula. And we 

can choose m such that the probability of success is high enough and in all of this the number 

of repeated trials that we required is always polynomial. So, in this case it is order m n which 

is polynomial and we have at most k levels of k levels in the polynomial hierarchy. 

 

So, it is all related polynomial in the length of the input formula. And so, what is left? What 

we have shown is that polynomial hierarchy is in BPP with a parity P oracle. What we want 

to show is that it is in P with a deterministic polynomial time with a sharp P oracle and this 

we will show in the next lecture. So, we want a somewhat of a weaker class as the base class 

instead of BPP we do not want randomness. 

 

We want this deterministic polynomial time but then we will trade the parity instead of the 

parity P oracle we will actually use a counting oracle and this is where the counting will 

matter. And with that I think I will stop this lecture. Thank you. 


