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Hello and welcome to lecture 46 of the course computational complexity. In the previous lecture 

we saw isolation lemma which gave us a way to assign weights to elements of a set. In such a 

way that there is a unique minimum weight set in some family. So, consider any family of 

subsets of that and whatever be the family isolation lemma tells us that if you assign weights in a 

certain uniformly and randomly from a range. 

 

There is a good probability of finding a unique minimum weight set in the family. So, in this 

lecture we will see how to use isolation lemma to output a perfect matching of a bipartite graph 

in parallel. So, as I said before there are lots of other residual algorithms for computing the 

perfect matching and outputting them, this is a parallel algorithm. This algorithm is by Mulmuley 

Valiant and Vazirani who also discovered the isolation lemma as part of their paper. 
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So, some of the elements of this proof we already saw in the previous week. So, given the 

adjacency matrix we saw we could make the tut matrix. But in this proof, we will not make the 

touch matrix, we will use a different matrix. So, we start with the tut matrix or the adjacency 

matrix, suppose this is a the one that I have circled here in green is the tut matrix. What we do is 

consider the elements x 11 x 15 etcetera. as some elements of a set. 

 

Now corresponding to x 11, we will introduce a weight w 11 corresponding to x 15 will 

introduce away w 15 and so on. But each of these weights so each of these entries x 11 x 12 

etcetera are entries corresponding to certain edges, zeros correspond to non-edges. So, 

corresponding to each of these weights we pick random values. So, I will denote them w 

subscript e and we pick them from the range 1 2 3 up to 2 times the size of e. 

 

So, there are 100 edges in the graph. We go up to the range 200, 1 2 3 up to 200. So, twice the 

number of edges and then what we do is we pick random weights like this and then you assign in 

the matrix b you assign 2 power that weight. So, not just that weight we need to assign 2 power 

that weight. So, 2 power w 11 will correspond to the edge e 11 2 power w 15 will correspond to 

the edge between 1 and 5 and so on and this gives us the matrix b. 
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As we saw in the last lecture if the matrix b is non-zero that means there is a perfect matching. 

But there is some possibility that there is a perfect matching but still somehow some terms 

cancel. So, that the determinant of the matrix I think I misspoke before, if the determinant of the 

matrix is 0, if the determinant of the matrix is non 0, then there is a perfect matching. But it 

could somehow so happen that there is a perfect matching but still the determinant could become 

0 because of some terms cancelling each other. 

 

And what we hope to achieve or accomplish using isolation lemma is that the weights will be 

assigned in such a way that if there is a perfect matching then the chances of cancellation are 

very very low and that will be assured using isolation lemma. So, what we do is we compute the 

determinant, so this is first we describe the algorithm and then I will explain why this algorithm 

makes sense or why this algorithm works. So, compute the determinant of this matrix b. 

 

This is the same matrix above one with the 2 power etcetera. If the determinant is 0 then you 

output there is no perfect matching. So, this algorithm can still have errors so there could be a 

perfect matching and we still could output 0. But we can limit the error or we can even compute 

the probability of error. So, we will see when that happens if determinant is non-zero then we 

know for sure that there is a perfect matching. 

 



Now the goal is not to decide whether there is a perfect matching or not, the goal is to output the 

perfect matching. So, let us see how we do that now compute the determinant so of course we 

already compute the determinant now you check the largest number R such that 2 power R is a 

factor of determinant b. so, compute the largest number R such that 2 power R divides 

determinant of b. So, this point it is done serially 
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Now what we will do is the rest will be in parallel. So, rest can be done separately by one 

processor per edge of the graph. Now what can be done is for each edge in the graph consider. 

So, what you do is you let us say you consider this edge for instance h 51. So, now you replace 

edge 51 with 0. So, this h this entry instead of 2 power w 51 will become 0 and this so for the 

edge e we call be as the matrix obtained by setting that entry to 0. 

 

Now you compute the determinant of B e. If the determinant of B e is 0 you output e so what we 

will do is we will do many parallel outputs. So, this this branch will only output e or not output e 
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Or it will say no matching at all. In fact, no matching will already have said been said at the 

earlier part. So, if the determinant of B e is non-zero then output it outputs e, sorry if the 

determinant of B e is 0 it outputs e, else what we do is you compute again we do the same thing. 

We compute the largest R e, so this looks kind of like an l such that 2 power R e divides 

determinant of B e. So, I am just replacing the e's to actually look like these. 

 

Now it looks sometimes it looks more like l than e. So, compute the largest R e such that 2 power 

R e is a factor of determinant B e. Now so recall we earlier computed this R which was the 

biggest, so it was where B e was this original matrix that we have here. And B e is the matrix 

corresponding to where each edge entry or the 1 edge entry is replaced by 0. And then we again 

computed or earlier we computed R such that 2 power R is the largest factor of B e.  

 

Or the largest R e such that 2 power R is a factor of B e. Now compute the largest R e such that 2 

power R e is a factor of B e. Now compare R and R e. And if R is strictly smaller than R e, then 

you output e there are 2 cases where you output e. One is when the determinant of B e is 0, or 

when the R is a strictly smaller number than R e. So, notice that from where from in step 4 from 

where I started step 4, I am just focusing on 1 specific edge.  

 

And this will be done in parallel by different processors for independent processors for each 

edge. And the claim is that each edge will correctly each processor at the corresponding edge 



will correctly output e even only if e is part of the perfect matching. So, which perfect matching? 

There could be multiple perfect matching’s. So, here is where isolation lemma helps. Maybe I 

will just write here. I will just write a bit here to explain.  
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So, what is happening here is that if G has a perfect matching, then there is some then only then 

the rest of it makes sense. But now each matching can be thought of as a subset of edges and you 

can compute the weight for them, and the weight of each matching can be computed. So, the 

base set here has size of e many elements. It is a base set. In the case of isolation lemma number, 

it was x. It was the size of x was n small n.  

 

Here the size of e is well it is just the size of e and the range here is going up to 2 e. So, by 

isolation lemma, probability of a unique line, there is a unique mean weight perfect matching is 

at least 1 - size of e which is the number of elements in the size edge divided by 2 times e which 

is simply half. So, with probability half there is a unique min weight perfect matching. So, that is 

with probability half there is a unique, sorry unique min weight perfect matching.  

 

And if there is such a minima, in that case the algorithm above will correctly output that unique 

perfect matching. So, what the algorithm will do? We will see the proof now; the algorithm will 

output this unique min wait perfect matching. So, let us see how that happens. So, if the isolation 



lemma works as an if there is a unique min weight perfect matching this algorithm will correctly 

output the unique min weight perfect matching that matching.  

 

If it does not work meaning if it does not have a unique mean weight perfect matching then there 

is no guarantee. So, in this particular assignment the probability of that happening is half but this 

need not you could choose the weights from a bigger range instead of 2 e you could choose it 

from 10 e or something. So, the probability will be instead of half it will be 9 by 10 in that case 

so you can improve the probability of doing that. 
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So, now the rest of it, please assume that there is a unique min weight perfect matching and then 

we will see how it outputs the same matching. So, consider this matrix here, this is the same 

matrix B and consider the circled edges here. There are five circled edges and these form a 

perfect matching, now this contributes to the determinant. This is one permutation and the 

contribution the term.  

 

That is contributed to the determinant by this perfect matching is 2 power w 15 multiplied by 2 

power w 22 multiplied by 2 4 w 33 multiplied by 2 power w 44 multiplied by 2 power w 15 or 

sorry 51 this could be + or - depending on whether this permutation is a odd or even permutation. 

So, the contribution is this highlighted quantity 2 + or - 2 power w 15 multiplied by 2 power w 

22.  



 

So, the product of these 2 power something can be written as 2 power the you can add up the 

exponents. So, it is 2 power w 15 + w 22 and so on. So, the instead of multiplying the 2 powers 

you could just 2 power, you could write it as 2 power the sum summation. And so basically it is 

what is the summation? What is exponent here? The exponent is nothing but the weight of the 

matching. 

 

So, way a matching m, contributes a weight + or - 2 power the weight of the matching. That is 

the contribution to the determinant. So, the determinant is just a collection of such matches or the 

collection of such sums. 
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So, just to elaborate a bit further so what I am saying is determinant is, summation of matching 

m + or -. So, depending on the sign of the matching or sign of the permutation corresponding to 

the matching 2 power weight of m, this is what the determinant is, where weight of m is just the 

sum of the weight of the edges. 
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And this is something I already said by isolations lemma and step one with probability at least 

half there is a unique mean weight perfect matching. Just to just see you can consider F as the 

collection of all the perfect matching’s, now let w be the weight of the min weight perfect 

matching W Capital W. In that case if you look at this sum over here if you look at this sum that 

I have circled over here it is a collection of things it is a summation of 2 power weight of some 

things. 

 

2 power now w, capital W is the smallest rate, that means for all the other matching’s m prime. 

So, let w be the matching m and for all the other matching’s m prime the weight of m prime is 

strictly greater than w. So, again we are in this case where there is a unique min weight perfect 

matching. So, all the other matching’s n prime the weight of w the weight of m prime is strictly 

greater than w, so that means all the other matching’s contribute at least 2 power w + 1. 

 

There could be 2 power w + 2 or 2 + w + 3 or 2 power w + 100 or something, but at least 2 

power w + 1. So, the determinant of b, so there could be + - of all this. So, there will be one 2 

power w term and the rest all will be at least you should be able to take out. So, what I am saying 

here is the determinant will be 1 2 power w term + the rest of it all will be multiple of 2 power w 

+ 1. And some factor it will it could be a positive negative something. 

 



Which means you could take out the 2 power w and then say 1 + 2 times the factor which is 

exactly what I have written here. So, determinant of b is you can take out the 2 power w and then 

1 + 2 b, that b is some b is the same thing as this factor and b will be an integer, it could be 

negative it could be positive.  
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This means so this 1 + 2 b is an odd number which means 2 power w is the largest power of 2 

that divides determinant of B. And here if you look at the algorithm, we computed the largest R 

that such that 2 power R is a factor of determinant B. So, this B, this w that we that we computed 

or the R that we computed is actually the weight of the min weight perfect matching unique 

mean weight perfect matching. So, till now it is clean now let us see how the magic happens in 

the parallel steps. 
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So, the parallel step we are supposed to each edge does something on its own or the processor 

corresponding to each edge does something on its own. And automatically that is supposed to 

output that edge if and only if that edge is in the unique min weight perfect matching. So, now in 

the parallel operations we remove each edge and compute the minimum weight perfect matching. 

Suppose e is not in the min weight perfect matching.  

 

So, for instance in this matrix here for instance this edge 2 1 is not in the perfect matching. So, if 

you remove 2 1, the old unique min weight perfect matching still persists. So, the w will be the 

unique min weight perfect matching weight and then still if you look extracted the largest factor 

or largest power w for which w 2 power w is a factor you will still get the same thing. So, if e is 

not in the mean weight; perfect matching.  

 

So, again this looks like l so I will write e then R e will be equal to R, because the unique mean 

weight perfect matching is retained. If e is in the unique mean weight perfect matching, then that 

unique min weight perfect matching is now losing an edge. So, in this summation over here now 

this 2 power w will go because that one edge that is part of this; 2 power w is now being 

removed. So, this will now become two power w + 1 into the factor.  

 

So, because of it because of this if e is in the unique mean weight perfect matching the term 

corresponding to this vanishes. So, the determinant of B e will be actually be 2 power R into 2 b. 



So, which is what I have written here 2 power w + 1 or you have 2 power R into 2 b or maybe 2 

power w into 2 b I have already said that R and w are the same. So, the R e will be at least R + 1. 

Another possibility is that if you remove e there is no edge there is no matching at all in which 

case determinant of B e is 0.  

 

In both these cases when R e is greater than R or when determinant of B e is 0 the algorithm 

determinant of B e = 0 here, and R e is greater than R over in the step d in both the cases e is 

output. So, in both these cases we output e, and this is exactly the cases when e is part of the 

unique mean weight perfect matching, R e greater than R when there is a e is part of the unique 

mean weight perfect matching and there are other matching’s other perfect matching’s.  

 

And determinant of B e is 0 when the edge e is part of all the perfect matching so if you remove 

e then the graph does not have a perfect matching. So, if we get an instance so what this is saying 

is that this correctly outputs the edge e if and only if it is part of the unique mean weight perfect 

matching. If it is not part of the unique mean weight perfect matching, it will not be output. 

Because it will that basically this 2 power w term will still remain.  

 

Because it is, it may be part of no other matching or it may be part of some other matching, 

which is not the unique way perfect matching. So, that will not change the 2 power w quantity 

here. So, it will not change anything else. It will not be output so if we get an instance isolation 

lemma the randomness is such that we get an instance where there is a unique minimum weight 

perfect matching. In that case this algorithm correctly outputs this perfect matching in parallel.  

 

I will just say this is all so this algorithm is correct and notice that from here on. This step four is 

entirely parallel; each processor is only looking at that corresponding to a particular edge e. It 

removes that edge basically it computes; it removes that meant that entry from the matrix you 

makes it makes it 0. And then computes the determinant. And then computes the largest power of 

2 which divides the determinant.  

 

And then compares with whatever was already computed whatever R was already computed. So, 

that is all that it has to do and then magically this leads to the correct answer. So, there is a 



probability of error but that probability of error is universal meaning. If the isolation lemma does 

not work if, we get with half probability we are supposed to get a unique min with perfect 

matching. 

 

If you do not get that then it will not output the correct answer but if we get that it will output the 

correct answer and if you are not happy with the probability, we could we could increase the 

range instead of 2 times e we could we could choose let us say 10 times e or something. So, this 

will give us a better probability of success anyway. So, this shows that how we can compute or 

output the perfect matching in a bipartite graph if it has one in the randomized NC. 

 

So, all that you do is you replace you get random weights for each of the edges. You replace the 

terms of the adjacency matrix with 2 power the random weights. And then you compute the 

determinant of this matrix, call it B. If the determinant is 0, then there is no perfect matching. If 

the determinant is non-zero you compute the largest R such that 2 power R divides determinant 

of B. Notice that if there is a unique mean weight perfect matching the determinant of B will 

necessarily be non-zero. 

 

Because we already saw that if there is a unique min with perfect mention the determinant of B 

will be 2 power w into an odd number. So, it cannot be 0 this odd number is an odd number so it 

cannot, this means that if there is a unique minimum perfect matching it cannot cancel. And 

determinate of B cannot be 0 and then you compute the largest R and then you do it for each it is 

in parallel you remove the entry corresponding to that edge. 

 

And then compute the determinant you call it B e determinant of B e then for each be you 

compute the R e the largest R e, R e for which or such that 2 power R e divides B e determinant 

of B e. And then you if either R is strictly greater than R or if determinant of B e is 0 then you 

output e. And this works whenever the isolation lemma has worked. If there is a unique min with 

perfect matching this algorithm correctly outputs in parallel each edge that is in the perfect 

matching.  

 



So, each the processor that corresponds to each edge will either output the edge or not output the 

edge. And the point is that if there is unique min with perfect matching the correct edge will be 

the correct matching will be output by the individual processors. 
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And this shows that we can output a perfect matching in a bipartite graph in RNC. And with that 

we will conclude this lecture 46. So, in lecture 45 and 46 together we showed that the decision is 

not the decision the search version for of outputting a perfect matching is in a randomizing. 


