
Computational Complexity

Prof. Subrahamanyam Kalyanasundaram

Department of Computer Science and Engineering

Indian Institute of Technology, Hyderabad

Lecture - 46

Search Bipartite Perfect Matching is in RNC Part 2

(Refer Slide Time: 00:15)

Hello and welcome to lecture 46 of the course computational complexity. In the previous lecture

we saw isolation lemma which gave us a way to assign weights to elements of a set. In such a

way that there is a unique minimum weight set in some family. So, consider any family of

subsets of that and whatever be the family isolation lemma tells us that if you assign weights in a

certain uniformly and randomly from a range.

There is a good probability of finding a unique minimum weight set in the family. So, in this

lecture we will see how to use isolation lemma to output a perfect matching of a bipartite graph

in parallel. So, as I said before there are lots of other residual algorithms for computing the

perfect matching and outputting them, this is a parallel algorithm. This algorithm is by Mulmuley

Valiant and Vazirani who also discovered the isolation lemma as part of their paper.

(Refer Slide Time: 01:31)

So, some of the elements of this proof we already saw in the previous week. So, given the

adjacency matrix we saw we could make the tut matrix. But in this proof, we will not make the

touch matrix, we will use a different matrix. So, we start with the tut matrix or the adjacency

matrix, suppose this is a the one that I have circled here in green is the tut matrix. What we do is

consider the elements x 11 x 15 etcetera. as some elements of a set.

Now corresponding to x 11, we will introduce a weight w 11 corresponding to x 15 will

introduce away w 15 and so on. But each of these weights so each of these entries x 11 x 12

etcetera are entries corresponding to certain edges, zeros correspond to non-edges. So,

corresponding to each of these weights we pick random values. So, I will denote them w

subscript e and we pick them from the range 1 2 3 up to 2 times the size of e.

So, there are 100 edges in the graph. We go up to the range 200, 1 2 3 up to 200. So, twice the

number of edges and then what we do is we pick random weights like this and then you assign in

the matrix b you assign 2 power that weight. So, not just that weight we need to assign 2 power

that weight. So, 2 power w 11 will correspond to the edge e 11 2 power w 15 will correspond to

the edge between 1 and 5 and so on and this gives us the matrix b.

(Refer Slide Time: 03:22)

As we saw in the last lecture if the matrix b is non-zero that means there is a perfect matching.

But there is some possibility that there is a perfect matching but still somehow some terms

cancel. So, that the determinant of the matrix I think I misspoke before, if the determinant of the

matrix is 0, if the determinant of the matrix is non 0, then there is a perfect matching. But it

could somehow so happen that there is a perfect matching but still the determinant could become

0 because of some terms cancelling each other.

And what we hope to achieve or accomplish using isolation lemma is that the weights will be

assigned in such a way that if there is a perfect matching then the chances of cancellation are

very very low and that will be assured using isolation lemma. So, what we do is we compute the

determinant, so this is first we describe the algorithm and then I will explain why this algorithm

makes sense or why this algorithm works. So, compute the determinant of this matrix b.

This is the same matrix above one with the 2 power etcetera. If the determinant is 0 then you

output there is no perfect matching. So, this algorithm can still have errors so there could be a

perfect matching and we still could output 0. But we can limit the error or we can even compute

the probability of error. So, we will see when that happens if determinant is non-zero then we

know for sure that there is a perfect matching.

Now the goal is not to decide whether there is a perfect matching or not, the goal is to output the

perfect matching. So, let us see how we do that now compute the determinant so of course we

already compute the determinant now you check the largest number R such that 2 power R is a

factor of determinant b. so, compute the largest number R such that 2 power R divides

determinant of b. So, this point it is done serially

(Refer Slide Time: 05:40)

Now what we will do is the rest will be in parallel. So, rest can be done separately by one

processor per edge of the graph. Now what can be done is for each edge in the graph consider.

So, what you do is you let us say you consider this edge for instance h 51. So, now you replace

edge 51 with 0. So, this h this entry instead of 2 power w 51 will become 0 and this so for the

edge e we call be as the matrix obtained by setting that entry to 0.

Now you compute the determinant of B e. If the determinant of B e is 0 you output e so what we

will do is we will do many parallel outputs. So, this this branch will only output e or not output e

(Refer Slide Time: 06:45)

Or it will say no matching at all. In fact, no matching will already have said been said at the

earlier part. So, if the determinant of B e is non-zero then output it outputs e, sorry if the

determinant of B e is 0 it outputs e, else what we do is you compute again we do the same thing.

We compute the largest R e, so this looks kind of like an l such that 2 power R e divides

determinant of B e. So, I am just replacing the e's to actually look like these.

Now it looks sometimes it looks more like l than e. So, compute the largest R e such that 2 power

R e is a factor of determinant B e. Now so recall we earlier computed this R which was the

biggest, so it was where B e was this original matrix that we have here. And B e is the matrix

corresponding to where each edge entry or the 1 edge entry is replaced by 0. And then we again

computed or earlier we computed R such that 2 power R is the largest factor of B e.

Or the largest R e such that 2 power R is a factor of B e. Now compute the largest R e such that 2

power R e is a factor of B e. Now compare R and R e. And if R is strictly smaller than R e, then

you output e there are 2 cases where you output e. One is when the determinant of B e is 0, or

when the R is a strictly smaller number than R e. So, notice that from where from in step 4 from

where I started step 4, I am just focusing on 1 specific edge.

And this will be done in parallel by different processors for independent processors for each

edge. And the claim is that each edge will correctly each processor at the corresponding edge

will correctly output e even only if e is part of the perfect matching. So, which perfect matching?

There could be multiple perfect matching’s. So, here is where isolation lemma helps. Maybe I

will just write here. I will just write a bit here to explain.

(Refer Slide Time: 09:18)

So, what is happening here is that if G has a perfect matching, then there is some then only then

the rest of it makes sense. But now each matching can be thought of as a subset of edges and you

can compute the weight for them, and the weight of each matching can be computed. So, the

base set here has size of e many elements. It is a base set. In the case of isolation lemma number,

it was x. It was the size of x was n small n.

Here the size of e is well it is just the size of e and the range here is going up to 2 e. So, by

isolation lemma, probability of a unique line, there is a unique mean weight perfect matching is

at least 1 - size of e which is the number of elements in the size edge divided by 2 times e which

is simply half. So, with probability half there is a unique min weight perfect matching. So, that is

with probability half there is a unique, sorry unique min weight perfect matching.

And if there is such a minima, in that case the algorithm above will correctly output that unique

perfect matching. So, what the algorithm will do? We will see the proof now; the algorithm will

output this unique min wait perfect matching. So, let us see how that happens. So, if the isolation

lemma works as an if there is a unique min weight perfect matching this algorithm will correctly

output the unique min weight perfect matching that matching.

If it does not work meaning if it does not have a unique mean weight perfect matching then there

is no guarantee. So, in this particular assignment the probability of that happening is half but this

need not you could choose the weights from a bigger range instead of 2 e you could choose it

from 10 e or something. So, the probability will be instead of half it will be 9 by 10 in that case

so you can improve the probability of doing that.

(Refer Slide Time: 13:18)

So, now the rest of it, please assume that there is a unique min weight perfect matching and then

we will see how it outputs the same matching. So, consider this matrix here, this is the same

matrix B and consider the circled edges here. There are five circled edges and these form a

perfect matching, now this contributes to the determinant. This is one permutation and the

contribution the term.

That is contributed to the determinant by this perfect matching is 2 power w 15 multiplied by 2

power w 22 multiplied by 2 4 w 33 multiplied by 2 power w 44 multiplied by 2 power w 15 or

sorry 51 this could be + or - depending on whether this permutation is a odd or even permutation.

So, the contribution is this highlighted quantity 2 + or - 2 power w 15 multiplied by 2 power w

22.

So, the product of these 2 power something can be written as 2 power the you can add up the

exponents. So, it is 2 power w 15 + w 22 and so on. So, the instead of multiplying the 2 powers

you could just 2 power, you could write it as 2 power the sum summation. And so basically it is

what is the summation? What is exponent here? The exponent is nothing but the weight of the

matching.

So, way a matching m, contributes a weight + or - 2 power the weight of the matching. That is

the contribution to the determinant. So, the determinant is just a collection of such matches or the

collection of such sums.

(Refer Slide Time: 15:05)

So, just to elaborate a bit further so what I am saying is determinant is, summation of matching

m + or -. So, depending on the sign of the matching or sign of the permutation corresponding to

the matching 2 power weight of m, this is what the determinant is, where weight of m is just the

sum of the weight of the edges.

(Refer Slide Time: 15:38)

And this is something I already said by isolations lemma and step one with probability at least

half there is a unique mean weight perfect matching. Just to just see you can consider F as the

collection of all the perfect matching’s, now let w be the weight of the min weight perfect

matching W Capital W. In that case if you look at this sum over here if you look at this sum that

I have circled over here it is a collection of things it is a summation of 2 power weight of some

things.

2 power now w, capital W is the smallest rate, that means for all the other matching’s m prime.

So, let w be the matching m and for all the other matching’s m prime the weight of m prime is

strictly greater than w. So, again we are in this case where there is a unique min weight perfect

matching. So, all the other matching’s n prime the weight of w the weight of m prime is strictly

greater than w, so that means all the other matching’s contribute at least 2 power w + 1.

There could be 2 power w + 2 or 2 + w + 3 or 2 power w + 100 or something, but at least 2

power w + 1. So, the determinant of b, so there could be + - of all this. So, there will be one 2

power w term and the rest all will be at least you should be able to take out. So, what I am saying

here is the determinant will be 1 2 power w term + the rest of it all will be multiple of 2 power w

+ 1. And some factor it will it could be a positive negative something.

Which means you could take out the 2 power w and then say 1 + 2 times the factor which is

exactly what I have written here. So, determinant of b is you can take out the 2 power w and then

1 + 2 b, that b is some b is the same thing as this factor and b will be an integer, it could be

negative it could be positive.

(Refer Slide Time: 17:54)

This means so this 1 + 2 b is an odd number which means 2 power w is the largest power of 2

that divides determinant of B. And here if you look at the algorithm, we computed the largest R

that such that 2 power R is a factor of determinant B. So, this B, this w that we that we computed

or the R that we computed is actually the weight of the min weight perfect matching unique

mean weight perfect matching. So, till now it is clean now let us see how the magic happens in

the parallel steps.

(Refer Slide Time: 18:45)

So, the parallel step we are supposed to each edge does something on its own or the processor

corresponding to each edge does something on its own. And automatically that is supposed to

output that edge if and only if that edge is in the unique min weight perfect matching. So, now in

the parallel operations we remove each edge and compute the minimum weight perfect matching.

Suppose e is not in the min weight perfect matching.

So, for instance in this matrix here for instance this edge 2 1 is not in the perfect matching. So, if

you remove 2 1, the old unique min weight perfect matching still persists. So, the w will be the

unique min weight perfect matching weight and then still if you look extracted the largest factor

or largest power w for which w 2 power w is a factor you will still get the same thing. So, if e is

not in the mean weight; perfect matching.

So, again this looks like l so I will write e then R e will be equal to R, because the unique mean

weight perfect matching is retained. If e is in the unique mean weight perfect matching, then that

unique min weight perfect matching is now losing an edge. So, in this summation over here now

this 2 power w will go because that one edge that is part of this; 2 power w is now being

removed. So, this will now become two power w + 1 into the factor.

So, because of it because of this if e is in the unique mean weight perfect matching the term

corresponding to this vanishes. So, the determinant of B e will be actually be 2 power R into 2 b.

So, which is what I have written here 2 power w + 1 or you have 2 power R into 2 b or maybe 2

power w into 2 b I have already said that R and w are the same. So, the R e will be at least R + 1.

Another possibility is that if you remove e there is no edge there is no matching at all in which

case determinant of B e is 0.

In both these cases when R e is greater than R or when determinant of B e is 0 the algorithm

determinant of B e = 0 here, and R e is greater than R over in the step d in both the cases e is

output. So, in both these cases we output e, and this is exactly the cases when e is part of the

unique mean weight perfect matching, R e greater than R when there is a e is part of the unique

mean weight perfect matching and there are other matching’s other perfect matching’s.

And determinant of B e is 0 when the edge e is part of all the perfect matching so if you remove

e then the graph does not have a perfect matching. So, if we get an instance so what this is saying

is that this correctly outputs the edge e if and only if it is part of the unique mean weight perfect

matching. If it is not part of the unique mean weight perfect matching, it will not be output.

Because it will that basically this 2 power w term will still remain.

Because it is, it may be part of no other matching or it may be part of some other matching,

which is not the unique way perfect matching. So, that will not change the 2 power w quantity

here. So, it will not change anything else. It will not be output so if we get an instance isolation

lemma the randomness is such that we get an instance where there is a unique minimum weight

perfect matching. In that case this algorithm correctly outputs this perfect matching in parallel.

I will just say this is all so this algorithm is correct and notice that from here on. This step four is

entirely parallel; each processor is only looking at that corresponding to a particular edge e. It

removes that edge basically it computes; it removes that meant that entry from the matrix you

makes it makes it 0. And then computes the determinant. And then computes the largest power of

2 which divides the determinant.

And then compares with whatever was already computed whatever R was already computed. So,

that is all that it has to do and then magically this leads to the correct answer. So, there is a

probability of error but that probability of error is universal meaning. If the isolation lemma does

not work if, we get with half probability we are supposed to get a unique min with perfect

matching.

If you do not get that then it will not output the correct answer but if we get that it will output the

correct answer and if you are not happy with the probability, we could we could increase the

range instead of 2 times e we could we could choose let us say 10 times e or something. So, this

will give us a better probability of success anyway. So, this shows that how we can compute or

output the perfect matching in a bipartite graph if it has one in the randomized NC.

So, all that you do is you replace you get random weights for each of the edges. You replace the

terms of the adjacency matrix with 2 power the random weights. And then you compute the

determinant of this matrix, call it B. If the determinant is 0, then there is no perfect matching. If

the determinant is non-zero you compute the largest R such that 2 power R divides determinant

of B. Notice that if there is a unique mean weight perfect matching the determinant of B will

necessarily be non-zero.

Because we already saw that if there is a unique min with perfect mention the determinant of B

will be 2 power w into an odd number. So, it cannot be 0 this odd number is an odd number so it

cannot, this means that if there is a unique minimum perfect matching it cannot cancel. And

determinate of B cannot be 0 and then you compute the largest R and then you do it for each it is

in parallel you remove the entry corresponding to that edge.

And then compute the determinant you call it B e determinant of B e then for each be you

compute the R e the largest R e, R e for which or such that 2 power R e divides B e determinant

of B e. And then you if either R is strictly greater than R or if determinant of B e is 0 then you

output e. And this works whenever the isolation lemma has worked. If there is a unique min with

perfect matching this algorithm correctly outputs in parallel each edge that is in the perfect

matching.

So, each the processor that corresponds to each edge will either output the edge or not output the

edge. And the point is that if there is unique min with perfect matching the correct edge will be

the correct matching will be output by the individual processors.

(Refer Slide Time: 26:48)

And this shows that we can output a perfect matching in a bipartite graph in RNC. And with that

we will conclude this lecture 46. So, in lecture 45 and 46 together we showed that the decision is

not the decision the search version for of outputting a perfect matching is in a randomizing.

