
Computational Complexity

Prof. Subrahamanyam Kalyanasundaram

Department of Computer Science and Engineering

Indian Institute of Technology, Hyderabad

 Lecture - 42

Parity Not in AC 0: Part 2

(Refer Slide Time: 00:15)

Hello and welcome to lecture 42 of the course Computational Complexity. In the previous

lecture, we started on showing the proof that parity is not in AC 0. We were following the

proof technique by Rasbora and Smolensky.

(Refer Slide Time: 00:38)

The main motivation was to provide concrete meaning unconditional lower bounds on some

circuit class.

(Refer Slide Time: 00:45)

I just very briefly outline what we have done so far on the proof itself. So, what we have done

so far, this is a high-level outline of the proof. Every AC 0 function can be approximated by a

low degree polynomial over the F 3 field, F 3 field is just the field which contains 0, 1 and 2

and addition and multiplication happens modulo 3. So, that is F 3, so every AC 0 function can

be approximated by a low degree polynomial.

Second parity cannot be parity requires a large degree even to approximate. These are the two

main theorems that we will show. In fact, we showed the first statement and a bit more than

that.

(Refer Slide Time: 01:40)

So, the first statement was showed that, every AC 0 function can be approximated by a low

degree polynomial.

(Refer Slide Time: 01:48)

So, by low degree what we meant is, if it is a circuit of size s and depth d then we could

approximate with a log s to the power d degree polynomial and the error of that is like 1 by 4.

So, let say 1 by 4 is some fixed number. So, it could be 1 by 10 also then still some constant

factor will change, but we will get roughly this. So, log s is the size of the circuit so it is like

log to the power d because s is just n to the power some k.

(Refer Slide Time: 02:29)

The main idea was to build a circuit where we replace AND gate, OR gate and NOT gate

with the corresponding polynomials. And what we did in this proof is to show that we could

approximate OR gates.

(Refer Slide Time: 02:45)

NOT gates are straight forward because it is just corresponding to the polynomial 1- x and

AND gate can be derived from or gate using the De Morgan laws without any extra degree.

(Refer Slide Time: 03:00)

So, all we had to do was to build an OR gate which we did and we built an OR gate that had

degree order log 1 by Epsilon, where Epsilon was a desired error. Now we just use these OR

gates AND gates everything NOT gates to replace to so polynomial corresponding to the OR

gates NOT gates AND gates to in the circuit to build a jumbo polynomial that would

approximate the original circuit.

(Refer Slide Time: 03:33)

So, the jumbo polynomial has like the error is approximated by the union bound. So, we

choose epsilon small enough so that epsilon times the size is also less than 1 by 4. The degree

of any individual polynomial to the power the depth of the circuit because it should be a

Nitridated polynomial of a polynomial of a polynomial.

(Refer Slide Time: 03:57)

So, therefore if you do the math, you will get that epsilon has to be 1 by 4 s and the degree

will be order log s whole power d. So, this is not a single polynomial but a family of

polynomials rather a polynomial chosen from a distribution at some using some random bits

and which will so and when say epsilon, here the epsilon is over the choice of the randomness

and for any fixed input. So, even after you fix the input the probability of success is at least

three fourth.

(Refer Slide Time: 04:32)

And then we showed that if we have a family and a distribution that epsilon approximates or

1 by 4 approximates. Then there is a single polynomial, there is one polynomial in that in the

distribution. That will actually give us, at most one fourth error if you choose the input at

random. So, now from the situation where we want for any input at most one fourth error

over where the error is computed or the probability is computed over the charge of the

polynomial.

You can move to a situation where polynomial is fixed the error the probability is over the

choice of the input.

(Refer Slide Time: 05:22)

This was a very simple argument, using some counting based argument. So, the main

technique for the first part was this arithmetization how to write the OR using some

polynomial.

(Refer Slide Time: 05:38)

So, now we are starting off from here, suppose there is a function that is computed by a size s

and depth d circuit then there is a fixed polynomial. We will call it q x so this is fixed over f 3

such that the degree is ordered longest power d and probability is chosen over the inputs.

Then what is the probability that the q agrees with the function that we want to compute and

this is at least three fourths.

So, this three fourth also choices somewhat arbitrary I could have made it nine tenth or

something. It would still you could get a similar proof. So, this is where we are starting from,

maybe I have repeated in this note as well the second notes as well 42 notes. So, if we have a

Boolean function computed by depth d and sizes circuit. Then you could have a there is a

fixed polynomial that has degree log s power d.

And approximate not even approximated such that the polynomial agrees with the function

on 75% of the inputs. So, this is what we will see today and so this is what we already saw.

What we will see in this lecture is that for any fixed polynomial that for which agrees with

the parity function on 75% of the inputs. This polynomial should have degree at least square

root n divided by 10. So, any fixed polynomial that agrees with parity function.

Recall that parity of x being a bit string is one if and only if an odd number of ones in x are 1

or if x contains an odd number of ones, if x contains an even number of one parity is 0. It just

the bit twice like or it is the x or computer over the bits. So, what we are saying is that if q x

or if parity is computed by a part or computed by a polynomial in this manner like this as the

polynomial agrees with parity on 75% of the inputs.

Then the degree of the polynomial should be actually square root and divided by 10 and what

we are saying here is that for any function that is computed by a sizes and depth d circuit then

if it agrees with the any polynomial that agrees with it there is a polynomial that agrees with

it on with degree at most log s power d. So, when it is an AC 0 circuit, it is like this log x

power d is order log n power some constant.

Because order log s is just k times log n for some constant depth d is a constant. So, this is so

log n power d is much smaller than square root n.

(Refer Slide Time: 08:47)

Here we have the second theorem, we are saying that any polynomial that approximates

parity in this manner requires square root and degree. Here we are saying log n power

constant is enough so that is the contradiction. So, because of that we cannot compute the

parity using an AC 0 circuit. This is the contradiction in fact we will see a bit more detail than

this. So, we will see, so we will actually compute how much size can the parity circuit have.

If it has constant depth and we will see that the size is more than polynomial. So, this is what

we said if you combine the above theorems, what it is saying is that if parity has to be

approximated by polynomial in this matter degree has to be at least square root n divided by

10 which means, order log s to the power d has to be square root and divided by 10.

(Refer Slide Time: 09:49)

Which means s has to be square root 2 power square root n divided by 10 whole power or

power 1 by d which you can just write it as 2 power n power 1 by 2d. So, any circuit that

computes parity must have size at least this quantity, so which is this is clearly super

polynomial this is like something exponential that is the reason why parity is not in AC 0. So,

now what remains is to show the proof of this theorem.

That any q that agrees with parity on 75% of the inputs must have square root and degree,

square root n and divided by 10 degree.

(Refer Slide Time: 11:05)

So, we will shoot for a contradiction. Again, this proof is also very simple and uses simple

principles but this uses a bit of linear algebra and will be shorter than what we saw in the

previous lecture. Suppose there was such a q with degree less than square root n and divided

by 10. So, first let us do a change of basis. So, let us define q prime, and what is q prime? It is

1- 2 q of this, so where we are replacing the variables.

So, the variables of q are x 1, x 2 etcetera. So, now we are replacing it with 1 – x, 1 divided

by 2, 1 –x, 2 divided by 2 and so on up to 1 – x n divided by 2. So, what have we done here

when x i is 0 or x i is 1? q computes parity on Boolean input, this is what it computes 0, 1

power n. Now the claim is that q prime computes parity on - 1, +1 or rather maybe I should

see the opposite, just to be consistent +1, -1 power n.

So, suppose x i so suppose the input of q prime is actually so q prime takes as input x 1 up to

x n and think of x 1 etcetera coming from plus minus 1 not 0 1. Now what is happening here

is that if x 1 is 1 then 1 – x 1 is 0. So, 1-1 divided by 2 is also 0. However, if x 1 is -1 then 1-

1 is actually 2 and 2 divided by 2 is actually 1. So, when x i is 1 it is gets map to 0 when x i is

minus 1 it is get map to 1 and q computes a parity over the boolean inputs.

It checks with an odd number of ones are there or an even number of ones are there. So, if

there is an odd number of ones it outputs 1. If it outputs 1 then we get 1 - 2 in the right-hand

side which is 1 - 2 is actually minus 1, if it outputs 0, we get 1.

(Refer Slide Time: 14:25)

So, you can check that q prime computes parity over plus minus 1 inputs and outputs -1 if

and only if an odd number of my inputs are -1. So, it is exactly like 0, 1 but it is like we

replace 0 with +1 and 1 with -1. So, this helps because, now we see why it helps? We can

now write a simple polynomial for this and that will help us in some aspects. The fact is that

q prime simply does a change of basis from q going from 0 1 to plus minus 1.

It does so without any change of degree it is just linear operations here 1 – 2 q, so degree of q

prime is the same as degree of q. Since q computes parity or q is supposed to compute parity

on at least 75% of the inputs, q prime also computes parity on the same 75% of the inputs but

q prime has this change of basis. So, that where we are now.

(Refer Slide Time: 15:33)

And in this + - 1 basis what is parity? Parity is just the product. So, what is the product of x

size where the x size come from + - 1? So, it will be just how many -1 are there if there is an

odd number of -1 the product will be -1. If there is an even number of -1 the product will be

+1 which is exactly what parity has been defined to be. So, we can replace parity with this

term over here or this term over here, product of all the individual x size.

So, what is the probability that q prime x is equal to this. It is the same as parity, it is at least

three fourths. This means that there is a set A, it agrees with the parity on three quarters many

inputs, so let those inputs on which q prime agrees with parity we call the set A. So, in other

words maybe I can write here in other words, A is the set of all x + - 1 power n such that q

prime x is equal to the product of x i.

And we know that A agrees with parity or the q prime agrees with parity on 75% of the

inputs, so A is of size at least 75% of the entire domain. So, the domain is + - 1 power n

which is of is 2 power n 75% is three fourths of 2 power n. On this many inputs q prime

agrees with parity.

(Refer Slide Time: 17:30)

Now we will see an interesting claim that if now consider any polynomial h or any function g

over F 3 for any g it does not matter what it is now, we can write a polynomial that has the

following properties then restricted to A, h = g, so A is this set where q prime is the same as

parity. So, under that set this polynomial and this function will be the same under that set the

polynomial will equal the function.

And then the degree of h will be degree of q whatever it is, so by assumption degree of q was

less than square root n divided by 10 this is what we assumed. Degree of h is degree of q + n

divided by 2. So, degree of q in fact we can go on and write that degree of q is actually

assumed to be square root n by 10 + n by 2 we have by assumption we already have this. So,

whatever be the function now we are saying that if there is such a polynomial.

Whatever be the function just because parity can be approximated that implies that any

function can be approximated by a polynomial of degree very close to n by 2 and that seems

unbelievable and that is what will give us a contradiction. So, it is saying that any function

that you take as long as you are only looking at this the set A, so we call it a is 75% of the

inputs. If you are restricting yourself to the set a then you can approximate it with a

polynomial of degree roughly n by 2+ something like square root n.

So, square root n is much smaller than n so, the point is that there are too many functions g, g

is could be any function. And if we restrict ourselves to low degree polynomials or the

polynomials of degree n by 2, they are not enough polynomials. So, the number of functions

and number of polynomials will be there is a huge difference and that will give us a

contradiction.

So, now first let us prove the claim why this is true. So, this claim is true as assuming

whatever we have so far, so we assume that q is of degree the parity approximation

polynomial q of degree at least at most square root n and divided by 10 and that gave us this

particular q prime and that will give us this claim. So, we have a function g and we will see

how to get a polynomial h that approximates g. So, first of all g has a polynomial, so g is a

function.

So, g you can write down the entire polynomial in f. First thing enter polynomial over f 3, so

there will be huge polynomial. First thing to note is that g is over so we are only bothered

about the elements in A, so A is a subset of + - 1 whole power n. So, inside this if there is any

x i’s squared or x size cube x i’s squared, we can replace it with 1. Because all x is are + - 1.

(Refer Slide Time: 21:38)

So, x i’s squared is always 1. So, any term like if you see x i’s power 10 you can make it 1 x

power 11 x i power 10 is 1 so x i power 11 is just x i. So, all that will remain is all the terms

will be either degree 1 or 0 so it will be multi-linear polynomial. So, this will give us multi-

linear polynomial. So, you start with the polynomial for g now we are simplifying it so multi-

linear polynomial it is still fine as long as we are restricting ourselves to A.

And that is all that we care about. Now you look at each monomial. So, each monomial will

be of the form x i, a product of x i where i comes from some set s where s is some subset of 1

to n. Now if this set is of size smaller than n by 2 then we just retain the term because again

the target degree that we have is something like n by 2 + some small thing.

(Refer Slide Time: 22:53)

So, if this s is smaller than n by 2, we are fine, the degree will be smaller than n by 2. If it is

bigger than n by 2 then we have to do something. So, all that we need to notice is that if s is

bigger than n by 2 you could write it as the product of all the i multiplied by the product of i

that are not in s, so product of all the i which is the second term here multiplied by the

product of i that are not in s.

Because the i; that is not in s, appear twice and x i squared as I said already is equal to 1, so

all that will remain is all the i that are in s. But what is the product of all the x i? It is simply

inside A it is simply q prime x. This is the assumption, within A q prime and this are same.

So, this is the same within A and we are only carrying we only care about what is there

within A so we get this.

Since s is in this part, s is assumed to be of size bigger than n by 2 the complement of s will

be always less than n by 2 or at most n by 2. So, this is degree less than n by 2 and this is

degree less than square root n by 10 and gets as a polynomial. So, we got a polynomial of

degree n by 2 + square root n by 10.

(Refer Slide Time: 24:37)

Now where is the contradiction? The contradiction is so again the claim is now proved or this

particular claim is now proved now we will get a contradiction. As I already said how many

functions are there consider all the functions that go from A to F 3, so the number of

functions is actually 3 power A, these because each entry in A could be 0, 1 or 2. Each entry

in a could be mapped to 0, 1 or 2.

So, there is a set a which has two power n elements and then F 3 which has 0,1 or 2, so each

one of them could be mapped to one of these each one in the right left-hand side could be

mapped to 0 or 1 or 2. So, it is 3 power A or 3 power the size of A. And now another thing

that we know is that all these functions can are approximated or captured by polynomials not

even approximated.

Actually, captured by polynomials of degree at most square root n by 2 + square root n by 10.

Now we will just count how many such polynomials are there and we further know that these

are all multi-linear as well. So, how many such monomials are there? So, how many

monomials can be form of this degree and then you could add them and all that. So, we will

see how that works.

(Refer Slide Time: 26:50)

How many such monomials are there? So, the degree is at most n by 2 + square root n by 10.

So, it is just the number of ways to choose, so there is one is a constant term and I am not

counting the coefficients now. So, the constant term is this constant term n choose 1 is the

single degree terms and choose 2 where you choose 2 x i and x j and so on up to n choose n

by 2 + square root n by 10.

So, up to n choose n by 2, up to the halfway mark we know that one to halfway mark; this is

the middle binomial coefficient. So, this is like at most half times 2 power n so we know that

all the binomial coefficients 1 2 1 and choose 1 and choose 2 up to and choose n will give us

2 power n as a sum. So, up to the midway point it will be at most it will be equal to half times

2 power n up to the midway point.

Then what remains is n choose n by 2 +1 and n choose n by 2 + 2 and so on up to n choose n

by 2+ square root n by 10. So, this first part is done this is simply half times 2 power n,

second part one has to notice that there are how many terms are there are square root n by 2,

square root n by 10 terms. This is the summation over here and we know that the middle

binomial coefficient is the largest and what is the middle binomial coefficient, this n choose n

by 2.

So, each one of them; can be upper bounded by the middle binomial coefficient times the

number of terms here which is square root n by 10.

(Refer Slide Time: 28:49)

And middle binomial coefficient you can actually use Stirling’s approximation here so this is

what we have used here this is Stirling’s approximation which states that n factorial is I have

written below in the red and factorial is n power n divided by e power n into square root 2 pi

n. So, n choose n by 2 if you if you write n and n by 2 factor factorials in this form you will

get this 2 power n divided by pi n divided by 2.

And this is what I have replaced here this is n choose n by 2. So, you can cancel the square

root ends and what is left is 1 divided by 10 square root of pi by 2 multiplied by 2 power this

is what we have. Now what is 1 divided by 10 square root of pi by 2? Anyway, so it is

smaller than 1 by 10.

(Refer Slide Time: 29:52)

So, whatever square root of pi by 2 is pi by 2 itself is 1.5 1.57 and square root of that may be

some something between 1 and 2. Let us say. So, this is like less than 1 by 10, so this is

smaller than 1 by 10 and the first term so again I am starting from this point here the first n

by two terms were at least half times to power n and then the remaining terms were 1 divided

by 10 square root of pi by 2 to power n.

So, I said this entire thing is less than 0.1, the second term, so overall we get that this is at

most 0.6 times to power n. This is the number of different monomials and how many ways

can you how many polynomials can we generate. So, each monomial can get coefficient 0 1

or 2 so it is so it is just 3 power. So, number of polynomials is 3 power 0.6 times 2 power n.

But I have already said that the number of functions from A to F 3 is actually 3 power the

size of A which is 3 power 2 power n.

So, there you see the mismatch. Number of functions is actually 3 power the size of A which

is 3 power 2 power n that gives the mismatch by whatever we have assumed so, far we got

that the number of each function can be written by a polynomial, meaning each function as

long as we are restricting to ourselves to A we can represent represented by a polynomial.

But then the number of polynomials is smaller than the number of functions.

So, that leads to the contradiction. Another way to see it is that all these functions form a

vector space and the dimension of this vector space must be of size A which is actually 2

power n but not 2 power n I am sorry even here I have to like 0.75 times 2 power n over here

also 0.75 times here also I said it wrong. So, size of A is this but here we are saying the

number of monomials will be 0.6 times 2 power so that is a contradiction.

So, that is it so we assume that parity could be written as a small degree polynomial or small

as in n by roughly n by 2 degree polynomial and that gave us that there is a large set in which

any function can be approximated by a roughly n by 2 degree polynomial and I have to repeat

we assume that parity could be approximated or parity could be approximated by a square

root n degree polynomial.

And that gave us that there is a roughly large set of cycle, three quarters time 2 power n. All

the functions from that set can be approximated by a polynomial of degree roughly n by 2 but

then that is add up because number of functions is way more than the number of polynomials.

(Refer Slide Time: 33:48)

That gives us a contradiction and that is about it. So, we cannot have a degree square root n

divided by 10 polynomial approximating parity; approximating or even computing parity. In

fact, in the last lecture, we saw that epsilon approximation or one fourth approximation leads

to a concrete polynomial that agrees with uh parity on 75% of the inputs and that is not

possible and it completes the proof.

I think I have gone over the details carefully so I will not really go over again for a summary,

but I just like to add some points some 2-3 points. In fact, this proof is actually more general.

We can actually use it to show that parity is not in AC 03. What is AC 03? AC 03 is the class

of, it is just like AC 0 but in addition we also have mod 3 gates. So, it is polynomial size

constant depth and OR and NOT gates of unbounded fan in.

But we are also allowed to use mod 3 gates. So, what is mod 3 gates? So, what did I define

parity, as parity is the; if there are odd number of ones in the input it outputs one if there are

even number of ones in the input it outputs 0. Just like that if there is A if the number of ones

in the input is a multiple of 3 this will output 0 if the number of ones in the input is a multiple

of 3 it will output 0.

So, it is like parity what parity was for two mod 3 is for 3 and you can say mod 5 or any

number. So, in this case AC 03 is what I am saying, this proof also can be used to show that

parity is not in AC 03, so even if you allow the circuit to have mod 3 still parity is not

computable. Why is this? So, the first half of the proof will work even in this case. So, second

half of the proof does not need any changing.

The fact that parity requires a large degree does not need any changing what has to be fixed

or what has to be modified slightly is that computed by a circuit that we said here in the proof

that we already saw even if even if the circuit has a mod 3 gate also even then we have to

approximate polynomial so we saw how to approximate AND, OR and NOT. But even mod 3

has to be approximated.

And you may it may not be that hard to convince yourself that you can also approximate mod

3 because we are already computing over F 3 so we are already the computations over F 3 so

how do you compute mod 3? So, F 3 things happen already in mod 3 but now how do you

compute mod 3 over F 3 that you can think. So, once that happens then you can you can

generalize this or you can modify this theorem that we saw in the previous lecture.

To say that everything when we computed everything that is computed by a size s depth d a

circuit of which has and now AND OR NOT and mod 3 gates can be approximated by a low

degree polynomial and the second part is the same. So, this is one point, the proof is actually

stronger than what we already saw so maybe I will just write here. So, check mod 3 gates can

be written as a small part as a low degree polynomial over F 3.

F 3 is once again is the field 0 1 2 that contains 0 1 2 and everything happens in modulo 3. In

fact, it actually shows the same technique exactly the same proof works. So, parity is like

mod 2 and AC 03 is mod like 3 contains mod 3. So, now instead of mod 2 and mod 3 I could

say the same for mod p and mod q. So, any mod p is not contained in AC 0 mod AC 0 q

where p and q are two different primes.

So, maybe I will just say it and the thing that you can check is if we need p and q to be two

different primes otherwise this to work. So, for instance if you can always write mod 3 using

mod 9 gates for instance. Just think about it how you can how you will do that.

(Refer Slide Time: 38:59)

So, if they are not primes sometimes these kinds of things happen. Now this is AC 0 q. So,

we have a language parity that is not in AC 0. Do we know a language that is not in AC 0 q?

Yes, I just said mod p is a language that is not an ac or a function that is not in AC 0 q. What

if when q is a prime? But we did not know any language or we did not even know if there is a

language or a function that is not in AC 06.

So, 6 does not get captured in the previous statement over here because this the statement

mod p is not in AC 0 q only held for p and q primes. So, we did not know of a language that

is not there in is or even if was it a language that is not there in AC 06. So, parity and mod p

are like small languages and till about 10 years back we did not know this.

(Refer Slide Time: 40:20)

And Ryan Williams showed that there are languages so in fact it is not NP, NP exponential

time nothing. So, he had to go till next to find or to show that there is a language in next that

is non-deterministic exponential time that is a class next. There is a language in next that is

not computable by AC 06, AC 06 means AC 0 circuit along with mod 6 gates. In fact, he

proved slightly stronger statement he said that there is a language there are languages in x

that is not in ACC 0.

So, what is ACC 0? It is like AC 0 polynomial size log of constant depth but we allow all

modem gates not only primes composites everything, so that is ACC 0. So, till about 10 years

back we did not have any such thing but now at least we have this we have to go all the way

up to non-deterministic exponential time. So, NP is not non-deterministic polynomial time so

we have to do exponential time and non-determinism to find a language that is there but not

in ACC 0.

So, as I said in the previous lecture the progress of lower bounds in circuit complexity has

been slow and I do not think there are there have been significant breakthroughs after these

results. So, I think I will conclude here. I think I have already said a good enough overview

of this proof of what we did in the previous lecture and what we did in this lecture so I will

skip doing another summary. Thank you.

