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Hello and welcome to lecture 42 of the course Computational Complexity. In the previous 

lecture, we started on showing the proof that parity is not in AC 0. We were following the 

proof technique by Rasbora and Smolensky. 
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The main motivation was to provide concrete meaning unconditional lower bounds on some 

circuit class.  
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I just very briefly outline what we have done so far on the proof itself. So, what we have done 

so far, this is a high-level outline of the proof. Every AC 0 function can be approximated by a 

low degree polynomial over the F 3 field, F 3 field is just the field which contains 0, 1 and 2 

and addition and multiplication happens modulo 3. So, that is F 3, so every AC 0 function can 

be approximated by a low degree polynomial.  

 

Second parity cannot be parity requires a large degree even to approximate. These are the two 

main theorems that we will show. In fact, we showed the first statement and a bit more than 

that.  
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So, the first statement was showed that, every AC 0 function can be approximated by a low 

degree polynomial.  
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So, by low degree what we meant is, if it is a circuit of size s and depth d then we could 

approximate with a log s to the power d degree polynomial and the error of that is like 1 by 4. 

So, let say 1 by 4 is some fixed number. So, it could be 1 by 10 also then still some constant 

factor will change, but we will get roughly this. So, log s is the size of the circuit so it is like 

log to the power d because s is just n to the power some k.  
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The main idea was to build a circuit where we replace AND gate, OR gate and NOT gate 

with the corresponding polynomials. And what we did in this proof is to show that we could 

approximate OR gates.  
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NOT gates are straight forward because it is just corresponding to the polynomial 1- x and 

AND gate can be derived from or gate using the De Morgan laws without any extra degree.  
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So, all we had to do was to build an OR gate which we did and we built an OR gate that had 

degree order log 1 by Epsilon, where Epsilon was a desired error. Now we just use these OR 

gates AND gates everything NOT gates to replace to so polynomial corresponding to the OR 

gates NOT gates AND gates to in the circuit to build a jumbo polynomial that would 

approximate the original circuit.  
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So, the jumbo polynomial has like the error is approximated by the union bound. So, we 

choose epsilon small enough so that epsilon times the size is also less than 1 by 4. The degree 

of any individual polynomial to the power the depth of the circuit because it should be a 

Nitridated polynomial of a polynomial of a polynomial.  
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So, therefore if you do the math, you will get that epsilon has to be 1 by 4 s and the degree 

will be order log s whole power d. So, this is not a single polynomial but a family of 

polynomials rather a polynomial chosen from a distribution at some using some random bits 

and which will so and when say epsilon, here the epsilon is over the choice of the randomness 

and for any fixed input. So, even after you fix the input the probability of success is at least 

three fourth.  
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And then we showed that if we have a family and a distribution that epsilon approximates or 

1 by 4 approximates. Then there is a single polynomial, there is one polynomial in that in the 

distribution. That will actually give us, at most one fourth error if you choose the input at 

random. So, now from the situation where we want for any input at most one fourth error 



over where the error is computed or the probability is computed over the charge of the 

polynomial.  

 

You can move to a situation where polynomial is fixed the error the probability is over the 

choice of the input.  
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This was a very simple argument, using some counting based argument. So, the main 

technique for the first part was this arithmetization how to write the OR using some 

polynomial.  
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So, now we are starting off from here, suppose there is a function that is computed by a size s 

and depth d circuit then there is a fixed polynomial. We will call it q x so this is fixed over f 3 



such that the degree is ordered longest power d and probability is chosen over the inputs. 

Then what is the probability that the q agrees with the function that we want to compute and 

this is at least three fourths.  

 

So, this three fourth also choices somewhat arbitrary I could have made it nine tenth or 

something. It would still you could get a similar proof. So, this is where we are starting from, 

maybe I have repeated in this note as well the second notes as well 42 notes. So, if we have a 

Boolean function computed by depth d and sizes circuit. Then you could have a there is a 

fixed polynomial that has degree log s power d.  

 

And approximate not even approximated such that the polynomial agrees with the function 

on 75% of the inputs. So, this is what we will see today and so this is what we already saw. 

What we will see in this lecture is that for any fixed polynomial that for which agrees with 

the parity function on 75% of the inputs. This polynomial should have degree at least square 

root n divided by 10. So, any fixed polynomial that agrees with parity function.  

 

Recall that parity of x being a bit string is one if and only if an odd number of ones in x are 1 

or if x contains an odd number of ones, if x contains an even number of one parity is 0. It just 

the bit twice like or it is the x or computer over the bits. So, what we are saying is that if q x 

or if parity is computed by a part or computed by a polynomial in this manner like this as the 

polynomial agrees with parity on 75% of the inputs.  

 

Then the degree of the polynomial should be actually square root and divided by 10 and what 

we are saying here is that for any function that is computed by a sizes and depth d circuit then 

if it agrees with the any polynomial that agrees with it there is a polynomial that agrees with 

it on with degree at most log s power d. So, when it is an AC 0 circuit, it is like this log x 

power d is order log n power some constant. 

 

Because order log s is just k times log n for some constant depth d is a constant. So, this is so 

log n power d is much smaller than square root n.  
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Here we have the second theorem, we are saying that any polynomial that approximates 

parity in this manner requires square root and degree. Here we are saying log n power 

constant is enough so that is the contradiction. So, because of that we cannot compute the 

parity using an AC 0 circuit. This is the contradiction in fact we will see a bit more detail than 

this. So, we will see, so we will actually compute how much size can the parity circuit have.  

 

If it has constant depth and we will see that the size is more than polynomial. So, this is what 

we said if you combine the above theorems, what it is saying is that if parity has to be 

approximated by polynomial in this matter degree has to be at least square root n divided by 

10 which means, order log s to the power d has to be square root and divided by 10.  
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Which means s has to be square root 2 power square root n divided by 10 whole power or 

power 1 by d which you can just write it as 2 power n power 1 by 2d. So, any circuit that 

computes parity must have size at least this quantity, so which is this is clearly super 

polynomial this is like something exponential that is the reason why parity is not in AC 0. So, 

now what remains is to show the proof of this theorem.  

 

That any q that agrees with parity on 75% of the inputs must have square root and degree, 

square root n and divided by 10 degree.  
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So, we will shoot for a contradiction. Again, this proof is also very simple and uses simple 

principles but this uses a bit of linear algebra and will be shorter than what we saw in the 

previous lecture. Suppose there was such a q with degree less than square root n and divided 

by 10. So, first let us do a change of basis. So, let us define q prime, and what is q prime? It is 

1- 2 q of this, so where we are replacing the variables.  

 

So, the variables of q are x 1, x 2 etcetera. So, now we are replacing it with 1 – x, 1 divided 

by 2, 1 –x, 2 divided by 2 and so on up to 1 – x n divided by 2. So, what have we done here 

when x i is 0 or x i is 1? q computes parity on Boolean input, this is what it computes 0, 1 

power n. Now the claim is that q prime computes parity on - 1, +1 or rather maybe I should 

see the opposite, just to be consistent +1, -1 power n.  

 

So, suppose x i so suppose the input of q prime is actually so q prime takes as input x 1 up to 

x n and think of x 1 etcetera coming from plus minus 1 not 0 1. Now what is happening here 



is that if x 1 is 1 then 1 – x 1 is 0. So, 1-1 divided by 2 is also 0. However, if x 1 is -1 then 1- 

1 is actually 2 and 2 divided by 2 is actually 1. So, when x i is 1 it is gets map to 0 when x i is 

minus 1 it is get map to 1 and q computes a parity over the boolean inputs.  

 

It checks with an odd number of ones are there or an even number of ones are there. So, if 

there is an odd number of ones it outputs 1. If it outputs 1 then we get 1 - 2 in the right-hand 

side which is 1 - 2 is actually minus 1, if it outputs 0, we get 1.  
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So, you can check that q prime computes parity over plus minus 1 inputs and outputs -1 if 

and only if an odd number of my inputs are -1. So, it is exactly like 0, 1 but it is like we 

replace 0 with +1 and 1 with -1. So, this helps because, now we see why it helps? We can 

now write a simple polynomial for this and that will help us in some aspects. The fact is that 

q prime simply does a change of basis from q going from 0 1 to plus minus 1. 

 

It does so without any change of degree it is just linear operations here 1 – 2 q, so degree of q 

prime is the same as degree of q. Since q computes parity or q is supposed to compute parity 

on at least 75% of the inputs, q prime also computes parity on the same 75% of the inputs but 

q prime has this change of basis. So, that where we are now.  
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And in this + - 1 basis what is parity? Parity is just the product. So, what is the product of x 

size where the x size come from + - 1? So, it will be just how many -1 are there if there is an 

odd number of -1 the product will be -1. If there is an even number of -1 the product will be 

+1 which is exactly what parity has been defined to be. So, we can replace parity with this 

term over here or this term over here, product of all the individual x size.  

 

So, what is the probability that q prime x is equal to this. It is the same as parity, it is at least 

three fourths. This means that there is a set A, it agrees with the parity on three quarters many 

inputs, so let those inputs on which q prime agrees with parity we call the set A. So, in other 

words maybe I can write here in other words, A is the set of all x + - 1 power n such that q 

prime x is equal to the product of x i.  

 

And we know that A agrees with parity or the q prime agrees with parity on 75% of the 

inputs, so A is of size at least 75% of the entire domain. So, the domain is + - 1 power n 

which is of is 2 power n 75% is three fourths of 2 power n. On this many inputs q prime 

agrees with parity.  
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Now we will see an interesting claim that if now consider any polynomial h or any function g 

over F 3 for any g it does not matter what it is now, we can write a polynomial that has the 

following properties then restricted to A, h = g, so A is this set where q prime is the same as 

parity. So, under that set this polynomial and this function will be the same under that set the 

polynomial will equal the function.  

 

And then the degree of h will be degree of q whatever it is, so by assumption degree of q was 

less than square root n divided by 10 this is what we assumed. Degree of h is degree of q + n 

divided by 2. So, degree of q in fact we can go on and write that degree of q is actually 

assumed to be square root n by 10 + n by 2 we have by assumption we already have this. So, 

whatever be the function now we are saying that if there is such a polynomial.  

 

Whatever be the function just because parity can be approximated that implies that any 

function can be approximated by a polynomial of degree very close to n by 2 and that seems 

unbelievable and that is what will give us a contradiction. So, it is saying that any function 

that you take as long as you are only looking at this the set A, so we call it a is 75% of the 

inputs. If you are restricting yourself to the set a then you can approximate it with a 

polynomial of degree roughly n by 2+ something like square root n.  

 

So, square root n is much smaller than n so, the point is that there are too many functions g, g 

is could be any function. And if we restrict ourselves to low degree polynomials or the 

polynomials of degree n by 2, they are not enough polynomials. So, the number of functions 



and number of polynomials will be there is a huge difference and that will give us a 

contradiction. 

 

So, now first let us prove the claim why this is true. So, this claim is true as assuming 

whatever we have so far, so we assume that q is of degree the parity approximation 

polynomial q of degree at least at most square root n and divided by 10 and that gave us this 

particular q prime and that will give us this claim. So, we have a function g and we will see 

how to get a polynomial h that approximates g. So, first of all g has a polynomial, so g is a 

function.  

 

So, g you can write down the entire polynomial in f. First thing enter polynomial over f 3, so 

there will be huge polynomial. First thing to note is that g is over so we are only bothered 

about the elements in A, so A is a subset of + - 1 whole power n. So, inside this if there is any 

x i’s squared or x size cube x i’s squared, we can replace it with 1. Because all x is are + - 1.  
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So, x i’s squared is always 1. So, any term like if you see x i’s power 10 you can make it 1 x 

power 11 x i power 10 is 1 so x i power 11 is just x i. So, all that will remain is all the terms 

will be either degree 1 or 0 so it will be multi-linear polynomial. So, this will give us multi-

linear polynomial. So, you start with the polynomial for g now we are simplifying it so multi-

linear polynomial it is still fine as long as we are restricting ourselves to A.  

 

And that is all that we care about. Now you look at each monomial. So, each monomial will 

be of the form x i, a product of x i where i comes from some set s where s is some subset of 1 



to n. Now if this set is of size smaller than n by 2 then we just retain the term because again 

the target degree that we have is something like n by 2 + some small thing.  
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So, if this s is smaller than n by 2, we are fine, the degree will be smaller than n by 2. If it is 

bigger than n by 2 then we have to do something. So, all that we need to notice is that if s is 

bigger than n by 2 you could write it as the product of all the i multiplied by the product of i 

that are not in s, so product of all the i which is the second term here multiplied by the 

product of i that are not in s.  

 

Because the i; that is not in s, appear twice and x i squared as I said already is equal to 1, so 

all that will remain is all the i that are in s. But what is the product of all the x i? It is simply 

inside A it is simply q prime x. This is the assumption, within A q prime and this are same. 

So, this is the same within A and we are only carrying we only care about what is there 

within A so we get this.  

 

Since s is in this part, s is assumed to be of size bigger than n by 2 the complement of s will 

be always less than n by 2 or at most n by 2. So, this is degree less than n by 2 and this is 

degree less than square root n by 10 and gets as a polynomial. So, we got a polynomial of 

degree n by 2 + square root n by 10.  
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Now where is the contradiction? The contradiction is so again the claim is now proved or this 

particular claim is now proved now we will get a contradiction. As I already said how many 

functions are there consider all the functions that go from A to F 3, so the number of 

functions is actually 3 power A, these because each entry in A could be 0, 1 or 2. Each entry 

in a could be mapped to 0, 1 or 2.  

 

So, there is a set a which has two power n elements and then F 3 which has 0,1 or 2, so each 

one of them could be mapped to one of these each one in the right left-hand side could be 

mapped to 0 or 1 or 2. So, it is 3 power A or 3 power the size of A. And now another thing 

that we know is that all these functions can are approximated or captured by polynomials not 

even approximated. 

 

Actually, captured by polynomials of degree at most square root n by 2 + square root n by 10. 

Now we will just count how many such polynomials are there and we further know that these 

are all multi-linear as well. So, how many such monomials are there? So, how many 

monomials can be form of this degree and then you could add them and all that. So, we will 

see how that works. 
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How many such monomials are there? So, the degree is at most n by 2 + square root n by 10. 

So, it is just the number of ways to choose, so there is one is a constant term and I am not 

counting the coefficients now. So, the constant term is this constant term n choose 1 is the 

single degree terms and choose 2 where you choose 2 x i and x j and so on up to n choose n 

by 2 + square root n by 10.  

 

So, up to n choose n by 2, up to the halfway mark we know that one to halfway mark; this is 

the middle binomial coefficient. So, this is like at most half times 2 power n so we know that 

all the binomial coefficients 1 2 1 and choose 1 and choose 2 up to and choose n will give us 

2 power n as a sum. So, up to the midway point it will be at most it will be equal to half times 

2 power n up to the midway point. 

 

Then what remains is n choose n by 2 +1 and n choose n by 2 + 2 and so on up to n choose n 

by 2+ square root n by 10. So, this first part is done this is simply half times 2 power n, 

second part one has to notice that there are how many terms are there are square root n by 2, 

square root n by 10 terms. This is the summation over here and we know that the middle 

binomial coefficient is the largest and what is the middle binomial coefficient, this n choose n 

by 2. 

 

So, each one of them; can be upper bounded by the middle binomial coefficient times the 

number of terms here which is square root n by 10.  

(Refer Slide Time: 28:49) 



 

And middle binomial coefficient you can actually use Stirling’s approximation here so this is 

what we have used here this is Stirling’s approximation which states that n factorial is I have 

written below in the red and factorial is n power n divided by e power n into square root 2 pi 

n. So, n choose n by 2 if you if you write n and n by 2 factor factorials in this form you will 

get this 2 power n divided by pi n divided by 2.  

 

And this is what I have replaced here this is n choose n by 2. So, you can cancel the square 

root ends and what is left is 1 divided by 10 square root of pi by 2 multiplied by 2 power this 

is what we have. Now what is 1 divided by 10 square root of pi by 2? Anyway, so it is 

smaller than 1 by 10.  
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So, whatever square root of pi by 2 is pi by 2 itself is 1.5 1.57 and square root of that may be 

some something between 1 and 2. Let us say. So, this is like less than 1 by 10, so this is 

smaller than 1 by 10 and the first term so again I am starting from this point here the first n 

by two terms were at least half times to power n and then the remaining terms were 1 divided 

by 10 square root of pi by 2 to power n.  

 

So, I said this entire thing is less than 0.1, the second term, so overall we get that this is at 

most 0.6 times to power n. This is the number of different monomials and how many ways 

can you how many polynomials can we generate. So, each monomial can get coefficient 0 1 

or 2 so it is so it is just 3 power. So, number of polynomials is 3 power 0.6 times 2 power n. 

But I have already said that the number of functions from A to F 3 is actually 3 power the 

size of A which is 3 power 2 power n.  

 

So, there you see the mismatch. Number of functions is actually 3 power the size of A which 

is 3 power 2 power n that gives the mismatch by whatever we have assumed so, far we got 

that the number of each function can be written by a polynomial, meaning each function as 

long as we are restricting to ourselves to A we can represent represented by a polynomial. 

But then the number of polynomials is smaller than the number of functions.  

 

So, that leads to the contradiction. Another way to see it is that all these functions form a 

vector space and the dimension of this vector space must be of size A which is actually 2 

power n but not 2 power n I am sorry even here I have to like 0.75 times 2 power n over here 

also 0.75 times here also I said it wrong. So, size of A is this but here we are saying the 

number of monomials will be 0.6 times 2 power so that is a contradiction. 

 

So, that is it so we assume that parity could be written as a small degree polynomial or small 

as in n by roughly n by 2 degree polynomial and that gave us that there is a large set in which 

any function can be approximated by a roughly n by 2 degree polynomial and I have to repeat 

we assume that parity could be approximated or parity could be approximated by a square 

root n degree polynomial.  

 

And that gave us that there is a roughly large set of cycle, three quarters time 2 power n. All 

the functions from that set can be approximated by a polynomial of degree roughly n by 2 but 

then that is add up because number of functions is way more than the number of polynomials.  
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That gives us a contradiction and that is about it. So, we cannot have a degree square root n 

divided by 10 polynomial approximating parity; approximating or even computing parity. In 

fact, in the last lecture, we saw that epsilon approximation or one fourth approximation leads 

to a concrete polynomial that agrees with uh parity on 75% of the inputs and that is not 

possible and it completes the proof.  

 

I think I have gone over the details carefully so I will not really go over again for a summary, 

but I just like to add some points some 2-3 points. In fact, this proof is actually more general. 

We can actually use it to show that parity is not in AC 03. What is AC 03? AC 03 is the class 

of, it is just like AC 0 but in addition we also have mod 3 gates. So, it is polynomial size 

constant depth and OR and NOT gates of unbounded fan in.  

 

But we are also allowed to use mod 3 gates. So, what is mod 3 gates? So, what did I define 

parity, as parity is the; if there are odd number of ones in the input it outputs one if there are 

even number of ones in the input it outputs 0. Just like that if there is A if the number of ones 

in the input is a multiple of 3 this will output 0 if the number of ones in the input is a multiple 

of 3 it will output 0.  

 

So, it is like parity what parity was for two mod 3 is for 3 and you can say mod 5 or any 

number. So, in this case AC 03 is what I am saying, this proof also can be used to show that 

parity is not in AC 03, so even if you allow the circuit to have mod 3 still parity is not 



computable. Why is this? So, the first half of the proof will work even in this case. So, second 

half of the proof does not need any changing.  

 

The fact that parity requires a large degree does not need any changing what has to be fixed 

or what has to be modified slightly is that computed by a circuit that we said here in the proof 

that we already saw even if even if the circuit has a mod 3 gate also even then we have to 

approximate polynomial so we saw how to approximate AND, OR and NOT. But even mod 3 

has to be approximated.  

 

And you may it may not be that hard to convince yourself that you can also approximate mod 

3 because we are already computing over F 3 so we are already the computations over F 3 so 

how do you compute mod 3? So, F 3 things happen already in mod 3 but now how do you 

compute mod 3 over F 3 that you can think. So, once that happens then you can you can 

generalize this or you can modify this theorem that we saw in the previous lecture.  

 

To say that everything when we computed everything that is computed by a size s depth d a 

circuit of which has and now AND OR NOT and mod 3 gates can be approximated by a low 

degree polynomial and the second part is the same. So, this is one point, the proof is actually 

stronger than what we already saw so maybe I will just write here. So, check mod 3 gates can 

be written as a small part as a low degree polynomial over F 3. 

 

F 3 is once again is the field 0 1 2 that contains 0 1 2 and everything happens in modulo 3. In 

fact, it actually shows the same technique exactly the same proof works. So, parity is like 

mod 2 and AC 03 is mod like 3 contains mod 3. So, now instead of mod 2 and mod 3 I could 

say the same for mod p and mod q. So, any mod p is not contained in AC 0 mod AC 0 q 

where p and q are two different primes. 

 

So, maybe I will just say it and the thing that you can check is if we need p and q to be two 

different primes otherwise this to work. So, for instance if you can always write mod 3 using 

mod 9 gates for instance. Just think about it how you can how you will do that.  
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So, if they are not primes sometimes these kinds of things happen. Now this is AC 0 q. So, 

we have a language parity that is not in AC 0. Do we know a language that is not in AC 0 q? 

Yes, I just said mod p is a language that is not an ac or a function that is not in AC 0 q. What 

if when q is a prime? But we did not know any language or we did not even know if there is a 

language or a function that is not in AC 06.  

 

So, 6 does not get captured in the previous statement over here because this the statement 

mod p is not in AC 0 q only held for p and q primes. So, we did not know of a language that 

is not there in is or even if was it a language that is not there in AC 06. So, parity and mod p 

are like small languages and till about 10 years back we did not know this.  
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And Ryan Williams showed that there are languages so in fact it is not NP, NP exponential 

time nothing. So, he had to go till next to find or to show that there is a language in next that 

is non-deterministic exponential time that is a class next. There is a language in next that is 

not computable by AC 06, AC 06 means AC 0 circuit along with mod 6 gates. In fact, he 

proved slightly stronger statement he said that there is a language there are languages in x 

that is not in ACC 0.  

 

So, what is ACC 0? It is like AC 0 polynomial size log of constant depth but we allow all 

modem gates not only primes composites everything, so that is ACC 0. So, till about 10 years 

back we did not have any such thing but now at least we have this we have to go all the way 

up to non-deterministic exponential time. So, NP is not non-deterministic polynomial time so 

we have to do exponential time and non-determinism to find a language that is there but not 

in ACC 0.   

 

So, as I said in the previous lecture the progress of lower bounds in circuit complexity has 

been slow and I do not think there are there have been significant breakthroughs after these 

results. So, I think I will conclude here. I think I have already said a good enough overview 

of this proof of what we did in the previous lecture and what we did in this lecture so I will 

skip doing another summary. Thank you. 


