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The Class NP- Alternate Definition 

 

Welcome to lecture 4 of the course. In the last lecture we saw a brief review of what is non-

deterministic Turing machine and the clauses N time tn followed by some example problems and 

then we define NP, then we saw some example problems in NP followed by a brief description 

of the P versus NP problem which is a big open problem in computer science. 
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So, today we will see one more example or one more canonical example of a problem in NP 

followed by another characterization of NP. So, we realized or we learned that NP is a class of 

all languages that can be decided by non-deterministic polynomial time Turing machines. So, 

today we will see the characterization for that. So, first let me define what is called SAT, the 

problem called SAT. SAT is short for the satisfiability the word satisfiability or sometimes it is 

also called as a Boolean satisfiability problem. 

 

So, you are given a Boolean formula, say maybe you are given something like this x 1 AND x 2 

OR x 3. So, these kinds of things that kind of look like an inverted V are called wedges and they 



stand for AND the Boolean and the ones that look like V are called are stands for the Boolean 

OR. Now these are Boolean variables, x 1, x 2, x 3, x 4 and now you are asking, so what is the 

satisfiability problem?  

 

Given a formula like this now, is there any way to assign true or false values to x 1, x 2, x 3 and 

x 4 such that this formula evaluates to true. Let us see, so in this formula is there any such way. 

So, now, this is the AND of four things x 1 AND x 2 OR x 3 AND x 3 complement this bar at 

the top means complements AND x 3 OR x 4. So, these four things need to be true. So, this 

means that x 1 has to be true and this means that and it is AND of four things all these four 

things must be true.  

 

So, this means that x 3 also must be x 3 must be false, because x 3 complement must be true. 

And now because x 1 must be true AND x 3 compliment must be true so, we got the inference 

that x 3 must be false, now since x 3 must be false now look at the last part, which says x 3 or x 

4. Here x 3 has to be false, but x 4 has to be true for this part to be true so x 4 has to be true, and 

likewise x 2 also has to be true.  

 

So, one way to satisfy this Boolean formula is for x 1 x 2 x 4 to be true, AND x 3 to be false and 

it looks like the only way for this Boolean formula to be satisfied. However, it does not matter 

whether it is the only way or if it is one among many ways, the point is that there is one way for 

it to be satisfied. So, again just to formally define it consists of Boolean formula a consists of 

Boolean variables like x i negated variables, which is a complement denoted by x i with a bar 

above it and sometimes both x i and x i complement are together called literals.  

 

So, both are two different forms of x i and they connected by AND and OR, so AND is denoted 

by an inverted V and OR is denoted by a V and of course, they are also categorized or organized 

with parenthesis.  
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And formally SAT is a collection of or is a set of all Boolean formula such that they are 

satisfiable meaning, there is some way to assign the variable in there in such a way that the 

Boolean formula evaluates to true. So, this Boolean formula that will be written over here, this 

one is it is satisfiable this is in SAT. Because we found a way of assigning true false values such 

that this entire formula evaluates to true.  

 

So, satisfiable means there is an assignment of true false to the Boolean variables that the whole 

formula evaluates to true.  
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Now some minor examples of some special subclasses of the SAT. So, that is the class of all 

Boolean formula such that, that are satisfiable. Now, we will learn something called Conjunctive 

Normal Form. So, Conjunctive Normal Form means it is AND of OR’s, so what you will have 

here is an AND of clauses the whole formula will be AND of clauses. So, something like this, let 

us say the whole formula phi, phi is just one way to call it a variable in algebra as x.  

 

So, like the Boolean formula is sometimes called phi there are also other notations like psi. So, 

phi is C 1 AND C 2 AND so on till C m. That is an AND of m clauses. With each clauses of the 

form, C i is of the form something some x i 1 AND not AND, OR x i 2, sometimes some of them 

will be complemented by something like this. So, what we have here about in the blue is a 

conjunctive normal form, because we have three classes.  

 

So, the full formula is an AND of three classes and each class is an OR of literals. So, this is why 

it is a Conjunctive Normal Form, so each clause is in OR of literals which is what is happening 

here. In fact, even the first formula that we talked about here, this formula that we said is inside 

even that is after CNF for a conjunctive normal form. Because it is the AND of four clauses, the 

first clause turns out to be have just one variable, so it is really an OR of variables.  

 

So, in the second clause two variables are two literals and third clauses one literal and fourth 

clauses two literal. So, CNF SAT, so CNF form is this form, where each variable AND of 

clauses and each clause is an OR of literals.  
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So, the CNF SAT is a subclass of satisfiability consisting of all Boolean formulas in the CNF 

form which are satisfiable. Again, this big formula over here is certainly satisfiable. You can see 

there are too many variables x 1, x 2, x 3, x 4, x 5, x 6 and just three clauses to be satisfied. So, 

you can easily figure out ways to just x 1 is true and x 2 is true and x 3 is false, for instance 

satisfies this. CNF SAT is a clause of all Boolean formulas in CNF forms that is satisfiable.  

 

You can also write CNF forms that are not satisfiable. So, in fact if you had here in the first 

formula over here. If you had an AND of let us, say, if you had another clause over here, and x 4 

complement x 2 complement this. If you take all these five clauses together, you cannot be it 

cannot be satisfied simply because we already learned that with the four clauses to be satisfied x 

2 AND x 4 have to be both true. Now, once x 2 AND x 4 have to be both true in the last clause x 

4 AND x 2 have to be both false to make the last clause true. 

 

So, this is an example of a Boolean formula that is not satisfied with a CNF Boolean formula that 

is not satisfiable. And another subclass of CNF SAT is what is called three CNF SAT, where it is 

obvious CNF form something like this. But in addition to it being in the CNF form, we are also 

insisting that each clause has exactly three literals. So, here the first clauses x 4 second clause x 3 

and third clause x 2. But three CNF SAT or three SAT for shot, we want each clause should be in 

the CNF form and each clause should have exactly three literals.  

 



And the formula has to be satisfied and interestingly perhaps not, so it is difficult for you to see 

at this point all the three languages SAT set up all satisfiable Boolean formulas three SAT or 

CNF SAT that have seen a formula that is satisfiable and three SAT which have three CNF 

formulas that are satisfiable are all in N P. How it is not so have to see. First you could have a 

non-deterministic Turing machine like this first decide x 1 to be true like what should x 1 be 

should actually be set to true or x 1 should be set to false.  

 

Basically it is non-deterministically choosing whether each variable has to be true or false. And 

after x 1 true false status has to be chosen, then you decide whether x 2 has to be true or false and 

so on. So, when the tree let us say the n variables at after n levels, you would have 2 power n 

leaves at each leaf would correspond to a certain assignment like there could be n leaf where all 

the variables are true it could be n leaf where all the variables are false there could be n leave 

where x 1 is true x 2 is false x 3 is false x 4 is false. 

 

Whatever order or whatever way you want it all this all these assignments will be appearance in 

each leaf. So, this is the non-deterministic part where we non-deterministically choose the 

variables that the true false assignment for each of these variables and then all that you have to 

do is evaluate the formula at this assignment. So, given a certain assignment one has to evaluate 

the formula.  

 

This could be done via a simple algorithm in polynomial time in deterministic polynomial time. 

So, once I tell you x 1 is true x 2 is false etcetera in this formula for instance. x 1 is true x 2 is 

false x 3 is for true something then it is very easy for one to evaluate whether for this assignment 

does this formula evaluated for this assignment is for my evaluate OR to. So, the non-

deterministic part guesses all the possible assignments, and if any assignment leads to make this 

formula being true, then you will find it in the 2 powers n choices.  

 

If all the if this formula is not satisfiable all whatever assignment you assign like in this case, this 

particular case, whatever assignment you assign none of these assignments are going to satisfy it 

because whatever you assign, there will be some clause or the other which is not true. So, in 

which case, this whole evaluation will all the parts will lead to a reject. Whereas if there is some 



satisfying assignment, then the path corresponding to that satisfying assignment will lead to an 

accept.  

 

So, the formula will be accepted, because it has at least one accepting computation path. Hence, 

in the whole whatever I described works, whether it is a Boolean formula, it is a CNF specific 

Boolean formula like CNF formula, or a three CNF formula, so they are all in NP.  
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So, one thing that you may want to observe here is that we saw three colourable, we saw 

satisfiability we saw subsets some. In each of these cases, we kind of non-deterministically 

choose a solution and then verify that this solution is a valid solution. So, there is an initial part 

which is non-deterministically choosing something or one might say guessing something and 

then followed by verifying whether this guess that we made is a valid solution.  

 

So, now one might wonder, is it just coincidence that these three computational problems there 

in NP, because of a certain type of solution. First you guess and then you verify or is it that every 

problem in NP has a guess and verifies our solution. So, that is one question and the answer turns 

out to be yes, any problem in NP has a guess and verify solution. So, I explained this in the 

previous lecture as well.  

 



So, we will see the proof of that. So, first let us formalize this notion of guessing and verifying. 

So, first let me define a verifier. Again, once again, I just want to say there is a guessing part 

which is non-deterministically guessing something or not determining choosing something 

followed by a verifying part, which is completely deterministic, there is not determinism going 

on. 
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So, a verifier is the are trying to model this latter part the verification part, so a verifier is a 

decider for a deterministic decider or you can think of it as an algorithm a deterministic 

algorithm such that verifier for a language is a deterministic algorithm or a deterministic Turing 

machine such that for all the members of the language x. There is some way that the verifier can 

verify that can be used to verify that x is in the language.  

 

In other words, if x is part of the language, so for instance maybe it is easier explained with an 

example. So, consider this graph now, is it a three colourable graph. So, the problem the 

language is the class of all three colourable graphs. So, maybe I will just erase this and now you 

are trying to determine whether this graph is three colourable. So, one way to do it is to guess a 

colouring assignment, so maybe you guess red, red, green, green blue.  

 

And the verifier simply checks whether this coloring assignment is a proper colouring. Of 

course, the answer is no, because this edge has two reds on either side, this edge has two greens 



on either side. But if you consider another assignment, red, green, blue may be red over here this 

corresponds with added three colouring. And now is this graph three colourable? Yes, now if I 

give you the three colouring, the verifier can verify that this is an actual three colouring as a 

proper three colouring.  

 

So, with the help of this assignment, a verifier can verify that this graph is three colourable. So, I 

want to decide or I want to verify whether this graph is three colourable. Sure, you can do that, 

because, if I give you the three colouring, you can verify it. So, whenever x to be in L there 

should exist y. The y is the information that we need to supply to the verifier and sometimes it is 

called proof, sometimes it is called witness and sometimes it is called certificate.  

 

So, you can think of it. Now, I want to say that this graph is three-colourable. Now, how do I 

convince you that these are three colourable? So, now you are asking me, give me a certificate or 

give me proof that this is indeed three colourable. So, now I tell you look at this particular three 

colouring, it is a valid three colouring for this graph. Now, once you get the valid three colouring 

you can verify this edge is fine, this edge is fine this edge is fine and so on.  

 

Then you are convinced. So, that is why it is called a proof for a witness or a certificate. It is a 

witness to the fact that it is three colourable. Such that we can use this y to verify that x is in 

language. In the case of a subset sum I would give you the subset that sums to the target. Now, 

suppose this graph was not three colourable. Now, whatever we were saying three colours it is 

not going to be a proper colouring. 

 

So, there is no way this graph is this you cannot produce a certificate for this to be part of the 

three colouring like whatever certificate you give, it will not be verifiable because the verifier 

cannot clear it. So, all that we need is one certificate, sometimes there could be multiple 

certificates so now, if I change for instance, if I change here maybe I do not know maybe in this 

case, it is not there is not much scope for changing much, but we could do something like this.  

 

Now, let us say this is blue, this is green and this is blue. So, this is different from the fact that 

there are multiple certificates this is different from the earlier colouring. So, it does not need 



multiple certificates, but there should be at least one certificate for so if x is in the language, 

there should be some certificate y such that we should be able to verify that x is in the language 

with the help of y and y is called proof or witness or a certificate.  

(Refer Slide Time: 20:47)  

 

And again, I said this in the previous lecture, verifying the certificate is something seemingly 

simpler than deciding whether the x is in the language or not. So, testing whether x is in the 

language is seemingly harder than verifying x is in the language with the help of the certificate. 

So, this is something that is where non-determinism helps us.  
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So, now let us use this we will go on to the next characterization that I was referring to, that is 

NP is the class of languages that have polynomial time verifiers. We already defined NP to be 

the class of languages that have non-deterministic polynomial time. That can be decided by non-

deterministic polynomial time Turing machines. Now I am giving another definition and saying 

that this is also a valid definition for NP. NP is a class of languages that have polynomial time 

verifiers. So, I already defined what a verifier. 

 

Now, let me formally write it, a language L is in NP, if there exists a polynomial time verifier 

algorithm be such that, x is an L if and only if the x is y and the length of y has should be 

polynomial in the length of x such that the verifier accepts x with the help of y. So, this is the 

formerly again this is the same definition that I made over here, but here it is more mathematical 

notation, there exists a polynomial time verifier algorithm v such that x is an L if and only if 

there is a verify there is a certificate y or a proof y which is of short length, which is of 

polynomial length.  

 

So, why do we want it to be part of a polynomial length, because if it is, if the certificate itself is 

too long, then the verifier is going to take too much time verifying this. So, we want the 

verification process to be efficient. Such that with the help of y the verifier machine we can 

verify that x is in the language. So, if x is not in the language, there does not exist, such y which 

means for all the possible y is that you can think of, so think about it.  

 

So, what would be the negation of this? For all the possible y if x is not in the language, for all 

possible y, the verifier should not accept x for all the ways. Whereas if x is in the language, the 

need to x is only one y, there could be more but they need to access only one y. And what is P? 

Again, we already defined P but just to contrast we will write it in this form. P is the class of all 

languages that have a polynomial time decided.  

 

So, in other words, let us say the decider algorithm is A if x is an L, then A should accept x, 

which are x is equal to one. So, there is a simpler definition over here, but not N P is a more 

slightly more involved definition. If x is an L if and only if there is a verifier machine such that 

and this is a certificate such that the verifier can accept x with the help of the certificate. 
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So now, we stated this definition that NP is a class of languages that have polynomial time 

verifiers. Now let us try to complete this proof. There are two directions here we have to show 

that NP is the definition that we already saw and NP is a class of all languages that can be 

decided by non-deterministic polynomial time Turing machines. This means that the language 

has polynomial time verifiers and the second prediction is that if it has polynomial time verifiers, 

then it is an NP.  

 

So, suppose L is in NP, suppose the language is in NP, which means there is non-deterministic 

Turing machine that runs in polynomial time, say n power k time that decides L which means we 

can look at the computation tree of the non-deterministic Turing machine running on x. So, 

which means this is the starting configuration at the top and then there is some tree. Suppose x is 

in the language then we must be able to find we must be able to trace out in a path that leads to 

an accepting state.  

 

So, there could be multiple accepting states, there could be multiple rejects, but we should be 

able to find at least one path. Now, one way to make this into a verifier guessing verifying model 

is to give the identity of this path. So, what is this path? So, I first go left then I go right most of 

then I go middle so, maybe I will say you I can label the children of these configurations and 



they will say first of all the leftmost than go right most than go middle then go middle again and 

so on till you reach the accepting path.  

 

So, in order to receive a Turing machine that has the capability to identify an accepting 

computation path if it exists were a deterministic verifier cannot do this. But, if I tell you like you 

first go left then go right then go middle then go right whatever then, it is only the matter of 

verifying just one path from the root to the leaf and this is easier to do, we do not need to traverse 

the entire graph, we just need to traverse one small path the blue path that I have drawn in this 

figure. Hence, it is easier to verify this.  
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So, what does the verify machine do on input to y input x and y, so what is y here? So, y is the 

value of another colour y is the identity of the acceptance path of N on x. So, this is the 

certificate. So, if x is in the language there is some accepting path and that accepting path is a 

certificate y or the name of the accepting path or the identity of the same. So, what does a 

verifier machine do? It simulates input x and when N has to make a non-deterministic choice V 

will be guided by y. 

 

So, basically it runs V it runs as if N is running but N makes non-deterministic choices and what 

will V do? V will follow the path as guided by the string y and the y will tell you which is the 

accepting path. So, if there is an accepting path, y can encode that and V can verify that. If x is 



not in the language all the paths will go to reject. So, whatever y you give it we cannot be 

convinced to accept x because the y’s are all bad, all the y’s lead to rejected and accept if N 

accept.  
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So, now, this is one direction, the other direction is that if a language is a polynomial time 

verifier, then it is an N P. Suppose there is a language that is a polynomial time verifier, suppose 

in this language that is a polynomial time verifier let us say V is a verifier now, assume that V 

runs in time n power K. So, this means that we need to come up with a non-deterministic Turing 

machine for the language.  

 

So, what V do? If a certificate is supplied V will verify x with the help of the certificate y. Now, 

what does the non-deterministic Turing machine do? So, not the missing Turing machine what it 

does is it guesses is string y of length n power k, so as I will draw here. Basically, the reason is if 

the verifier runs in time and power k then the certificate cannot be longer than that. So, let the 

non-deterministic Turing machine get a certificate of this length and then run.  

 

So now, it gives us a string of length y, so this is this process we have seen before it can guess 

the first bit then the second bit and so on. Then run V so, now it has a certificate now, you run V 

on the on the pair input in the certificate accept if and only if V accepts. So, now the non-

determining guess could be all the possible combinations of y's if x is in the language that x is a 



y that will lead to its verification and hence, that will correspond to a path in the non-

deterministic Turing machine that will lead to an accept.  

 

If x is not in the language there is no such y and whatever part then automatic Turing machine 

takes it will lead to rejection. Hence, we saw this, so if there is a non-deterministic Turing 

machine polynomial time Turing machine that accepts the language that decides the language, 

then the language is a polynomial time verifier and if the language is a polynomial time verifier, 

then it can also be decided by a non-deterministic polynomial time Turing machine.  

 

So, this is an alternate characterization or an alternate definition of the class NP, NP is a class of 

all languages that have polynomial time verifiers. 

(Refer Slide Time 32:48)  

 

So, just to summarize, what are the proofs and certificates that we have seen so far? In the case 

of subset sum, it was the certificate that was the subset itself that sums to the target some t. In the 

case of CNF SAT, it was a satisfying assignment using the Boolean formula. And the case of 

three curving I am not going to say if you can you can think over it what was the proof or 

certificate that the given graph is three-colorable.  

 



So, just to summarize, we have seen a SAT and we have seen a CNF SAT, then we saw the 

alternate characterization of NP which is that it is a class of all languages that have polynomial 

time verifiers and then we saw why this definition is equivalent to the previous definition. 
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Now, I just want to conclude and before I conclude, I just want to say two small things. I believe 

we will be able to share these notes with you and you can read the proofs detailed proofs, but I 

just share it I just explained in brief now. Again, this is theorem 7.11 these numbers are from 

Sipser. I think the second edition is what I have perhaps the third edition is the time complexity 

chapter. What it says is that?  

 

If there is no deterministic Turing machine that transcends tn time deciding a certain language. 

Then there is an equivalent deterministic Turing machine that runs in the exponential of tn time, 

so to power order tn time that decides the same language. So, equivalent means they both decide 

the same language. And if you recall, t o c proof that a non-deterministic Turing machine is 

equivalent to a deterministic Turing machine.  

 

This is kind of the same proof what we do is we simulate basically the non-deterministic Turing 

machine has to decide, if there is at least one accepting path. So, but then non-deterministic 

Turing machine can automatically kind of find the path if it accesses, but the deterministic 

Turing machine does not have the power to non-deterministically search for an accepting path. 



So, it has to kind of do a depth first search or breadth first search in this graph in the big 

configuration graph.  

 

So, essentially that is the proof. So, you want to search in this graph which is a problem of usual 

traversal like depth first search or breadth first search. So, what is the maximum number of 

configurations that can be there that is the number of vertices in this graph or a tree. And to 

estimate the number of configurations or a to estimate an upper bound on the number of 

configurations, we make it assumption that not we assume that the maximum branching of any 

configuration is some constant and we call that constant b.  

 

So, the maximum branching will be always limited by some number, because it is just a function 

of the Turing machine and so, it will be a constant. So, let us assume it is b.  
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And once it is bounded and it will be bounded for once the Turing machine is fixed. And it does 

not, vary as per the input length, it is just fixed based on the Turing machine. Now, I teach at 

level one there is one node C level 0 there is 1 configuration level one there could be at most b 

configurations, maybe not as much. Second level two there could be squired, maybe not as much 

and so on.  

 



So, we have and the number of computation paths will be b power t n, t n is the total number of 

steps required for an optimistic Turing machine. And using simple calculation we can see that 

this the number of states in this graph is this one b power t and in two multiplied by t n and we 

can see that this is upper bounded by 2 power order tn, which is a claim. So, any non-

deterministic Turing machine has an equivalent Turing deterministic Turing machine with only 

an exponential or with an exponential blow up in time;  

 

Maybe I should not say only because the exponent the blow up is huge. So, if there is a 

knowledge of the Turing machine that runs in order n time the corresponding equivalent Turing 

machine constructed using this procedure that is into power order n time. So, in specific cases 

you may be able to find simpler algorithms, but this is a general proof and this gives you a 

general bound which is kind of very bad. 
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And this part you can just read it out when I share the notes. All it is saying is that the branching 

factor if it is large, we can replace it with a subtree of a branching factor at most two at the 

expense of the number of levels in the tree, you can just have a look and that is it for this lecture. 

So, just to summarize it subsides three SAT CNF SAT characterization for NP and two simple 

results which say that any non-deterministic Turing machine the runs in time tn has an equivalent 

deterministic Turing machine that runs in two power order tn times. In the next lecture, we will 

see NP completeness. See you there. Thank you.  


