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Hello and welcome to lecture 38 of the course on computational complexity. So, in the last 

lecture we were discussing the computational complexity class P by poly which is a class of 

languages that can be decided by polynomial size circuits. We saw that P is contained in P by 

poly and we also saw that there are undecidable languages in P by poly hence P is not equal to P 

by poly. So, now that brought us to the question where does NP fit in all this?  

 

Is NP a subset of P by poly or is it not really a subset? So, NP basically the question is NP like 

this contained in P by poly or is it like this, that there are languages in NP that are not in P by 

poly. Notice that NP cannot be a superset of P by poly because P by poly contains undecidable 

languages. So, in this lecture we will see how P by poly relates to other classes that we are 

already aware of starting with NP.  
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So, we start with the Karp Lipton theorem which provides some evidence to the fact that it is 

likely that NP is like this, NP is not a subset of P by poly. So, likely that NP is not a subset of P 

by poly, this is because if NP was a subset of P by poly, if NP had polynomial size circuits it 

would mean that the polynomial hierarchy collapsed. And it is believed that the polynomial 

hierarchy is strict and does not collapse.  

 

Because of which we can view Karp Lipton theorem as evidence to the fact that NP does not 

have polynomial size circuits. In fact, it shows that the polynomial hierarchy collapses to the 

second level to sigma 2. So, Karp Lipton theorem was proved in 1980 by Richard Karp and 

Richard Lipton and the original proof had them showing that the polynomial hierarchy would 

collapse to sigma 3, the third level and which was later improved to sigma 2 by Zipser.  

 

So, the proof might have slightly improved but the spirit of the theorem remains the same 

whether the polynomial hierarchy collapses to sigma 3 or sigma 2, both of them are somewhat 

equally unlikely, so this is what Karp Lipton theorem states.  
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So, before getting into the proof of Karp Lipton theorem we will see an interesting result about 

the self-reducibility of SAT which will be made use of in the proof of Karp Lipton theorem. So, 

the first result is that if NP is contained in P by poly, then there are polynomial size circuits for 

SAT which means there are polynomial size circuit family that takes us and put a Boolean 

formula and outputs a 0, 1 output depending on whether the Boolean formula is satisfiable or not.  

 

This is just more or less a restatement of the fact that SAT is contained in P by poly, so if NP is 

in P by poly obviously SAT is in P by poly and which means that there is a circuit family C n 

that gives us output 1 if and only if the Boolean formula is satisfiable. So, C n takes us and puts a 

Boolean formula and outputs 1 if and only if the Boolean formula phi is satisfiable which is what 

we have written here.  
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Claim 2 states that if NP is in P by poly, again the same assumption then there is another 

polynomial size circuit family called C n prime, the one I have highlighted here. That not only 

decides whether the formula is satisfiable or not, but also it gives a satisfying assignment for the 

formula if the formula is satisfiable. So, basically C n prime takes us input a Boolean formula 

and outputs a satisfying assignment if it exists, otherwise it just outputs all zeros.  

(Refer Slide Time: 05:10) 

 

And here is where we will make use of the self-reducibility of SAT, so what is self-reducibility? 

It is a property that is satisfied by SAT but also other NP languages but let us see what it is. So, 

what we do? The goal is to construct a satisfying assignment of given a Boolean formula phi. So, 



we first input the Boolean formula to the circuit family C n from the claim 1, if phi is satisfiable 

C n will output 1, if phi is not satisfiable C n will output 0.  

 

Suppose C n outputs 0, this means that phi is not satisfiable and we can stop processing right 

now because the goal is to find a satisfying assignment. If the formula itself is not satisfiable, 

obviously there is no satisfying assignment that we can discover, so we can stop right there. So, 

if the output 0 then we can stop right there, if we output 1 then we will try to arrive at a 

satisfying assignment. So, if C n outputs 1 it means that the formula is satisfiable.  

 

So, from now on whatever we say works only when the formula is satisfiable. So, now we can 

assume that the formula phi has a satisfying assignment, now what we do is we let the variables 

of the formula phi v 1 to v n. So, let the variables of the formula phi v 1 to v n, let these be the n 

variables of the formula. Now what we do is we fix the first variable to phi 1, we fix v 1 to be 1 

and then feed in it into the circuit family C n or we feed it into circuit C n.  

 

So, once we fix v 1 = 1, now we have a smaller formula because v 1 will be replaced by 1, peak 

1 complement will be replaced by 0. So, some constants may lead to the formula becoming 

smaller and there are n - 1 variables. And now the circuit C n tests whether the resulting formula 

is satisfiable or not. Suppose the resulting formula is satisfiable which means there is a way to fix 

v 2, v 3 etcetera in such a way that v 1 being 1, there is a satisfying assignment.  

 

Suppose the resulting formula is not satisfiable, this means that there is no satisfying assignment 

for phi where v 1 is equal to 1. So, let the output of this be b 1, so b 1 is 1 if and only if there is a 

satisfying assignment for phi with v 1 = 1 and b 1 = 0 if and only if there is a satisfying 

assignment for phi with v 1 = 0. So, if b 1 is 0, that means that there is no satisfying assignment 

where b 1 = 1 but obviously we started doing this only after ensuring that there is some 

satisfying assignment.  

 

So, those satisfying assignments or assignments should have the first variable set to 0. So, what I 

am saying is that if b 1 = 1 or b 1 = 0 whatever be the value of b 1 there is a satisfying 

assignment for phi where v 1 is set to the same value as b 1. So, now what we can do is to do this 



again so now we know that there is a satisfying assignment where v 1 equals b 1, now we do this 

again. Now in the second stage we take b 1 and we set v 1 = b 1 and we again set v 2 = 1.  

 

And then we feed that into C n. So, now again b 2 is what is output, so whether b 2 is 0 or 1 we 

know that there is a satisfying assignment for phi with v 1 set to b 1 and v 2 set to b 2. So, now 

knowing that again we could repeat the same thing and the third stage we input phi where v 1 is 

set to b 1, v 2 is set to b 2 and b 3 set to 1 and so on we can continue so we get b 3. At the end 

you can check that whatever we get as b 1, b 2 and b 3 and so on.  

 

This n bit vector will be a satisfying assignment for the formula phi assuming that there is 1. So, 

this idea of constructing a satisfying assignment using just a black box that decides whether the 

formula is satisfiable or not is called self-reducibility of set. In fact, all the NP problems have the 

property of self-reducibility where from a given a black box for the decision version you could 

construct a certificate.  

 

This in the case of SAT, the certificate is the satisfying assignment. Now this will be used 

crucially in the proof of the Karp Lipton theorem. Notice that what we do here? We just used the 

circuit family in claim 2 again and claim 1 again and again to generate a circuit family that 

outputs a satisfying assignment for the Boolean formula.  
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Now let us move to the proof of the Karp Lipton theorem. Again, this works assuming that NP 

has polynomial size circuits, so size of n to the power constant which is the same as P by poly. 

What do we do is? If NP has polynomial size circuits, we show that pi 2 is equal to sigma 2. It 

was earlier shown when we saw polynomial hierarchy that if pi 2 is shown to be equal to sigma 2 

then the entire polynomial hierarchy will collapse to the sigma 2.  

 

In fact, it is enough to show that pi 2 is contained in sigma 2, this is because pi 2 and sigma 2 are 

sort of complement classes L is in pi 2 if and only if L complement is in sigma 2. So, if we 

assume that pi 2 is in sigma 2, we can also show that sigma 2 is contained in pi 2, meaning if we 

assume that pi 2 is contained in sigma 2, we can also show that sigma 2 is containing pi 2 using 

the same argument, so the argument being this.  

 

Suppose L is in sigma 2, so the goal is to show that sigma 2 is contained in pi 2. This means that 

L complement is in pi 2, because that is a definition of sigma 2 and pi 2. This means that again 

by assumption pi 2 is contained in sigma 2, L complement is in sigma 2 which means that L is in 

pi 2. So, we started with L in sigma 2 and then show that L is in pi 2. This is basically showing 

that sigma 2 is contained in pi 2.  

 

So, the summary is that it is enough to show that pi 2 is contained in sigma 2, now that is what 

we will show. Assuming that NP has polynomial size circuits, in fact SAT has polynomial size 

circuits, we will show that pi 2 is contained in sigma 2. Again, the standard way to do this is to 

assume a general language or an arbitrary language in pi 2, let us call that L. Now it is in pi 2, so 

there is a standard pi 2 characterization that x is in L if and only if for all strings y of a certain 

polynomial length.  

 

There exists a string z of another polynomial length such that a deterministic polynomial time 

machine M can verify that x, y, z or M can accept x, y, z. So, basically along with y and z, M 

accepts x. So, M is a deterministic polynomial time machine.  
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So, this is a standard pi 2 characterization. We want to show that L is in sigma 2. So, we will try 

to obtain a sigma 2 characterization for L, so what we will try to do is to kind of exist an 

existential quantifier here. We will try to get rid of this there exists z, we will try to arrive at this 

or without this existential quantifier we will try to proceed, but at the end we will see that we 

need an existential quantifier before the for all y, so this will move over here before the for all y.  

 

So, it will not be there exists z, it will be there exists something else but when we move it from 

here to here it will end up being a sigma 2 characterization, so this is what we will try to do. So, 

first let us notice a related language, a language related to L. So, consider L prime, L prime 

consists of all the pairs x, y such that there exists a z which leads to M accepting x, y, z. So, it is 

up to all the pairs x, y for which there is a z that leads to M accepting x, y, z.  

 

So, this is clearly in the NP form relation, it is in the NP form because x, y can be thought of as 

just one string and this x, y is accepted if and only if there is a proof or witness z, that leads to it 

being verified. So, L prime is in NP, so now L prime is an NP, so you could think of an NP 

machine for L prime. So, equivalently you could think of something like this and you could think 

of the proof of Cook Levin theorem.  

 

So, in this case x and y are in input and it needs to find z, x and y are fixed as part of the machine 

and you need to find z that leads to M accepting it. So, just like in the proof of Cook Levin 



theorem where we came up with the Boolean formula that is satisfiable if and only if M accepts a 

string x, just like that we can find a Boolean formula or a circuit formulation for this 

deterministic polynomial time machine M x, y, z such that, so let us call it phi of x, y, z.  

 

In fact, once x and y are fixed, we could write it like this phi of xy, phi xy of z meaning x and y 

are fixed so we do not need to make it an argument to the formula, so z is only an argument. So, 

now the question is, is the phi of xy satisfiable? So, that is the question here. Once again, the 

construction of phi from M is just like in the proof of Cook Levin theorem where we given a 

nondeterministic Turing machine.  

 

We are trying to write an equivalent Boolean formula which will be satisfiable if and only if 

nondeterministic Turing machine accepts a certain input. So, now we have this Boolean formula 

phi of x, y which takes as input is z. In claim 2 we saw a way or we saw a circuit family that 

actually outputs a satisfying assignment. So, recall what I said above that we want to get rid of 

this for all there exists z here, this existential quantifier.  

 

So, now what we will do is z is the satisfying assignment for this Boolean formula phi x, y and 

we will use the circuit family constructed in claim 2 to generate the z, so the claim 2 said that if 

SAT has polynomial size circuits, there is a circuit family that gives you the satisfying 

assignment. So, that satisfying assignment is the z and we will use a circuit family to generate 

that z. So, the goal is to generate that z and remove the z part.  
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So, we will use the circuit family to generate that z but we do not know the circuit family. Claim 

2 just says that there exists a circuit family if SAT is in P by poly, so it does not matter whether 

we know what it is or not, we do not need to know it, we could just use non-determinism to 

guess the circuit family. So, we use an existential quantifier again to guess the circuit family, so 

we say that there exists a circuit family C n prime such that for all y.  

 

Now because we assume the existence of C n prime, we could use C n prime itself to generate 

the z. So, basically to phi we give as input x and y which is already fixed and then we use C n 

prime to generate z and if it is a satisfiable x and y then C n prime would generate a correct z and 

if it is not a satisfiable x and y, C n prime would not generate a correct z. So, let us see why this 

is a proper characterization? Suppose x was in L meaning that for all y there is a z such that Mx, 

M x, y, M x, y, z is equal to 1.  

 

That means C n prime, there is a z that satisfies Mx, M x, y, M x, y, z and C n prime can be used 

to generate that z. So, C n prime will be generating that set and there is such a C n prime because 

of the assumption and claim 2. And we use C n prime to compute that z, so it will lead to x being 

accepted. Suppose x is not in L, then that means this thing is not correct for all y there is a z such 

that it gets accepted is not correct.  

 



So, which means the negation should be correct that means there exists a y such that for all z, M 

x, y, z = 0. So, there is a y such that for all z M x, y, z = 0 meaning there is no z that will satisfy 

the phi x, y, z. So, whatever the circuit that we guess, whatever the circuit outputs it will not be 

able to result in the satisfiability or success it will not result in a satisfying assignment for phi. 

So, if x is not in L, then this phi will not be satisfied.  

 

This equation here will not satisfy this Boolean formula. So, that means that this characterization 

is a legitimate proper characterization. It satisfies both cases when x is in L, it satisfies when x is 

not in L, it again does not satisfy and we can see that there axis for all characterization and also 

phi is a polynomial sized formula because it was generated like in the proof of Cook Levin 

theorem. And C n prime is also a polynomial size formula as per the proof of claim 2.  

 

So, both of this entire thing is polynomial size, it is a polynomial time verifier. Hence it is a 

proper sigma 2 characterization of the language L and that is all we wanted to show. Basically, 

what we did is given this first pi 2 characterization of L, we arrived at a sigma 2 characterization, 

meaning we took an arbitrary language from pi 2 and then showed that it is in sigma 2. All that 

we did is to use self-reducibility to get rid of this there exists a z quantifier.  

 

We use self-reducibility to assume the existence of a circuit family that can generate the z. So, 

instead of saying there exists a z we assume the existence of the circuit family, there exist a 

circuit family which is able to compute the z and then everything else was automatic, that is a 

proof of Karp Lipton theorem. So, again it states that if NP has polynomial size circuits, then 

polynomial hierarchy will collapse to sigma 2.  

 

So, again this is used to kind of convince people that it is very unlikely that NP has polynomial 

size circuits. In complexity theory there are other results of this type as well, where we say that 

unfortunately we are unable to make unconditional statements, we are not able to say that NP, 

NP does not have polynomial size circuits for sure. So, what we do is things like this, if NP had 

polynomial size circuits.  

 



Then something else happens which is something very very unlikely, this is the kind of statement 

that we have. Possibly this is the first such statement if unlikely event a or if a happens then b 

happens and we know that b is even more unlikely or b is unlikely, so hence a is also an unlikely 

kind of inference.  
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So, the next theorem that I want to state is Meyer's theorem. So, this is also very similar to the 

Karp Lipton theorem in spirit, so let us see what that states. This states that if exponential time 

has polynomial size circuits, then exponential time is contained in sigma 2 or exponential time is 

equal to sigma 2. So, what is exponential time? Exponential time is actually a union of all k D 

time, 2 power n power k.  

 

So, it is a 2 power polynomial, so there is a polynomial in the exponent of 2 and we will show 

that exponential time is contained in sigma 2. Obviously, the other direction is easy because 

sigma 2 is contained in polynomial P space which is an x prime, it is something that you can 

easily verify. So, we will focus on showing that exponential time is contained in sigma 2 

assuming that it has polynomial size circuits.  

 

So, again with the standard thing we assume an arbitrary language in x time, we call it L and 

since L is an exponential time, L has a deterministic Turing machine M that runs in exponential 

time, so that runs in 2 power n power k for some constant k. So, DTM m that runs in 2 power n 



power k. Now let us consider the computational table of M, the one on the right side. And this 

computational table or computational tableau has 2 power n power k rows and 2 power n power 

k columns.  

 

Because it runs the number of columns or the width of this computational table indicates how 

much the tape can be used. So, in 2 power n power k time it can be used up to 2 power n power k 

cells in the tape in the 2 power n power k cells in the tape could be used. And the height of the 

table is the actual time that is taken by the Turing machine which is also 2 power n power k. So, 

it takes some x as input and then at the end makes some computation.  

 

And decides to accept and reject something. So, both heights as well as width are both 

exponential. Now let us consider an auxiliary language L M, what is L M? L M is the set of all 

triplets x, i, j which says that the ith symbol, so maybe I will just change it a bit, I think the jth 

symbol on the ith row is 1 when M starts on the input x. So, this is the ith row and the jth symbol 

on that row which is the column j and this entry is written to be 1 when M starts on the input x.  

 

So, L M consists of all the triplets x, i, j such that if M starts on input x, the i, jth entry is 1 in the 

computational table. So, if the computation table uses other symbols, let us say the tape alphabet 

consists of other symbols you could always consider a binary representation of the tape and 

binary representation of the table and consider the same similar kind of language. Obviously, L 

M is in x time, this language is an x time.  

 

Because you could one way to decide this language is to actually run the Turing machine M on 

the input x and run up to i time steps and reach the ith row and see what is the jth cell of the 

computational table. So, obviously it runs the overall running time is exponential time but here 

we are only running up to the ith row so even that is exponential time, so hence L M is obviously 

in exponential time.  

 

And by assumption we assume that exponential time has polynomial size circuits, by assumption 

L M is in P by poly meaning; given x, i and j are given M x, i and j, there is a polynomial size 

circuit family that can decide whether when M runs on this input x is the i, jth entry 1 or 0. So, 



now this is all that is enough to construct a sigma 2 characterization for the language L, so recall 

that we started with the language L in exp.  
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Now we will derive a sigma 2 characterization for L. So, by assumption L is in P by poly which 

means there is a circuit family C that decides L, so there is a circuit family C that decides L. But 

we do not know what C is, C could be anything, C could be some trade circuit family. But we do 

not need to know what C is because we could just guess it. So, we use the existential quantifier 

to guess the existence of C but it may give something which will verify that this case is correct.  

 

Now what do we need to check, in order to check that x is in L ideally, we want to verify the 

entire computation in this computation table, we want to verify that the start is proper, the start is 

proper then all the moves are proper and finally the string gets accepted. So, moves meaning it 

each level we need to check that at the configuration at the i plus first row is this valid successor 

to the configuration in the ith row and these needs to be done for all the i.  

 

So, the first row is a proper starting configuration and then the second row is a valid successor of 

first row, third rows the valid successor of second row and so on and then finally we need to 

accept. So, all this needs to be checked. Unfortunately, this seems like an exponentially big table, 

so there are exponentially many things to check. But what we will do is, we will make use of the 

non-determinism to ensure and we will cleverly use for all quantifier to do all the checks at once.  



 

So, let us see how that happens. The main thing here is that like we have said before, the 

computation in a Turing machine is an extremely local phenomenon. So, consider these three 

blue cells; this one, this one and this one and consider the green cell just beneath it in the next 

row. So, the entry in the green cell is only determined by the three blue cells just above it, 

because the computation in the Turing machine is an extremely local phenomenon.  

 

And this is for this green cell but this is the same thing is true for any cells. So, maybe 

somewhere else there is some other set of other sets of cells and they also behave similarly, so 

some other set of cells somewhere else is similar, this black cell is generated by the entries in the 

cells above it. And this computation can be done by a constant sized formula or a circuit family, 

but then this constant size circuit family needs to be repeated exponentially many times to make 

a thorough check of the all the entries in this table.  

 

And we do not have in sigma 2 even though we have quantifiers finally we should only have a 

polynomial sized or polynomial a verifier that runs in polynomial time. So, we will use the 

quantifiers to take care of exponential things, so that the verifier only does polynomial 

verification, so let us see how that happens. We need to check the start; we need to check the 

moves and we need to check the accept.  

 

So, the start is a polynomial size verification, we just need to check the first row is something. 

Accept is also polynomial verification, we just need to check whether there is a q accept. What 

really have the potential to kind of kill us is the moves there are exponentially many cells to 

check. So, what we do is? We have this for all quantifiers where we check for all cells i j what 

we do is, we generate the I, jth entry using C and x.  

 

So, C generates the i, jth entry and we already assumed that x time is in P by poly and L is in x 

prime, so there is a circuit that will tell us whether the i, jth entry is 1 or not. So, generate the i, 

jth entry using C and x and then you can also generate the entries just above it, the i - 1 j - 1, i - 1 

j and i - 1 and j + 1. All these you can generate so maybe also i - 1 j - 1, i - 1 j, i + 1 j + 1. So, all 

this is generated.  



 

And then we verify using the constant size circuit which is what we saw in the proof of Cook 

Levin theorem that the i, jth entry is a proper successor of the previous rows, this is the constant 

size circuit, so this is obtained from the proof of Cook Levin theorem. We saw the same idea; we 

are using it for probably the third or fourth time now that computation is local and each cell can 

be computed by a constant size computation.  

 

And then as I said checking the; start configuration, the accepting configuration which is not 

really that much. So, the key thing here is the existence of the circuit C is something we just 

assumed and we needed to have a proper, we use the existential quantifier to guess the circuit C. 

And then we use for all quantifier to automate the checking. So, for all will run through all the 

possible i and j and we do not need to check because what remains is just checking the i, jth 

entry.  

 

Because checking all the entries is taken care of by the quantifier. So, this again becomes 

polynomial. The verification after for all there exists this becomes a polynomial, this is a 

polynomial verification, so that is what is being done here. So, again we may be guessing a lot of 

junk circuits but it does not matter if there is a correct formula or if there is a correct sequence of 

configurations then there is a circuit family that guesses it.  

 

And one of the guesses will end up guessing the correct circuit family and the correct entries ijth 

entries for all the rows and columns and that will lead to the successful verification and 

acceptance of the input string x. So, that is, we started with L being an x time language and now 

we are giving a polynomial, we are showing that it is existing in the polynomial hierarchy in the 

second level, so sigma 2 language.  

 

So, we first guess the circuit and then for all i and j, so notice that i and j are also polynomial 

sized, the range of i and j are exponential but the description of i and j, to write down i and j we 

require only log of 2 power n power k which is n power k bits. So, all of this is polynomial size 

and the resulting verification is also polynomial size, so that shows that L is in sigma 2. So, we 



are showing that an arbitrary language in exponential time by smartly using the quantifiers to 

guess the circuit.  

 

And then using the quantifiers to run through all the i and j for all quantifiers, we are able to 

reduce it to a polynomial verifier. So, if exponential hierarchy had polynomial size circuits, then 

it would mean that exponential hierarchy not exponential hierarchy, exponential time complexity 

class exponential time at polynomial size circuits then that would mean that this exponential time 

is actually contained in sigma 2.  

 

So, which would also imply that the polynomial hierarchy collapses because the entire 

polynomial hierarchy is a subset of exponential time so if all of that collapses to sigma 2, even P 

space collapses to sigma 2. Again, this is also another theorem of the form if x happens, then y 

happens. And we know that y is extremely unlikely, so x is also extremely unlikely. So, this is 

the correct way to interpret this, is to say that it is unlikely for x prime to have polynomial size 

circuits.  

 

So, one may wonder where is x prime in this picture? So, it is maybe between certainly decidable 

but it is above NP, so it may be somewhere in between. But it cannot be a subset of P by poly, in 

fact it actually says that it collapses to sigma 2.  
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The third theorem that I want to talk about today is Kannan's theorem which says that if you fix a 

k, it picks a particular exponent, let us say k is 10 then it says that the polynomial hierarchy 

contains languages that requires circuits or circuit family of size bigger than n power 10. So, you 

fix a k, so fix k to be 10 then it says that polynomial hierarchy contains languages that require 

circuits for which a circuit family will require more than n power 10 size and this holds for any 

k.  

 

So, if you see the statement in a textbook, you may think that this says that sigma 3 is not 

contained in the size of n power k and this is not the same as saying that sigma 3 is not contained 

in P by poly. This is not the same as saying sigma 3 is not contained in P by poly. What it is 

saying is that if you give k, give this particular exponent like 10 then I will give you a language 

that cannot be decided by a circuit family of size n power 10.  

 

If you tell me 20 then I will give another language which cannot be decided by a circuit family of 

size n power 20. So, in other words there are languages in the polynomial hierarchy that require 

arbitrarily large polynomial size circuits but again this is not a proof that sigma 3 is not a subset 

of P by poly simply because the language is different for each exponent and the language that it 

gives you to show that L is not in size of n power 10, may be fitting in n power 11.  

 

So, it is still in P by poly. But there is yet another language that will not be in size of n power 11, 

so what Kannan showed is that sigma 3 is not contained in size of n power k for any fixed k 

meaning he showed a specific language that is not in n power k. So, I will not show the proof but 

I will just tell you the proof idea, it is a very smart application of the quantifiers. So, all that he 

does is he is asking what is the first lexicographically hard Boolean function.  

 

So, suppose you can write down all the functions in a certain order like maybe in a dictionary, in 

a dictionary there is a cryptographic ordering. So, what is the first hard function? So, hard 

meaning a function that requires more than a certain size, so we saw in Shannon's theorem that 

there are functions that require some exponential size, 2 power n divided by 10n, is not enough 

to capture certain functions. So, let us consider one such function.  

 



What is the first function that requires 2 power n divided by 10 in size. Now how do we write 

this question using quantifiers, so one way to write it is something I have scribbled here let us 

see. There exists f, so we want to first check that f cannot be decided by small sized circuits, 

meaning for all circuit families C 1, where C 1 is of a small size, C 1 is not the same as f and we 

also want to ensure that it is the first hard function.  

 

So, the way to ensure that for all g or for all functions g where g appears lexicographically before 

f, g is equivalent to a small circuit family. So, there is a small circuit family C 2 such that C 2 is 

equal to g, so we already have used there exists f such that for all C 1 something, for all g 

something, so here there exists C 2 something. But now you can notice that how do we check 

that C 1 is equal to g or C 2 is equal to g or C 1 is not equal to f.  

 

We may need yet another quantifier, so C 1 not equal to f requires us to say there exists a 

specific input, let us say x such that C 1 of x is not the same as f of x. So, this we will write it 

like that exists f such that C 1 of x is not equal to f of x and similarly if we want to say C 2 = g, 

we will have to say for all y, C 2 of y = C g of y. So, you can see why some more quantifiers are 

required, so there are two parallel sets of quantifiers some of which can be combined.  

 

And this leads to a sigma 3 characterization or perhaps sigma 4 characterization. So, Kannan 

showed sigma 3 but perhaps what I am writing is sigma 4, you can check that. So, all that the 

proof boils down to representing this what is the first lexicographically hard Boolean function, 

hard meaning something that requires more than 2 power n divided by 10n size.  
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So, it shows that in sigma 3 there are functions that require size arbitrarily in R size. Now this 

can be further improved using the Karp Lipton theorem, so we saw that the Karp Lipton theorem 

states that if SAT has polynomial size circuits, then polynomial hierarchy collapses to sigma 2. 

Now we will use the Karp Lipton theorem to improve the sigma 3. So, this sigma 3 we will 

improve it to sigma 2.  

 

So, we will use that to show that there are even at the second level, even at the sigma 2 level 

there are languages in sigma 2 that require arbitrarily large polynomials, that much size. So, 

actually we do not give a again even in the case of lexicographically hard Boolean function, the 

proof is not really constructive. We just use the quantifiers to establish the existence of such a 

function. In this case it is even more indirect; there is one more level of indirection involved 

here.  

 

So, there are two cases, again it is not constructive, there are two cases; first is that NP is 

contained in P by poly, so maybe it is better to write P by poly and P is contained in P by poly. 

So, now by Karp Lipton, we have that the entire polynomial hierarchy collapses to sigma 2. And 

we have already kind of seen the idea that sigma 3 contains languages that require arbitrarily 

large polynomial size.  

 



But if NP is contained in P by poly, then sigma 3 everything in the polynomial hierarchy 

collapses to sigma 2, so in particular sigma 3 is equal to sigma 2. So, there are languages in 

sigma 2 itself that require arbitrarily large size, so which is what the statement is, so we have 

shown the statement if NP has languages or if all of NP has polynomial size circuits, then 

polynomial hierarchy collapses to sigma 2, so sigma 2 itself has languages of that require 

arbitrary large polynomials.  

 

Because sigma 3 also coincides with sigma 2 and we already saw that sigma 3 has its languages. 

The second possibility is that NP is not contained in P by poly; this is even easier actually.  
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So, we wanted to show that there are hard functions in polynomial hierarchy and we are trying to 

show that it is in sigma 2. But if NP is itself not in P by poly, that means there are languages in 

NP itself that require super polynomial size circuits, super polynomial means more than 

polynomial size circuits. So, there are languages in NP itself that require more than polynomial 

size circuits and well NP is contained in sigma 2.  

 

So, if we show that there are languages in NP that require super polynomial size circuits, that is 

enough to show that the language is in sigma 2. So, in either case whether NP is in P by poly or 

not in P by poly, there is a language in sigma 2 or even below that, which requires circuits of 



arbitrary large polynomial size. So, again this is just to give different theorems and how P by 

poly relates to the polynomial hierarchy and exponential time and so on.  

 

So, we saw three theorems in this lecture; one is the Karp Lipton theorem, which states that if NP 

has polynomial size circuits, then polynomial hierarchy collapses to sigma 2 and two is Meyer's 

theorem, which says that if x time, exponential time had polynomial size circuits then 

exponential time collapses to sigma 2, the statement looks very similar to Karp Lipton theorem 

and third, the Kannan's theorem which says that, you tell me a specific polynomial.  

 

And sigma 3 contains languages that require bigger than that polynomial size. So, if you tell me 

n power 10, then sigma 3 itself has languages that require more than power 10 size circuits. And 

this is improved to sigma 2 by using an application of Karp Lipton. So, this also Kannan himself 

observed in the same paper and I think Kannan's theorem was in 1982 and that is all I wanted to 

say in this particular lecture and thank you. 


