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Hello and welcome to lecture 37 of computational complexity. In this lecture we will see the 

circuit complexity class P by poly. So, just to recap what we have seen in circuit so far, we have 

seen how circuit families can decide a language even though it is a model that computes a 

function how we can use it to decide a language. So, this was done by having a circuit family one 

for each input length and by associating the inputs for which it gives one as an output as those in 

the language. 

 

We saw that any language has an order 2 power n sized circuit family. In fact I mentioned that 

this could be improved to 2 power n divided by n that was Lyapunov theorem. And we also saw 

Shannon’s theorem which said that there are languages that cannot be decided by a circuit family 

of size 2 power n divided by 10n. And in fact, what was even more surprising is that almost all 

the languages, almost all the functions are hard meaning they cannot be computed in a circuit 

family of this size. 

 



And we also saw the circuit hierarchy theorem which said that if you have a circuit of bigger 

size, then it can potentially compute more functions than what could be computed by a circuit of 

a smaller size.  
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So, today in this lecture we will define a class called P by poly which is simply the class of 

languages that can be decided by polynomial size circuits. So, polynomial size circuits mean 

maybe for simplicity we will just use AND, OR and NOT gates and it is immaterial whether we 

allow like fan in n or constant fan in. Because a fan in a constant fan in a bigger fan and can be 

replaced by a tree of constant fan and gates, and it will still be polynomial sized.  

 

So, in other words P by poly can be written as union size n power c for c equal to 1, 2, 3 and so 

on. So, it is one may think that it is a circuit equivalent of the class P which was the class of all 

the languages that can be decided by deterministic polynomial time Turing machines. However, 

so let us see if that is indeed the case or let us see if how these two classes compare P and P by 

poly. 
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So, first we will see that P is contained in P by poly. So, as always, we will take an arbitrary 

language in P and show that it is contained in P by poly which is the standard way of showing 

containment or inclusion of sets. So, let L be a language in P, so again just to state this is the 

Cook-Levin theorem there will be a language in P that means there is a deterministic Turing 

machine M that computes it in decides it in n power k time, n power k time for some constant k. 
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If you recall the proof of Cook-Levin theorem we could draw a computational table or 

computational tableau. So, this is what we have here computation table or tableau where we start 

with the first starting configuration where actually most of it is the input and may be the starting 



state. So, maybe I should include the starting state I have just written input. So, the starting state 

q start followed by input and maybe I should just redraw this, so this part will be n for the input. 

 

So, this is the starting configuration then followed by the next configuration next configuration 

and so on. This is what we did in the cook levin theorem, the proof of the cook living theorem. 

And the proof crucially hinged on the fact that the computation in a Turing machine is an 

extremely local phenomenon. So, the head is somewhere in the looking at the tip and the head 

moves left right and just one step on left or one step right or stays. 

 

In any case it cannot make changes very far away it can only make changes in the next cell to the 

left or to the right when you look at it in the configuration sense only the if you look at the head 

location only the place where the head is or the immediately left location or the immediately 

right location. These are the places where the configuration can possibly change and we also had 

this notion of 2 by 3 windows where we tried to see where some changes happen. 

 

So, again, we will in this theorem also we will make use of the fact that the computation in a 

Turing machine is a local phenomenon. So, what we have to do here? We have a Turing machine 

that decides a language L in polynomial time, so we can draw the computation table. Now we 

want a circuit, so we want to again we want to show that P is contained in P by poly. So, we 

want to show a polynomial size circuit family for P by poly.  

 

So, all that we will focus on is to obtain, so I said that the computation in the Turing machine is a 

local phenomenon, all I will focus on is to get a circuit to simulate or to make this local 

computation. So, this as I have indicated here the blue cell here which is in a certain row is only 

going to be affected by the red cell directly above it, directly above and left and directly above 

and right. These three red cells will completely determine the blue cell. 

 

So, it is just a function of these three things and so on like and this is the case for all the cells. So, 

the blue cell is just some cell that I picked out in the computation table. So, now I could have a 

Boolean formula that given the contents of the red cells, I could have a formula or if I break 



down the content of the blue cells into binary symbols or bits. It may be long it may not be one 

symbol but it could be a big string. 

 

But I could have a Boolean circuit or circuits that generate this; the content of this blue cell. And 

as we have seen in the case of cook levin theorem proof this computation will be a constant size 

computation meaning this circuit will be a constant size circuit. So, in fact it is even more 

simpler than cook levin and theorem proof because in the case of cook levin theorem, we had we 

were trying to deal with a non-deterministic tutoring machine.  

 

Whereas here we; are just dealing with a deterministic Turing machine. So, we do not have to 

like once the red cells are given the blue cell will be determined completely by the transition 

function. There is no possibility of multiple paths and all that and this circle part that is the red 

cells and the blue cell below it we use it we can get a constant sized circuit to determine that. 

And now the computation table if you see the width of the computation table is n power k where 

k is running time.  

 

That is because the Turing machine can traverse up to n power k cells in the tape. Because that is 

the time that it has it cannot traverse longer more than that because this moves one step per time. 

And we know that the computation number of steps is n power k because that is the running time 

bound. So, the height and the width are both n power k, so there are polynomials n power 2k 

many cells and the content of each cell can be determined by a constant size circuit.  

 

So, there are n power 2k cells whose content have to be determined may be except for the first 

row. And each of these n power 2k cells is computed by a constant size circuit.  
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So, it is constant multiplied by n power 2k which gives us order n power 2k sized circuit family 

to decide this language. So, in fact the major the bulk of the work is will be done by this kind of 

and this constant size circuits and its copies. But then one also has to verify that the start is a 

valid start and whether there is an accept in the bottom row. So, we have to also check whether 

there is an accept. So, that will be another small circuit family for that is there an accept state q 

accept here.  

 

That is also it is a very simple Boolean formula that one could or formula that one could 

construct. So, this whole circuit will take n power k times n power k that is n power 2k cells 

multiplied by a constant size circuit which is exactly dealing with this computation this 

computation of the blue cell from the red cells. So, it is n power k times n power k times a 

constant which is n power 2k. So, we have shown that given any language it has a deterministic 

any language in P.  

 

That has a deterministic Turing machine that runs in some n power k time for some constant k. 

And correspondingly we get an n power 2k size circuit family to decide the same language and 

which is what we wanted. So, now we have shown that L has a polynomial size circuit. So, any 

language in P is contained in P by poly. So, one natural question that one would ask is P is 

content in P by poly well is P equal to P by poly.  

 



Because that is what one reasonable thing to guess so the answer is no, this is not the case P is 

not equal to P by poly mainly because this boils down to the non-uniformity. So, what do I mean 

by non-uniformity? Each language is captured by a circuit family not a single circuit and it can 

have different circuits for or it will have different circuits for different input lines. And this really 

makes a difference in the case of when you compare Turing machine based computation and the 

circuit based computation. So, circuit based computation is non-uniform and we will see the 

difference. 
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So, we have a proof for that that P is not equal to P by poly so this is not the case. So, in fact we 

will show that there are undecidable languages in P by poly. So, let us see why, so first we will 

show that suppose L is a unary language right which means L contains only strings that are that 

are composed entirely of bonds not all the strings that contain that are composed of ones but 

some of these things. So, L could be 1, 1111, 11111, 10 1s maybe 20 1s are there and so on.  

 

So, L is a unary language in that case we show that L is in P by poly. Why is this; the case this 

may not be that difficult for you to imagine because if L is a unary language. We already which 

means for each length L can possibly contain for each length n. So, let us say for length 4 so 1 1 

1 1 is a is the string. So, either 1 1 1 1 is there in L or is not there in L. And if there is a string of 

length 4 in L this is the only string that is possible. So, either 1 1 1 1 is there in L or not there in 

L.  



 

And similarly for the length 5, 1 1 1 1 1 is it either it is there in L or not there in L. And because 

there is only one candidate string per length it is not really that difficult to construct a circuit 

family. So, suppose L contains only strings of this type only comprising of ones. So, now let us 

construct the circuits for each k. So, for each k we need to check if one the string of length k the 

only string of length k that is this one power k is it in L or not.  

 

If it is in L so recall for each k, we get to for each input length we get to make a circuit. So, if 1 

power k is in L then the circuit for that k will be an AND of all the input bits. So, I could just 

have an AND of all the input bits and this is a polynomial sized circuit even if you are restricted 

to fan in 2. This is a polynomial size circuit which will only allow one power k to be in l. If 1 

power k is not in L that means there is no string of length k in L which means the circuit is just 

always going to output 0. So, again that is a very trivial circuit.  
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So, the circuit family is very simple for each k if k if one power k is in L then you have an and if 

1 power k is not in L you have a zero and that is it. And this family is a family is a polynomial 

size family that decides L. So, what we have shown is that any unary language has a polynomial 

size circuit family, so any unary language is contained in P by poly. So, the real thing is that the 

non-uniformity combined with the fact that there is only one candidate string per input length.  

 



Means that you could just look at the input length and say whether it is there or not that is all that 

there is. If it is a binary language then this is not this may not be possible because one has to look 

at the string and there could be multiple strings, multiple candidate strings per input length. So, 

you would need a more non-trivial circuit not such a simple circuit.  

(Refer Slide Time: 15:58) 

 

Now let us see why there are undecidable languages in P by poly and this will make use of the 

fact that all the unary languages are in P by poly. So, consider any undecidable language so 

maybe the favourite undecidable language is maybe halting problem. So, that considers the 

halting problem, halting problem consists of a Turing machine M and a string W such that M 

halts on W. So, given M and W one has to decide whether M halts on W or not.  

 

And as you know this is an undecidable language, so there is no algorithmic process by which 

one can decide if a given Turing machine holds on a given input string. So, this is an undecidable 

language. So, M and W could have a binary description, now it is not such a big deal one could 

given a binary instance of a certain problem one could always convert it into a unary instance. 

So, given so you look at the description of M and W, it may be some number 0 1 1 0 something 

some long string.  

 

So, now this is a binary number you could read it out as a binary number and if this binary 

number is a halting problem is in halt T n then you include it. So, suppose this is k suppose is a S 



instance of the halting problem then you include it in a unary language, where include 1 power k 

in a unary language. So, if the binary representation of k is in halt, then you include the unary 

representation of k in unary halt. So, U halt stands for unary halt.  

 

So, this is unary version of halting problem. So, the only thing that changes is from binary U 

come to unary. So, you can easily convert an instance of any language into a unary instance, but 

when you convert a unary instance what we said earlier applies that is for any unary language 

there is a polynomial size circuit family. So, unary halt is an equivalent representation of the 

binary halt but just with different input string lengths.  
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And this has a polynomial size circuit family by above theorem, the previous theorem or by the 

previous theorem. However, it is still undecidable just because it is written in unary does not 

mean that you will get a language, you will get an algorithm for it or a decider for it. Because if 

you had a decider for it then you can always convert binary instances of halt into unary and then 

run the Turing machine.  

 

So, it is still undecidable unary halt is just another representation of the binary halt but it is 

undecidable. So, it is undecidable but still has a polynomial size circuit family. So, what really is 

happening here is that even though it is undecidable when you make converted to unary now in 



the case of binary there could be multiple instances of a certain length which is hard to decide. 

But in the case of unary all the inputs are spread out.  

 

Because you only have one candidate input, one candidate per input length which may or may 

not be there and you could directly program it into the description of the circuit family. So, this 

means that there are undecidable languages in P by poly and this means that P by poly is not 

equal to P because P means languages that are decidable in polynomial time. Forget P it also 

shows that NP is also not equal to P by poly exponential time is also not equal to P by poly P 

space is not also not equal to P by poly.  

 

Because all these things are decidable and but then P by poly has undecidable languages in it. So, 

P is not equal to P by poly. 
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So, just as a depiction the red circle denotes decidable languages and the black circle denotes P. 

Then P by poly contains P but also contains some undecidable languages, so it is just going out 

of the decidable circle. Now one question that somebody that is natural to ask is where does NP 

sit in all this, where it is sigma 2 set or NP set. So, is NP contained in this contained in P by poly 

does it do the languages in NP, do they always have polynomial size circuits.  

 



So, this is a valid question to ask is np contained in P by poly or is NP going to be something like 

this, is it some of languages in NP have polynomial size circuits but some others do not. So, this 

is a valid question that one could ask. So, that is an interesting question and we do not have a yes 

or no answer as of now like many for many of these questions. We do not know if P = NP also. 

But it has been shown that if NP had if NP were contained in P by poly like this 

 

If situation was like this, then in that case in there will be collapse of the entire polynomial 

hierarchy to sigma 2. So, because it is widely believed that P is not equal to NP and that the 

polynomial hierarchy does not collapse. It is also one tends to take this as an evidence that NP 

cannot be contained in P by poly or in other words it is believed that NP there are languages in 

NP that do not have polynomial size circuits.  

 

Because there is some evidence that something else will happen that is that is unlikely. So, that 

theorem is called the Karp Lipton theorem and we will see it in the next lecture. So, in this 

lecture what we saw was that? We define P by poly which is the class of languages that have 

polynomial size circuits. We saw that deterministic polynomial time P is contained in P by poly. 

However, we saw that P by poly also contains undecidable languages hence P cannot be equal to 

P by poly.  

 

So, just proper subset and we concluded by discussing about where does NP fit in all this. That is 

all from lecture 37. 


