
Computational Complexity 

Prof. Subrahamanyam Kalyanasundaram 

Department of Computer Science and Engineering 

Indian Institute of Technology, Hyderabad 

 

 Lecture - 35 

Formal Definition of Circuits 

 

(Refer Slide Time: 00:15) 

 

Hello and welcome to lecture 35 of the course computation complexity. In the previous lecture 

we saw circuits many examples of circuits many example made different constructions of the 

same function, the threshold two functions. So, hopefully we have an idea of what really is a 

circuit. So, but now we will see the formal definition and some associated other definitions. So, 

as I had indicated in the previous lecture a circuit is nothing but a directed acyclic graph.  

 

And that have n designated inputs and a single output. So, that if you see it as a dag or a 

directory cyclic graph, the n inputs are source vertices meaning all the edges are outgoing edges 

and the output is a sync vertex meaning there are only incoming edges, edges or edge. And all 

the edges or all the vertices that are not the input vertices are gates. And these gates are from a 

basis meaning these gates in all the examples that we saw, we allowed only AND gates and, OR 

gates and NOT gates. 

 



But perhaps you could allow let us say XOR gates perhaps you could allow some other strange 

function may be threshold gates. But most of what we do will be only on the AND gate OR gate 

and NOT gate. But in general, a circuit could have could be formed out of other bases. But for 

the rest of this lecture and for the subsequent lectures we will assume that we have AND gate, 

OR gate and NOT gate and usually it will be fine bounded fine in do or something. 

 

But we will make it clear when we have gates that have unbounded fan. So, again usually we 

will have De Morgan basis. So, the word De Morgan basis stands for AND gates OR gates and 

NOT gate with fan and variant and or have fan in 2, De Morgan basis. And one thing to note is 

that again given a circuit it computes a Boolean function from 0, 1 to the n to 0, 1. So, it is a 

Boolean function and it so all that we will be doing in this course is computing functions with 

only one output.  

 

So, you could in theory compute a function like meaning from an n bit input you compute an m 

bit output that is also possible. But what we will be doing in this course is only we will only look 

at one bit outputs that itself is quite rich and captures a lot of interesting ideas and typically that 

goes along the lines of what we have been doing so far, we have been mostly dealing with 

decision problems given is this formula satisfiable? Is this graph three colourable?  

 

Is this number prime? So, mostly we have been dealing with decision problems not computed 

function of a given input.  
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So, now one thing to note is that it takes an n bit input and produces one bit output. But now it is 

not very clear or not very immediately clear how this can be used for a computation. Let us say 

you want to solve a Turing machine. A Turing machine is you just give it the input and it does 

whatever processing it does and then decides accepts, rejects and so on. But a certain fixed 

circuit let us say I have a circuit that has n bits.  

 

Now n bit input, now this will take only inputs of a certain size, the end bit size. But given a 

fixed circuit it cannot possibly compute SAT senses of all sizes. So, now how do we formalize 

the notion of computing a language using a circuit? So, be it is be three colourable be it shortest 

path whatever, how can we use the circuits to compute a decision a language which have all 

inputs of all sizes. 
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So, what we will do is to use a family of circuits. We will have a family of circuits one for each 

input size. And each circuit of the corresponding input size is supposed to handle that input size. 

So, what we will have is if family of circuits let us so we will use script C to denote a family of 

circuits sub C sub i. So, C i is a circuit that that takes i bits as input and outputs a single bit. And 

we say that this decides a language A, the family decides the language A.  

 

If the ith circuit in the family decides A correctly for the all the i bit instances of A. So, if the 

language corresponding to the so I have used n here, maybe I will replace it with i in the 

language corresponding to the i C i is nothing but all the i bit instances of A. So, the language 

corresponding to C i and what is the language corresponding to C i? Language corresponding to 

C i is those sets of inputs those sets of i bit inputs. Remember C i only takes as input i bit instant 

i bit strings.  

 

Those i bit strings for which C i evaluates to 1 so given any i bit input any input there are some 

inputs which evaluate 1 some which evaluate to 0. So, C i x denotes those inputs that evaluate to 

1 or sorry C i x is just the evaluation the language corresponding to C i denotes those strings for 

which C i x, C i evaluates to 1. So, where C i is just the evaluation of C ion the input x. 
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And we say that a language A is in the size S n if there is family of circuits of size S n that 

decides A. So, just once more so suppose A is a big language and so all 0 bit instances 1 bit 

instance is so this is A. So, you can slice a into 0 bit instances, one bit instances all of them in A 

and we want so the ith slice this is the ith slice of A which means it is the set of in set of strings 

in A that are of length i, length exactly i that are in A. 

 

Now we want the circuit C i to accept exactly or to evaluate on to one to exactly these inputs that 

of length i that are in A. So, that is the requirement. So, you can think of the circuit family 

looking at each slice. And we say that A belongs to size of S n if there is a family of circuits of 

size S n that decides A. So, when do I say that so now what do I mean by saying? When I say 

that a family is C of size S n what I mean is that the family is C 1, C 2, C 3, it is a family of 

circuits.  

 

So, I want C 1 to be at most of size at most S of 1, C 2 to b of size S i at most S of 2, C 3 to be of 

size at most of 3 and so on. So, I want C i to be of size at most S of i for all i. This is why this is 

when I say C is a family of size S n. So, basically every take for any i, the size of C i should be at 

most S i. So, hope this is clear and one thing to note is that this important distinction between 

circuits and Turing machines which you may have noticed already. 

 



Turing machine that does something with say palindrome or decides the shortest path whether or 

it just there is a certain algorithm that it encodes and it does not it will take all inputs of all sizes. 

So, if it wants if you have to run a Turing machine that tests palindrome it you could give it any 

length input and it will take care of it. Whereas circuits, it needs a specific circuit for each input 

size for each input size.  

 

So, this is what is called non-uniformity. So, potentially each input size could be handled 

differently because we need different circuits for each input size. And now I could have a certain 

structure for a certain like i = 10 and a different structure for i = 11 and yet another different 

structure for i = 12. This is not really something that happens in Turing machines. So, this 

particular thing the feature is called non-uniformity.  

 

And we will see how this plays an important role in in the upcoming lectures. So, this non-

uniform way of computing is something that circuits have. There are also other models that have 

this property but this is something the circuits have. And this sometimes if it is not restricted 

properly, it gives a lot of power to the circuits. So, let us see we will see that in the upcoming 

lectures. So, coming back to a family of size S n family of size S n is where each C i is of size S 

i. 
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And similarly, we could define other measures like number of wires and depth you can depth this 

you can view the circuit as a tree or a director acyclic graph. So, what is the maximum length of 

it? So, the output will be at the top the red one and let us say the green ones are the inputs. So, 

what is the length of the longest path from an input to the output that is the depth. So, if you look 

at it as a tree then it is just the height of the tree or depth of the tree.  

 

So, what is the longest path from the red to any green. So, you could also define depth a family 

of circuits that have some d and depth in a similar manner. 
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And another point is that I have not explicitly said but we will only be focusing on Boolean 

functions and Boolean circuits. Boolean function speeds 0 1 to the n going to 0 1, there are you 

could have arithmetic circuits that deal with numbers over a field and so on. But we will not be 

looking at that at least in the next few lectures. Now couple of more definitions that I just want to 

state now, we will not be immediately using them but couple of more definitions.  

 

These are very important definitions both in terms of circuits as well as functions. So, symmetric 

functions are those functions when that again everything is Boolean from now on. It takes a 

bunch of input bits and out produces 0 1 output. A symmetric function is a function whose value 

is unchanged when you permute the input bits. So, if f is a symmetric function, then f of x 1, x 2, 

x 3 will be the same as f of x 2, x 1, x 3 it does not matter how you permute it.  



 

X is the same as f of x 3, x 2, x 1. So, any way you permute it is the same, all six ways will be 

the same. So, many functions that we can think of OR symmetric so AND is a symmetric 

function. It does not matter in what order you give the inputs OR is a symmetric function, XOR 

is also a symmetric function. Unless you have some function like negation of x and y so that will 

not be symmetric. So, examples are AND, OR etcetera.  

 

So, you need more this is defined only for multi functions of multiple inputs. So, if you have like 

single bit input then this is because this becomes a kind of a not very meaningful definition.  
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The next definition is a monotone function, a monotone function is a function where if x is less 

than or equal to y then f of x will be less than or equal to f of y. So, in terms of like in the regime 

that we are in, we are talking about n bit vectors as inputs and 0, 1 as output. So, when I say x is 

less than or equal to y what I mean is in a bitwise manner. So, you can you can look at it each bit, 

bit by bit x should be less than or equal to y.  

 

So, there should not be a position k where x is 1 and y is 0 everything else is okay, x could be 0 y 

could be 0, x could be 1 y could be 1 and x could be 0 y could be 1. But x less than or equal to y 

means there could not be any bit position where x is 1 and y should be 0. So, if x is less than or 



equal to y then f of x is less than or equal to f of y. And monotone being monotone is a rather 

natural property. So, for instance given a graph does it have a clique of size 10.  

 

And suppose a graph is expressed as a string of edges. So, you have let us say graph has a 20 

vertices or 100 vertices then it has 100 choose two edges, so it expresses a string of edges. Now 

you are asking if the graph has a clique of size 10. So, now if I add an edge then the original 

graph had a creek of size 10. The addition of an edge will still continue to have that click. 

However, if you did not have a clique of size 10 then the addition could potentially create a 

clique of size 10.  

 

But it need not create. But if you add an edge one thing is for sure it will not remove a click that 

is already there, so this is a monotone property. So, many natural properties especially in the 

context of graphs are monotone functions. So, a function that takes a graph as input and denotes 

whether it has a clique of a certain size is a monotone function or a matching of a certain size 

that will also be a monotone function.  

 

So, even AND is a monotone function just because so and OR is also a monotone function. If 

you flip an input from 0 to 1 then the output can possibly flip from 0 to 1, but it cannot flip from 

1 to 0. And another definition is of monotone circuits, monotone circuits are those circuits that 

use only AND and OR gates. So, it you can only have two types of gates AND or OR. And one 

thing that is interesting extremely interesting is that it is not a coincidence that monotone 

functions.  

 

And monotone circuits have the same name. This is because monotone functions; function f is a 

monotone function if and only if it has a monotone circuits representation. So, the set of all 

functions that can be expressed using monotone circuits are exactly the class of monotone 

functions. So, that is why I said the naming is not an accident. So, this is something that you can 

try to show it is a maybe a bit maybe it may require a bit of thought, but it is something that you 

can try.  

(Refer Slide Time: 19:09) 



 

Now this one important theorem it is that given any language. This language has a circuit family 

of size of exponential size, exponential meaning order 2 power n size for any language. So, this 

is something that is interesting and something that we do not have in the case of Turing 

machines. It is not like we cannot say that any language has a 2 power n time algorithm there are 

languages that require more time. So, let us see how that is. It is a fairly straightforward 

argument.  

 

So, consider the function, so first of all when I say language we can as I said already, we can 

restrict it into strips of a certain size. So, consider any function, let f correspond to the strip of L 

of input size. So, now so f is an arbitrary function that corresponds to the so L is an arbitrary 

language, f is an arbitrary function. So, f corresponds to the strip of L length n. So, set of all f 

will be 1 only exactly on those inputs which are in L and of length n.  

 

So, f is an n bit function; on n bits now consider that. So, now all we will do is that we will just 

show that f has a order 2 power and sized circuit representation and that is enough. So, we will 

show that odd f has a order 2 power n sized circuit representation. So, now let us see how f can 

be written. So, we could decompose f like this. So, we could consider f where x 1 is set to 1 and f 

where x 1 is set to 0, x 1 is set to 1 and x 1 is set to 0.  

 



And you take the AND of the first with x 1 and the second term with x 1 complement that is the 

AND of the first term with x 1 and second term with x 1 complement and then the OR of these 

two factors. So, when x 1 is equal to 1, the first term is only the first term comes into play 

because the second one becomes negation of x 1 is 0, so it just vanishes and we have f of x 1, x 2 

etcetera. And similarly; when x 1 is 0 only the second term comes to play so again it is fine.  

 

So, you can you can easily verify that this equation is valid. Now all that we are going to do is to 

just build on this equation and rely on an inductive argument or inductive or recursive recurrence 

relation based argument for deriving the size of f. 
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So, f is x 1 and f of 1 x 2 and so on or x 1 complement and f of 0 and so on. So, now suppose we 

have two boxes or two black boxes, the red black box computes f of x 1, x 2 etcetera up to x n 

and the green black box computes f of 1 x 2 up to x n. And but then these needs the input x 2 up 

to x n, they do not need x 1 but they need the rest of the input base. So, we give that and then you 

can easily verify that this computes exactly what we have here.  

 

You take an AND of f of the red box with x 1 complement and the output of the green box with x 

1 and then have an OR and that is it. So, this is a circuit that corresponds to this function f. So, 

you can verify that this is a circuit that corresponds to the above expression. Now so suppose S n 



is the size required to construct a function of a certain an arbitrary function of from 0 1 to n, 0 1 

to n, n to 0 1. 

 

So, f requires an S n size circuit and inductively speaking we are we are relying on two S n - 1 

size circuits. Because once we hard code 0 or one the rest of it is actually a function on n - 1 bits. 

So, the green box and red box are both actually functions on n - 1 bits because one bit is fixed 

and you could simplify whatever. And so, there are two so let us say S n - 1 is the size bound for 

any function that requires n - 1 bits.  

 

Similarly, S n is the size bound for any function that requires n bits. So, S n is actually size of n 

is actually if you use this construction, it is 2 times S n - 1, one for the red box and one for the 

green box. And then how many other gates are there, so size is the total number of gates so 

number of gates in the red box number of gates in the green box and then there are four other 

gates so plus 4. And what is the base case? The base case is S of 1 = 1. 

 

When you have a one bit input and output basically you just you have at most a single wire x 1 = 

x 1, x 1 = 0, x 1 = 1 there will be four possible functions or x 1 equal the function is the 

complement of input. But in each of these cases the number of gates required is at most one, so S 

of 1 = 1.  
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And if you solve this recurrence relation you will get this expression S n is 5 divided by 2 

multiplied by 2 power n - 4 and this is ordered 2 power n and that, is it. So, this shows that any 

function can be constructed in order 2 power in size in to be more particular to be more precise it 

is 5 divided by 2 times 2 power n. So, it is an inductive argument because a recursive argument. 

In fact, this is a very simple idea but if you look a bit more closer and study a bit more using a bit 

slightly more involved idea.  

 

You could show that actually for any language L you have a 2 power n divided by n size circuit. 

So, here we show that it is order 2 power n size circuit so now I am saying that actually this order 

2 power n can be reduced to 2 power and divided by n and this theorem is due to Lyapunov. So, 

in fact there is a tighter bound available and this 2 power n divided by n bound is actually 

somewhat tight.  

 

You cannot make it, you cannot really improve it in the sense that the you could probably 

improve the constant, but nothing beyond that. It so that is what I mean by subordinate. So, any 

function has a circuit of order 2 power n divided by n size. And what we saw was in his function 

has circuit of size order two power in a function or language. And with that I will close this 

lecture. So, we saw the definition of A of a circuit we saw what time what one means when we 

say that a circuit can compute a language.  

 

So, we by dividing this language into strips of each size, we saw so this is basically the idea of 

non-uniformity. And we also saw when we need a family of circuits to decide a certain language. 

So, we saw the definition of what we mean when we say the family has a certain size or a certain 

depth and then we saw this theorem said that any language has a order 2 power in size circuit and 

we also stated that any languages order 2 power n divided by n size circuit, but did not prove it 

and with that I will close this lecture. Thank you. 


