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Hello, welcome to lecture 3 of the courses. Over the last two lectures, we saw an introduction to 

the course and introduction of Turing machines and then the class P which stands for polynomial 

time deterministic polynomial time. And today we are going to see what is non-determinism or 

non-deterministic polynomial time. So, let us see what non-deterministic polynomial time is?  

 

So, I believe you would have seen the non-determinism in various places like be it in DFA's verses 

NFA's, deterministic finite automata non-deterministic finite automata or the pushdown automata 

that you would have studied most likely use non-determinism. And even by learning Turing 

machines in the computability theory you would have come across non-deterministic Turing 

machines. 

But nevertheless, let me just quickly revise what are not deterministic Turing machines and how 

they how they function. In non-deterministic Turing machine, the key thing is that given a certain 

configuration. So, configuration is something that we defined in the first lecture or first second 



lecture where it is a snapshot of the current Turing machine. It consists of the state, the tape 

contents and the head position, head positions if there are more tapes.  

 

So, if I tell you, I am stopping the computation like this, and this is the snapshot and then you 

could later resume the computation from that point by starting the Turing machine from such a 

position. So, given a certain configuration, a deterministic Turing machine has the next step is 

predetermined or pre decided by the transition function. The transition function for any 

configuration it tells you now, you are at this state with this tape content.  

 

And the tapes are at here then it will say no go to the next state 𝑞10 then go to the right five on the 

tape and then go on the tape head let it move right something like this. Whereas, in non-

deterministic Turing machine, there could be more than one choice, there could be multiple 

choices, there could be two, there could be three, there could be 10 choices there could also be 

zero choices. And it is also possible to in some cases there is exactly one choice available. 

 

So, at a certain configuration in the case of non-deterministic Turing machines, there could be 

multiple successor configurations. Whereas in the case of deterministic Turing machine, the 

number of successor configurations is going to be exactly 1 whereas in the case of non-

deterministic Turing machines, you may have 0, 1 or more than 1. So, let us so just to give you an 

idea.  
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See by this picture, I am depicting the configuration graph. So, each dot over here is a 

configuration. So, the starting configuration is unique. And suppose there are three successor 

configurations to the starting configuration. So, I have depicted like I have depicted here, and 

maybe the first successor configuration has maybe two other further successors, and maybe second 

one has one successor and the third one has three further successors.  

 

So, what I am saying is that now, just after the starting configuration, there could be two possible, 

three possible successors. And for each of these successor configurations, there are different 

numbers of successor possible. Now again this could keep going on. So, now perhaps this one had 

two successors and this one had no successors let us say, that is also possible. This one had let us 

say three successors like that it can continue and so on.  

 

So, this is the interesting part, this is what is interesting about a non-deterministic Turing machine. 

Each stage you could have one or zero or more than one successor to the current configuration. 

So, which means the Turing machine computation need not be a fixed path, like whereas in the 

deterministic case, it is like the picture on the left side here. You start with a certain configuration.  

 

Let us say this, and then the next one once you start from a certain place the next one is 

predetermined, which is this and then this and so on till the machine finally decides to accept or 

reject. This is a case in a deterministic Turing machine. In the case of non-deterministic Turing 



machine there are multiple such possibilities. And finally, what is interesting is that many of them 

the outcomes could differ some of them could go to accept some of them could go to reject. 

 

And you will see examples, more details of why this or how this can happen. And when do we say 

that a non-deterministic Turing machines but this kind of a confusing outcome, but how do you 

make sense out of this. So, we say that a non-deterministic Turing machine on a certain input, let 

us say x accepts that input x. If there is at least one way to reach accept, so in this case again I have 

not drawn the entire configuration graph because the configuration graph could be too big. 

 

It could have multiple branches of it, anyway it is a hypothetical thing. And the way I have drawn 

here there are some that say accept and then there are some that say reject and the remaining ones 

we are not drawn so, that could be anything. But the point is that there is at least one way to start 

from the starting configuration for the non-deterministic Turing machine on the input x and go to 

an accepting configuration like the rightmost one here or this one second one here and three ones 

that are depicted. 

 

So, the non-deterministic Turing machine will accept the input x if the configuration graph looks 

like something like this over here in the right this big graph. Now what is the running time of the 

non-deterministic Turing machine? The running time is the maximum length of any of these paths. 

Length is the number of steps it takes to go from the starting configuration to a halting 

configuration, the halting configuration could be accept or reject. So, the length of the longest path 

is the running time. So, it is I am depicting it as this length.  

 

So, where we can be length means the number of steps. And once again, we will for this course, 

we will assume that every machine that we have is a decider. So, everything will halt there will be 

no looping. So, in theory of computation when studying undecidability etcetera. you would have 

seen this looping, but we will for simplicity and for complexity theory, we will assume that all the 

machines halt.   

 

For non-deterministic Turing machines, even all the different branches halt on all the steps. So, 

everything halts to know, which is the one that takes the longest to halt? That is the running time. 



So, out of all these possibilities, 𝑓𝑛 is the length of the longest path. And where they are the function 

𝑓𝑛 is the maximum number of steps that the machine uses. So, capital N is a non-deterministic 

Turing machine or any branch of its computation. 

 

So, here I said the input is 𝑥, but 𝑓𝑛 is an upper bound on all inputs of the length n. So, x could be 

just one input. So, we could have many inputs of the same length. So, 0 0 1 0,1 1 0 0 they are all 

four-bit inputs. But then what I am saying is that running time is the maximum over all the 

computation paths over all the inputs of a certain length that length is n. So, this is the running 

time. 

 

In the case of deterministic Turing machine, the running time was simply the maximum over all 

the inputs of a certain length. But here even within an input there could be multiple branches. So, 

we need to take those into account  
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So, whereas in the case of deterministic machine, it is very simple, just one after the other. So, 

there is only one path, and it is very simple. So, the deterministic Turing machine is depicted in 

the left-hand side over here. This big thing is non-deterministic Turing machine. So, now just like 

we define 𝐷𝑇𝐼𝑀𝐸(𝑡(𝑛)), we can define 𝑁𝑇𝐼𝑀𝐸(𝑡(𝑛)). So, what is 𝑁𝑇𝐼𝑀𝐸(𝑡(𝑛))? 

𝑁𝑇𝐼𝑀𝐸(𝑡(𝑛)) is a complexity class that consists of all the languages that can be decided by a non-

deterministic Turing machine in order 𝑡(𝑛)  time.  



 

This is exactly that 𝐷𝑇𝐼𝑀𝐸(𝑡(𝑛)), but just that now we allow the Turing machine to have non-

determinism. And exactly like P we define NP to be the union of all the 𝑁𝑇𝐼𝑀𝐸(𝑛𝑘), where k 

ranges from one to infinity. So, in the case of P it was the union of  𝐷𝑇𝐼𝑀𝐸(𝑛𝑘). So, it is this class 

of all languages that have  non-deterministic polynomial time algorithm. So, whereas P was a class 

of all languages that have a deterministic polynomial time algorithm.   

 

So, we will come back to this sentence whatever said here, this is equivalent to the guess and verify 

model. So, we will go ahead for now. 
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What am I going to do? So, when again now, we may see you may think that there is some abstract 

sort of thing which is not very clear. But we will soon see that it makes it is not so difficult to 

imagine and it is something that you can understand. So, consider this problem called subsets sum. 

So, what is subsets, sum? So, you are given a set S and a number t, a target some t and you are 

asking whether there is a subset of S such that the subset sums to t.  

 

So, maybe I will just use the subset sums to t. So, that is the question. So, for example, so, you 

could have the set to be 2, 6, 22, 42, 15 and 10. So, this could be a set and the target sum could be 

47. Now, this is a yes instance. So, you would decide yes, if there is a way to if there is a subset of 

S that sums to 47. Is there such a subset? looks like yes. So, 22 + 15 + 10 will add up to 47. 



 

So, now maybe you want to take different subset maybe different targets some maybe you could I 

ask t equal to 12. So, for t equal to 47 in this set, the answer is yes. For t equal 12, what is the 

answer? Still the answer is yes, because 2 and 10 add up to 12 there is another subset. What about 

t equal to 13? There is no subset of the set that adds up to 13. So, that will be a no instance. So, 

now the problem is given S and t you have to decide if S has a subset that the subset t. 

 

This is the claim is it, this is a NP problem, this problem is in NP. Let us see how that is an NP. 

So, what you can do is to you can come up with an algorithm. How can you come up with an 

algorithm? Basically, we use the non-determinism to choose a subset and then we verify that the 

subset sums to t. So, let us see so, what you can do is non-deterministically so, you should look at 

the picture over here in the right that I encircled it.  

 

So, you start and then you non-deterministically choose to have 𝑥1 in S choose to have 𝑥1 in the 

subset. So, maybe let us see the set that you are building is called I do not know something A. So, 

non-deterministically decide whether you want to have 𝑥1 in A or 𝑥1 not in A. So, that is the first 

branch and then you decide whether 𝑥1 should be in A or 𝑥2 should not be in A. So, for each of 

these branches for the branch where 𝑥1 is in A you have to decide whether 𝑥2 is in A or 𝑥2 is not 

in A.  

 

And for the branch where x 1 is not in A again you have to decide whether 𝑥2 is in A and 𝑥2 is not 

in A and so on. In the next time you will decide whether 𝑥3  is in A or 𝑥3 is not in A and so on. 

So, basically this tree has suppose 𝑥𝑘 element, this tree will have height k and it will have two 

power k leaves. Each leaf will correspond to a subset of S. So, if you look at this left most leaf, so 

left most this one it will be the subset A is equal to S and the rightmost leaf it will be the subset A 

equal to empty set.   

 

So, these are trivial subsets. One of it is 𝑆 itself one of it is empty set, but still you get so, here 𝑥1 

is not in A, 𝑥2 is not in A, 𝑥3 is not in A, everything is ruled out of A. And the left side everything 

A contains and in between you encounter all the possible subsets. So, what is the algorithm? So, 

non-deterministically you select or reject each of 𝑥1, 𝑥2 up to 𝑥𝑘. So, basically what are you doing, 



you are non-deterministically selecting a subset. But instead of non-deterministically like how 

does that happen actually?  

 

So, you cannot not just select a subset instead you are saying that I first non-deterministically select 

or reject 𝑥1, non-deterministically select or reject 𝑥2 and so on. Another way to think of If you 

want to think of another way to see this whole thing is that you are non-deterministically picking 

out a k bit vector. So, the vector all zeros correspond to the empty set, all ones correspond to the 

set S itself.  

 

And let us say, one followed by all zeros correspond to the set containing only 𝑥1 and so on. So, 

there is a correspondence between the 2𝑘, k bit vectors and the 2𝑘 subsets of S. So, here what is 

happening is that in the first step you are choosing the first bit of the k bit vector and then the 

second bit of the k bit vector and so on. So, this is what is happening. So, now once you non-

deterministically select or reject each of 𝑥𝑖 then what you do is?  

 

You had the selected 𝑥𝑖 's and verify if they add up to t, the target sum and once you have a subset 

just verify whether they add up to t and then you check whether if sum is equal to t then you accept 

otherwise you reject. So, notice that if there is a subset here, we are actually checking all the 

possible subsets. If there is a subset the path corresponding to that subset we will go to accept.  

 

So, suppose there is some subset the path corresponding to that subset will need to accept. Many 

others may or may not accept, but at least there will be one path. However, if there is no way to 

get the target sum t then all the paths will go to reject. So, hence this is not deterministic Turing 

machine. And you can see that it is in polynomial time because the selecting reject each step is just 

one for each element of is adding, performing and addition is also in polynomial time and finally 

its just an if condition.  

 

So, we are using non-determinism and finally, we are deciding whether there is a subset which 

adds to the target sum or not. So, again the non-deterministic Turing machine does not actually 

evaluate all these options. If there is a correct option it leads to acceptance. Otherwise, if all the 

options are wrong it goes to reject. So, again one common mistake that people do is to think of 



non-deterministic Turing machines as you follow one path then you follow the second path and 

then you follow the third path and so on.  

 

But you do not have to do that. The non-deterministic machines if there is a path it will somehow 

find it. So, again it is an abstract notion which does not necessarily have a real-life parallel. That 

is the reason why it can be a bit counter intuitive. So, it would be helpful to think of this non-

deterministic notion of non-determinism. 
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Another example is checking whether a graph is three colorable. So, how do you do that? So, it is 

like  before. So, what you do is you order the vertices in some order, let us call them 1, 2, 3 up to 

n. Let us say the graph is n vertices. So, you start with the starting vertex and assign it what are the 

three colours let us call the colours red, green, and blue. And then you assign for each of these 

possibilities, you assign the second vertex red, green and blue and so on.  

 

So, at this tree will have height n, where n is the number of vertices, and we will have how many 

leaves in here 3 power n leaves because at each stage, we are assigning a colour to the ith vertex 

where i is the number corresponding to that stage. So, and there are three power n possibilities 

because there are three power n and there are n vertices, and each one of them can take one of the 

three colours.  

 



So, what do you do? You go through the vertices 1, 2 up to n and non-deterministically assign each 

vertex, colours, red, green, or blue and we are just writing R, G or B. So, once that happens, the 

graph has an assignment. So, the graph has an assignment. So, let us say the graph is what we have 

here in the bottom right, it is just a five-cycle drawn in the shape of a pentagon. Now, what if we 

get this combination red, green, green, blue, blue, this is a possible three colouring.  

 

But this is not a proper three colouring. So, then what do you do? Go through each edge of G and 

check if it is properly colored, accept if the colouring is valid else reject so, what you do is? There 

are three power n possibilities of colorings so maybe this is one instance. So, here you will check 

is this edge ok are red and green? Fine, this is fine. Is this edge, green and blue? Yes, that is fine. 

Is this edge blue and blue? No, it is not.  

 

So, this way just this edge was okay well this edge was okay, while this edge was not okay because 

now it is not a proper coloring. So, this will be rejected this part will lead to reject. There are some 

other colouring let us say that this green and blue got swapped. So, if all the edges are properly 

coloured green, blue, red, green, green, blue, blue, green and red, blue, this will be accepted.  

 

So, since this graph has proper three colouring valid three colorings it will get accepted because 

the non-determinism exhaustively is able to go through all the possible colouring options. Again, 

it does not do it like one after the other, it does not need to go cycle through one after the other, 

the cycles as possibilities one after the other. It has some way of magically picking out a correct 

option if it exists.  

 

Maybe you can think of it has it having some magic parallelism. And so, in fact in this particular 

case, there are many possible three colouring also, if I change this green to red, it is also a valid 

three coloring. So, anyway the point is that there will be many paths that lead to accept. There will 

also be many paths to reject, but that does not matter. There is at least one path that needs to accept 

it cause to this is the essence and this is indeed as essence.  

 

However, if we have a graph some other graphs that does not have a valid three colouring, let us 

say if a 𝐾4 a complete graph on four vertices. So, there is no way to properly colour this graph 



with it with three colours. So, now whatever you assign that the three power n options that you 

assign here, none of these options will work because basically all the pairs of vertices are adjacent.  

 

So, however you assign three, three colours to all these four vertices, there will be two vertices 

that have the same colour and that will form a clash. Because this 𝐾4 all the pairs of vertices are 

connected by edges. So, all the parts will need to reject and so it is a valid algorithm for testing 

three colourability . Again, the beginning stage takes n time because so just look at the height of 

the tree.  

 

You do not again as I said again you do not need to cycle through each one of the options. The 

height of the trees making n assignments, that takes n time and then you need to go through each 

edge. So, if there are n vertices, there can be at most n squared edges. So, you go through each 

edge and check whether it is a valid colouring and that is it. So, it is also a polynomial time 

algorithm.  

 

But it is a non-deterministic polynomial time algorithm. So, in both of these algorithms, you might 

have noticed or you can still notice that what we did was non-deterministically chose something 

and then decided to verify it. We non-deterministically chose something and then decided to verify 

it. So, this is what I mean by the guess and verify situation. So, you the non-deterministic choice 

of something can be thought of as making a guess followed by a verification.  

 

So, you non-deterministic chosen colouring and then verify if it is a proper colouring or you non-

deterministically chose a subset of S called it A and then then check whether the sum of elements 

of A adds up to t. So, in both of these cases, we have these guess first and then verify all the non-

determinism happens at the beginning followed by the verification which is completely 

deterministic.  

 

So, once you have a coloring there is no more non-determinism then the processes are completely 

deterministic. So, this we will come back to this later. But this is something that we will soon see.  
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One point that I can mention here is that any deterministic Turing machine can also be thought of 

as it is a non-deterministic Turing machine. This is because a non-deterministic Turing machine 

simply allows the machine to have more options it could have zero configuration successor, one 

successor or multiple successors. So, even one is a valid possibility. So, if at every stage you had 

exactly one successor configuration to all the possible configurations.  

 

It will be a deterministic Turing machine. So, even the deterministic Turing machine can be viewed 

as a non-deterministic Turing machine. So, anything that can be done with using a deterministic 

Turing machine can be done as a non-deterministic Turing machine. Hence, the Class D time tn is 

contained in N time tn. And the class 𝐷𝑇𝐼𝑀𝐸(𝑛𝑘) is true for any 𝑡(𝑛). So, if we replace it with 

𝑛𝑘, it is also true. 

 

Now I can take for this entire inequality or entire containment, I can take union over all k. So, k 

equals 1, 2, 3 and so on. So, the left-hand side is just gives us P and the right-hand side gives us 

NP. So, we saw what is non-deterministic Turing machine and then so, the definitions of n time t 

n followed by the definition of NP followed by some examples.  
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Now, let me go to the P versus NP question. So, as I said P is contained in NP just over here, P is 

contained in NP. But is this containment a proper one meaning is a strict subset. So, there are two 

figures here, one I am circling in yellow, the right side one and one on the left side that I am 

underlining in yellow. So, the right side one piece contained within NP and there seems to be other 

elements that are in NP but not in P.  

 

In the left side, one P and NP are both equal. So, which of these is the correct situation is? P equal 

to NP or is P a proper subset of NP? So, the left side is equal and the right side is a proper subset. 

So, it seems like it is very simple question to ask. But this has been a long-standing open question 

in computer science, and certainly in theoretical computer science. And arguably, this question has 

spurred the growth of this field of computation complexity theory.  

Most of what we see in this course is a direct result of people trying to attack the P versus NP 

problem and coming up with various approaches for it. And it is still unknown whether P is equal 

to NP or is P a strict subset. However, it is still unknown but as a result of this question, and people 

being interested in this question. And again, not just people, but lots of people and lots of intelligent 

brilliant people who have who spend most of their careers pursuing it.  

 

This field has really grown a lot and it has helped us understand the powers of computation or 

powers of the different models of computation a lot. So, on one hand, it is probably disheartening 

that it is still open. But it is on the other hand, it has led to so much work. This is a big open 



problem. And you may be aware that there is a set of millennial open problems by the Clay math 

Institute which was set up the list of problems was set up at around the year 2000.  

 

And this is one of the millennial problems. So, they set out seven open problems and said that if 

anybody solves any one of them, they will give you a million dollars. And out of the seven, I think 

only one has been resolved now. P versus NP is one of the remaining six and it still has no 

resolution. But it is a very interesting question. And let me spend a few minutes describing this 

question in a high-level sense.  

 

So, we saw it in a very set theoretic or syntactic sense, where we define P, we define NP and then 

so what is it? But let me try to define it in a more high-level intuitive sense.  
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So, we saw the NP allows you to verify stuff. So, I like this example. So, this is a copy paste from 

Wikipedia, where they talk about Sudoku being one of the or use the example of Sudoku to explain 

people the difference between P and NP. So, you know the Sudoku problem puzzle. So, you have 

this 9 by 9 grid, where you each row has to have all distinct numbers from one to nine in each 

column, and each mini square.  

 

So, again, if you if you do not know what it is, you can look it up. But it usually comes up in 

newspapers and people spend time solving it. So, the goal is you are given a partially filled set of 



numbers or a grid of numbers and you have to complete it as per the rules. And usually takes a 

while sometimes it is very hard to analyze all the possibilities and rule out some things and fill it 

in.  

 

So, but sometimes after spending one hour, half an hour depending on how good you are, 

depending on how much practice you have had, how much with these sorts of things is it may take 

you half an hour maybe 5 minutes, maybe 10 minutes, maybe 2 hours, whatever. The point is that 

solving a Sudoku puzzle is not immediately easy. Whereas, if I give you a grid and I completely 

filled it up and ask you to verify whether this is a properly filled grid that is not so difficult to do.  

 

Now you know what the process like you is check the first row, second row, first column, second 

column and so on and then the mini squares etcetera and then you are done. Whereas, if you are 

given a grid to solve, to solve actually and partially filled grid then you have to resort to various 

tries of attacking and finally, somehow, after a lot of time, you may get it done. So, clearly it seems 

that P is like solving it with a from a partially filled grid.  

 

NP is like given a filled grid verifying it, so you may say, this is not a properly filled grid because 

this mini square contains two eights, or this row contains two sevens whatever. Or you may check 

everything and say okay this is this grid is good. I have checked all the possible things to check, 

and it is fine. So, certainly checking whether a filled grid is a valid grid, it is seems to be a more 

straight forward task than solving. So, P corresponds to the act of solving it.  

 

So, you have to just given something you have to solve it. And NP corresponds to checking 

whether a given solution is correct or not. So, one is coming up with a solution rather is verifying 

its existing solution. So, the question are these two the same complexity. If P is equal to NP, then 

these two will be the same complexity. If P is not equal to NP, then verification that means that 

verification is strictly easier than decision. 

 

So, again it is widely believed most computer scientists that you ask will say that they believe that 

P is not equal to NP because it seems that verification ought to be easier, then actually solving it. 

But even though it seems that one would intuitively think this should be the case, but it has evaded 



the attempts of all the computer scientists. The problem P versus NP has evaded the attempts of 

all the computer scientists so far. So, that is the P versus NP situation.  

 

So, one is like again, other another parallel is like coming up with composing a musical symphony. 

So, it requires a lot of creativity, versus listening and appreciating a musical piece. So, it is certainly 

much easier to appreciate a musical piece than compose one or that is what we think. But if P is 

equal to NP that will be saying in some high-level sense that being able to verify which is like 

appreciating music is the same as being able to come up with something so interesting. So, in some 

ways it is asking, is it possible to automate creativity?  

 

P equal to NP then you are kind of saying that creativity could be automated. Again, this is a very 

high level or it may be a philosophical kind of way to look at the P versus NP question. But again, 

I am just doing this because it is the most important problem in theoretical computer science and 

perhaps all of computer science. And certainly, it is highly relevant to this course because almost 

all of the subject matter that we will see during this course came up as a result of people trying to 

address the P versus NP question. I Just want to briefly mention a bit of history.  

 

So, this problem was initially stated in 70s 71, early 70s, by Steve Cook and independently by 

Levin, Leonard Levin. So, the problem is in the early days. In those days there was no email, there 

was no internet and research had to spread by hard copies, like somebody has to write a book or 

write a paper and it has to be published and then that journal has to travel across the globe for other 

people to know what there results are.  

 

It is not like these days where I am delivering this lecture to you were internet. So, even though 

Steve Cook and Levin so, they might not have come up with the result on the same day. But it 

would have taken time for it to go from one of them to the other one, a Cook was in North America 

somewhere I think US and Levin was in Russia. So, and also do in those times after, because of 

the cold war that Russia would not have been talking to the Western Europe, US and Western 

Europe.  

 



And this is when it was the problem was first formally stated. But however, there are a couple of 

instances at least a couple of recorded instances where scientists actually talked about this problem 

in an informal or high-level setting. So, one of them was John Nash, so if you know the word Nash 

equilibrium, he wrote a letter to NSA in the in the 50s, where he said that cracking a certain 

cryptography code, so a security code will require a long time unless P is equal to NP or assuming 

P not equal to NP.  

 

And another instances the mathematicians slash  computer scientists, Kurt Godel, he had written 

to John Von Neumann in 1950s, 1956. Again, he asked whether like stated a hard problem again 

I did not want to go into the details, can it be solved in polynomial time, quadratic time for instance. 

Again, if that was solved in polynomial time, it would imply that P is equal to NP. Again, that 

would mean that proving something could be automated.  

 

So, again these are this is other evidence that brilliant minds already knew or already were aware 

that there is something the two classes P versus NP and that there are all these underlying issues 

going on, but the formalization took till early 70s. So, that is I think we will have crossed the 30-

minute mark by now. So, I will wind up now, just quickly summarizing, we started by defining 

the non-deterministic Turing machine, the running time of it and n time tn complexity class n time 

tn, which is in parallel with D time tn.  

 

And then we define NP in parallel to P, non-deterministic polynomial time. So, two examples and 

then we stated that P is a subset of NP and we stated the P versus NP question which is whether P 

is a strict subset or whether P is equal to NP. I think that solved for this lecture and the rest will 

continue in the next lecture. Thank you. 

 

 

 


