
Computational Complexity

Prof. Subrahmanyam Kalyanasundaram

Department of Computer Science and Engineering

Indian Institute of Technology, Hyderabad

Lecture -28

Randomized Complexity Classes Part 3

(Refer Slide Time: 00:15)

Hello and welcome to lecture 29 of the course computational complexity. So, in the past 2

lectures we have seen the complexity classes for randomized computation we have seen RP co-

RP and BPP which are which correspond to the complexity class which correspond to Monte

Carlo algorithms that run in a fixed some fixed time but then they could result in errors meaning.

Yes yes instances could be reported as no or vice versa.

In this in this lecture I want to talk about ZPP which is a complicity class that pertains to Las

Vegas algorithms where the running time varies but correctness is assured. Before getting into

ZPP I want to state 1 small point which I think is an important point but I did not emphasize this

in the previous lectures. The point that I want to make is that we have seen the probabilities

throughout in the case of RP and co-RP and BPP we have seen these probabilities.

So, the way to understand these probabilities are that let us say consider this the BPP for instance

the probability is always over the random choices made by the algorithm. So, when I say x is in

L implies the probability of acceptance at least 2-3rds means x is fixed and for any fixed x that is

in L the probability of it getting accepted should be at least 2-3rds. And the probability is taken

over the try random choices made by the made by the algorithm.

So, the algorithm may make many random choices and then it is taken over all the random

choices possible for every fixed x that is in L. So, any fixed x there is a at least 2-3rds probability

that it will be accepted and whenever x is not in L any fixed x that is not an L the probability of

acceptance is at most 1-3rds. So, it is not like half the like 1x is there that will never be accepted

not like that for any L any x that is in the language the probability is taken over the random

choices or for that matter for any x whether it is in L or not in L the probability is taken over the

random choices made by the algorithm for any fixed x.

(Refer Slide Time: 02:54)

So, let us go to ZPP, ZPP stands for zero error probabilistic polynomial. So, L is considered to be

in ZPP if there is a probabilistic polynomial time machine M that can answer yes no or do not

know. So, there is this is the new thing here is that we are allowing it and the machine to say I do

not know such that the answer is always correct. So, you have a machine that is always correct

that runs in polynomial time can use randomness but if you want the machine to be always

correct you can always have the machine truthfully say I do not know.

So, this is not interesting like what uses a machine that always says I do not know. So, to make it

interesting or to make it useful we limit the probability by which it can say I do not know for any

x the probability for which it should say I do not know is upper bounded by half. So, with

probability half it should give the correct answer. So, it cannot say yes and no both for the same

input because it always has to output the correct answer.

So, if x is in the language it it can either say yes or I do not I do not know and the probability of

saying I do not know is at most half if x is not in the language it could either say no or I do not

know the probability of saying I do not know is at most half and it is not allowed to say an

incorrect answer this is ZPP. So, when I make this definition it does not seem like what I just

said the running time is the running time seems to be fixed in this definition.

But and there are no errors but then there is a provision of I do not know but we will later see in

the same lecture we will see why or how we can we can change we can do some repetition

tweaking etcetera. So, that the machine never says I do not know instead the running time

becomes variable. So, by you can do a tradeoff between allowing I do not know and allowing it

to take flexible time. We will see that later in this lecture.

So, now let us try to understand the classes at ZPP. So first thing to note is that ZPP is contained

in RP why is that? Let us say there is a ZPP machine let us say M is FPP machine for a language

L now to show that ZPP is contained in RP we should show that any language L is also in ZPP is

also in RP. So, for we take the language L we take the ZPP machine for L that that is ZPP

machine M. Now we will demonstrate an RP machine for L.

(Refer Slide Time: 06:03)

Now we modify the machine it is a very simple trick. So, in an RP machine is not allowed to say

I do not know it is allowed to say only yes and no. So, what do we do whenever M says I do not

know the RP machine constructed. So, the RP machine we call it M prime M prime says reject.

So, now M prime only says accept or reject yes or no. So, whenever x is not in the language M

prime always says reject.

Because whenever x is not in the language M prime can say or M could have said I do not know

or reject but now all the I do not knows have become reject also. So, whenever x is not in the

language M prime always says reject. So, the probability of accepting such an x is 0 which is

what RP wants us to do. Any x that is not in L property of acceptance should be at equal to zero.

Whenever x is in L, M the ZPP machine could do 2 things it could accept or it could say I do not

know.

The probability of saying I do not know is at most half but then now when we convert it to M

prime all the I do not knows get converted to rejects. So, the probability of M accepting anyway

the probability of M M saying I do not know was at least half sorry at most half. So, the

probability of M accepting was at least half. So, the probability of M prime accepting is also at

least half whenever M accepts n prime also accepts and prime only converts I do not know to

reject.

So, again this is what RP machine RP wants. So, M prime so, by observing this you note that M

prime is an RP machine for the language L. So, whenever an arbitrary language L is considered

L from ZPP is considered you can show that L is in RP. You take the machine and whenever it

says I do not know you make it in you make it say reject that is it. Similarly ZPP can be shown to

be in co-RP this I would suggest you to work out as an exercise. This is exactly like the same

thing you just have to change I do not know to accept here.

So, you can work out the details here I do not want to get into the details it is exactly like what

we did here. So, ZPP is we saw that ZPP is an RP we also saw that ZPP is in co-RP. Again we

did not see but I hope because of the extreme symmetry here you are convinced that ZPP is in

co-RP but in any case you can convince yourself. So, consequently we can say that combining

both of the things we can say that ZPP is a subset of RP and co-RP. So, it is a subset of the

intersection.

(Refer Slide Time: 09:24)

Now what is true is that it is equal to the intersection ZPP is equal to RP intersection co-RP. Let

us see why? So, we have already seen that it is in RP we already seen that it is in co-RP. So, if it

is in both its in the intersection now all that remains to be shown is the other direction inclusion

we have to show that RP intersection co-RP is contained in ZPP we have to show that RP

intersection co-RP is contained in ZPP. So, how do we do that? We take an arbitrary language in

RP intersection co-RP and then show that this language is in ZPP.

So, let us consider an arbitrary language let us consider an arbitrary language L in RP

intersection co-RP. So, it is in RP intersection co-RP which means that it is an RP as well as

within co-RP which means it has an RP machine as well as a co-RP machine that recognizes it.

So, let M 1 be the RP machine for L and let M 2 be the co-RP machine for L. So, now we know

that again all I am doing is just writing down what we know so far.

So, many steps you will see are standard to show that something is a subset of the another thing

you just take an arbitrary member of the first sub first set and then show that this arbitrary

member belongs to the second set to show that 2 sets are equal you show a a contained in b and b

contained in a and this is all that I am using here. And once I took an arbitrary member of ZPP

sorry we have to show that RP intersection co-RP is in is contained in ZPP.

So, we took in our arbitrary member of RP intersection co-RP and then what does it mean it is an

RP. So, it has an RP decider it is in co-RP. So, it is a co-RP decider. So, now let us write down

what it means. So M 1 is an RP decider and M 2 is a co-RP decider suppose x is in the language

then the RP decider accepts with probability at least half and the co-RP decider accepts with

probability 1 this is what it does.

If x is not in the language RP decider accepts it probability equal to zero and co-RP decider

accepts it probability at most half. So, I am just writing down the definition of M 1 and M 2

based on what we saw for the definitions of RP and co-RP. So, what is what is to be noted here

M 1 is a RP decider there is no false there is only false negative and it accepts there is no false

positive. So, when M 1 accepts x is in the language when M 2 rejects x is certainly not in the

language M 2 has only false positives there is no false negatives.

So, whenever M 2 rejects we know for sure that x is not in the language. Similarly whenever M 1

accepts we know for sure that x is in the language. So, let us try to understand how things are

maybe again drawing a small grid picture.

(Refer Slide Time: 12:56)

So, M 1 accept, I will write down what are the possibilities here M 1 accept M 1 reject M 2

accept and M 2 reject. So, can M 1 and M 2 both accept yes they can both accept and when M 1

and M 2 both accept we know that M 1 accepts only when x is in the language. So, when M 1 is

accepting we know for sure that x is in the language even when M 2 is rejecting we know that x

is in the language sorry this cannot happen because when M 1 accepts when M 2, M 2 so, this

cannot happen sorry accepts because then certainly in the language.

So, M 2 cannot reject. So, this cannot happen suppose M 1 suppose M 2 rejects we certainly

know that x is not in the language. So, M 1 also may reject and what can possibly happen is that

M 1 rejects and M 2 accepts this can happen. So, 1 of the machines reject and the other machine

accents this certainly can happen and then what do we do. So, this is a confusing this is a

situation that is that can happen. So, what we will do here.

So, we have. So, the problem here is to show that. So, 1 direction is already known ZPP is

contained in RP decision we are showing that RP intersection co-RP is contained in ZPP. So,

using the RP and co-RP decider we will build a ZPP decider. So, we need to build a ZPP decider.

So, now the ZPP decide always has to be correct but it has an extra weapon it can say I do not

know. So, when whenever M 1 accepts this situation that the top left quadrant it can say x1 is in

the language x is in the language.

This situation does not arise stop write does not arise it cannot happen whenever M 2 rejects it

one can say that x is not in the language. So, the only situation is this one when M 1 rejects and

M 2 accepts which is possible because M 1 allows false negative and M 2 allows false positive.

So, it could be that x is in the language and M 1 is reporting a false negative or x is not in the

language and M 2 is reporting a false positive.

So, it could be either case but then a ZPP machine which is what we are trying to construct can

always say I do not know. So, this is what we do here. So, let me just formally describe all that

the M prime is the M prime is the machine ZPP machine that we are going to construct this is a

TZPP machine or let me say target ZPP machine. So, to build M prime we run both M 1 and M 2

on x. We accept if M 1 accepts and we reject if M 2 rejects.

So, as I said before it cannot happen that M 1 accepts and M 2 rejects and the confusing situation

arises when M 1 rejects and M 2 axis in that case we say I do not know. So, now to verify that

this is a this is an ZPP machine we need to do 2 things 1 is that the probability of I do not know

is bounded to at most half on any input and 2 otherwise all the answers are always correct.

So, the second part is already done we know that M 1 accepts only when x is in L. We know that

M 2 rejects only when x is not in M. So, we know for sure that the accept reject responses are

correct and do not know responses are always correct. So, you can say I do not know any time

and always be correct unless you know the answer but then machines do not do that.

(Refer Slide Time: 18:05)

So, the only thing that is left to be verified is that the probability of I do not know is at most half.

So let us see suppose x is in the language how can it how can we say I do not know. If x is in the

language then we say I do not know because M 1 rejected what is the probability that M 1

rejected well the probability that M 1 accepts when x is in the language is at least half. So, the

probability that M 1 rejects is strict less than or equal to half.

So the probability that M 1 does not accept when x is in L is at most half and this is when M

prime saying I do not know. So, the probability that M prime saying I do not know is at most half

and prime says I do not know only when M 1 answers incorrectly and that happens when that

happens with probability at most half. Similarly when x is not in L why does M prime say I do

not know? This is happening because M 2 is accepting and what is the probability that M 2

accepts when x is not in L?

The probability that M 2 is accepting when x is not in L is over here it is at most half and that is

when we say M prime says I do not know. So, the probability of saying M prime saying I do not

know is at most half. So therefore we can conclude that the machine M prime is a ZPP machine.

So, whenever L is in RP and co-RP it is in ZPP. Therefore we have shown that ZPP is equal to

the class RP and co-RP. So, maybe it is an important result I will put it in a red box sorry. So,

now finally 1 more point about ZPP this is what I promised at the beginning.

So, far we know ZPP as a as a type of machine that that runs in a fixed time but allows to say I

do not know but I motivated ZPP by saying that it corresponds to Las Vegas algorithms one

where the running time is variable but correctness is guaranteed. Now let us see how that that

this definition corresponds to that.

(Refer Slide Time: 20:48)

So, this is the next theorem ZPP is the class of languages for which there is a probabilistic

machine that runs in expected polynomial time. So, it is a probabilistic machine that runs in

expected time Otn where tn is a polynomial. So, expected polynomial time which means the

running time can vary the expectation of running time is polynomial such that whenever M holds

it correctly outputs the answer it may run for a long time that is but when it holds we get the

correct answer and the expected running time should be polynomial.

So, in some particular input it may take a long time or in some in some cases may be just that all

the randomness is not working out to our favor but it may take some time but the expected

running time is polynomial. Again the expectation is calculated when the probability is taken

over the random choices and not of array and not the choices of the random bits and not the

choices of the input for any input this expectation should hold.

So, let us see why this is the case. So, there are 2 things here one is that we have already made a

definition for ZPP that ZPP is a class of line class of languages that have a probabilistic

polynomial time machine that says yes, no and I do not know. But always answers correctly

whenever it gives an answer. So, now from that definition we have to show that definition

implies this definition or this definition this characterization and this characteristic implies that

characterization.

So, we will I will give a brief proof sketch because again the proof details are simple. I will give

a brief proof sketch suppose L is in ZPP which means it has as per the first definition it has a

probabilistic polynomial time turing machine that says yes no and I do not know and probably if

I do not know is at most half. What we can do is to repeat let us say so, now how do we build a

machine that of this nature that I said here that the theorem statement says.

So, we need a machine that does not say I do not know but can take more it can take variable

time. So, the simple way is sorry sorry again the simple way is to run the ZPP machine. So,

maybe let us say M is a ZPP machine. So, M prime is what we will we will try to do M prime is

a machine that will fit the characterization in this theorem statement. So, M prime is just this run

M if M outputs do not know then repeat and repeat till sorry we get a accept reject or yes no.

So, we repeat it till we get accept or a reject. Let us see why this works what is the expected

running time of M prime. So, certainly it will be repeated till it is it is accepting or rejecting and

we know that M is a ZPP machine. So, M will always output the correct answer. So, that way it

is all fine the only thing that remains to be verified here is that running time is an expected

polynomial time. So, what is the running time of M prime or expected running time of M prime.

So, how many times will we have to repeat this? So the probability of so, whenever M says do

not know it has to be repeated. So, how many times should we should it be repeated. So, that we

get an accept or reject. So, does it remind you of some probability distribution that you know.

So, if you have a die six sided die not normal six sided diet how many like what is the

probability of getting a six it is 1 over 6.

Suppose you keep rolling till you get a 6 what is the number of expected number of rolls to get a

6 this is this corresponds to a geometric probability distribution and then expected running

expected number of trials is 1 divided by the probability of success. So, in the case of die it is it

is six times. Here the probability of getting a correct answer is half or at least half. So, it is at

least half. So, probabilities of saying do not know is at most half.

So, expected running time is at most 1 divided by probability of getting a accept reject is at least

half. So, that is why we have to write at most multiplied by running time of M. And we know

running time of M is polynomial time because that is how we define ZPP the running time is

polynomial. So, this is equal to and this quantity is nothing but 2 2 into time taken for M. So, it is

a polynomial time machine. So, the expected running time is polynomial or at most polynomial,

so, which is fine.

So, whenever L is in ZPP we construct we get a machine as described in this theorem statement

simply by running M again and again and again till it outputs a accept reject answer whenever it

says I do not know you repeat and we know for sure that whenever it says accept or reject it is a

correct answer.

(Refer Slide Time: 28:27)

Now the other direction; suppose there is a machine like this which runs in expected polynomial

time. So, the running time can vary but at the end whenever it halts it will give the correct

answer now how do we go to a machine which has a fixed running time? That is also not very

difficult. Suppose there is a machine as we said in the theorem statement which means it has

running time that is expected running time is something.

Now the idea is to run the machine for a certain time. So, certain time what works is. So, let us

say the expected running time is maybe this works I think 2 times the expected time certain. So,

this works I think and the thing is it may not conclude because the statement the theorem

statement we say it may run the bound is known only for the expected running time a specific a

specific input may take long time depending on the random choices made.

But we know that the expectation is fixed. So, we can and we can run allow it to run till certain

time if it does not complete its execution till that certain time if it does not complete its execution

until that certain time we just stop the execution and say I do not know. Because now in the ZPP

model we cannot have the flexibility of running forever but we do have the flexibility of saying I

do not know. So if it if it has not completed the execution you say I do not know. So, you run a

machine M.

So, maybe I will just write in a bit more detail write in a bit more detail say M is the machine as

in the theorem statement. So, the ZPP machine will be M prime sorry or I will call M prime the

machine in the theorem statement just because earlier also n prime corresponding to the theorem

statement and ZPP machine will be M. So, what is M start M prime run till time expected time of

M prime sorry run till time 2 multiplied by expected time of M prime 2 multiplied by this if M

prime completes output the same as M prime.

If M prime does not complete then we are stopping it does not complete output do not know. So

this works because of what we have here called Markov's inequality when a random variable is

non-negative when a random variable is non-negative we have the probability that it exceeds a

certain quantity is at most expectation of the random variable divided by a. So, where a is the

quantity that we are doing this in other words sorry.

So, when we the probability that it is more than 2 times expectation is at most half. So, when you

apply this for x equal to the running time sorry for the expected the running time f prime it works

out to be the probability that you end up saying do not know is the probability that you exceed

the running time of the expectation of twice the expectation. So, the probability that you exceed

x exceeds twice his expectation is at most half and that is the probability by which you will see I

do not know.

And correctness it runs in polynomial time because you are stopping the machine at a certain

time. So, you know that it runs at a certain time and the answers are always correct. As an

exercise you could just I just I gave most of the details but if you want to convince yourself you

can work out the rest of the details. And with that I think I will conclude this lecture and I will

quickly summarize we stated the model ZPP or the complexity class ZPP for which we saw we

gave 2 definitions.

One is the Las Vegas algorithms where which we saw at the end where the machine will always

be correct but the running time is variable. And the second definition which we saw first was that

the running time is fixed but the machine can do 2 or 3 things yes no or do not know. So, it has a

do not know option but the probability for by which it can output do not know is limited. And the

thing that we observed is that ZPP is equal to the intersection of RP and co-RP.

And the interrelations between all these are very interesting like you see how we proved ZPP is

equal to RP intersection co-RP and also the proof that the proof that both the correct both the

definitions that ZPP is the model with yes no and do not know and the model where the running

time is running time is variable but the correctness is guaranteed with only yes and no and both

of these use make use of interesting probability and some and simple but interesting tricks.

We will conclude with the summary of week 5 we first saw the baker gill solid theorem which

said that techniques that relativize in particular diagonalization cannot be used to resolve the P

versus NP question. So, this was done by demonstrating 2 oracles a and b such that P to the A is

equal to NP to the A and P to the B is not equal to NP to the B. So because of this these 2 oracles

we cannot use techniques that relate device to show or to resolve P versus NP.

After the proof of the Baker Gill Solovay theorem we went to the randomized complexity classes

starting with the motivation then we first saw the classes RP, co-RP and BPP which were classes

that correspond to Monte Carlo algorithms. We saw how to do boosting for each of these classes

how we could repeat the algorithm and get improve the error errors. We saw how these

complexity classes relate to each other we also saw ZPP complicity class pertaining to Las Vegas

algorithms.

We also saw how this class relates to the other classes that I have already mentioned. We saw

multiple we saw at least 2 characterizations of ZPP and how the equivalence between them we

also saw the proof that ZPP is equal to RP intersection co-RP and with that I think we concluded

this week. And next week we will we will start off where we where we are from this point we

will see some more randomized complexity classes. How they relate to some other things that we

have already seen and take it forward from there.

