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Hello and welcome to lecture 24 of the course computational complexity. In the previous lecture 

we saw oracle turing machines in this lecture we will see how we can view the polynomial 

hierarchy that by that I mean the classes in the polynomial hierarchy such as sigma 2 sigma 3 pi 

2 pi 3 etcetera you can you can get them. So, we define them as with this alternating quantifiers. 

So, now there is another way to arrive at these classes in the polynomial hierarchy using the 

definition of oracle turing machines. So, we will see how to get that.  

 

So, we can define these classes using the oracle turing machines what we will see in this today's 

lecture is that sigma 2 is the same as the class NP with access to a SAT oracle. Sigma 2 is equal 

to NP with access to a SAT oracle. So, let us see how we will see that we will see the detailed 

proof and in general what is true is that sigma i is NP with access to a q SAT i oracle. So, you 

may recall that q SAT i was the complete problem in the complete problem of the sigma sigma i.  

 



So, q SAT i is the q SAT k was a complete problem of sigma k. So, q SAT 2 is the there are 

these alternating quantifiers. Similarly I am just trying to see if I defined it I think I just defined it 

to be similar to q SAT 2 but q SAT i is a complete problem for the class sigma i. So, sigma i + 1 

is NP with access to a q SAT i oracle. So, basically if you have it is NP with access to the 

complete problem of the of the of the high of the class just one level below.  

 

So, here at sigma i + 1 this the here at sigma i + 1 for that we need NP with access to sigma i 

complete language and similarly pi i is co-NP with access to a q SAT i complete problem q SAT 

i which is sigma i complete problem. So, this is ah. So, these results are the proof of these 

lessons are exact exactly like the same way that we will see the proof of sigma 2 is NP set. So, 

because of which we will not really be doing the other proofs we will just show the proof that 

sigma 2 is NP with access to a SAT oracle.  
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So, like I said in the lecture 23 the previous lecture whenever we want to show something like a 

language or class A is equal to class B we end up showing containment in both directions. So, we 

will show that left hand side is contained in the hand side and vice versa. So, like that we will let 

us do first direction that sigma 2P is contained in NP with access to a SAT oracle, so, which is 

what we have here. So, and again how do we show that some, one set is contained inside the 

other again the standard trick is to pick an arbitrary element of the the first set.  

 



So, in this case sigma 2. So, let L be a language in sigma 2 and now we will show that this L is in 

NP with access to a SAT oracle. So, an arbitrary member here if we can show it to be there then 

it means that any member here is there and. So, this is a subset of that. So, we will take L to be in 

sigma 2. So what does it mean when I say that L is in sigma 2 when I say L is in sigma 2 this 

means that L has a there is a polynomial deterministic polynomial time verifier P such that 

whenever x is in L whenever x is in L there are strings y or there exists a string y such that for all 

z the verifier evaluates x y z to 1. 

 

Again there are other things about y and z being a polynomial length I am just skip that detail. 

So, this is the definition of sigma 2, L is in sigma 2 if there is a polynomial time verifier y V such 

that for all x and L it must be the case that there is a y such that for all z, V x y z evaluates to 1 or 

the deterministic verifier successfully verifies x, y and z.  
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So, now consider such an L now how do we now we need to show that such an L is also there in 

NP with access to a SAT oracle. So, what can that? So, given so, the n, so, basically we have to 

construct the NP machine the non-deterministic turing machine non-deterministic polynomial 

time turing machine with access to a SAT oracle. So, let us see how to do that? So, the non-

deterministic turing machine, so, basically given input x it can guess the y it can guess this y 

which is a which is because NP has a capability to guess. 

 



But NP cannot do this for all z thing. So, NP cannot do that because NP can only guess 

something if it is there. So, basically given input x it can guess y and now give once x and y are 

fixed then it needs to decide if this is true what is true for all z is V x y z equal to 1 or does the 

verifier accept the triplet x y z. And slight notation change may help to change the perspective 

and view things differently. So, once x and y are fixed, so, x is the input and y is the guest ones y 

is guest. Now V x y z is just a function of z.  

 

So, I may one thing that we can do is to bring down x and y as a subscript and then view it as a 

function of z alone. So, once x and y are fixed we can view V x y z as a function of z alone 

which is what is happening here function of z alone.  
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So, now the NP machine needs to decide again notice that till now we have not made use of the 

SAT oracle NP machine needs to decide whether for all z, V x y z is equal to 1 which is the same 

as we defined V x y z to be this V x y with V x y as subscript of z and. So, what is the negation 

of this? The negation is there exists z such that V x y z equal to 0 for all z V is equal to 1 and the 

negation is that there is some z for which it is 0 for all z something happens for one z it does not 

happen that is a negation.  

 

So, negation is there x is z for which V x y z is 0. Now instead of vx I can change the verifier I 

can I can modify the verifier to give another polynomial time verifier which just flips the output. 



So, I define a new verifier called V prime x y and V prime x y is just flip the output of V x y. So, 

you just what let V x y run and you flip the output. So, we suggest a flip. So, V x y equal to 0 

means V prime x y equal to one that is what we have in this in this red circled input.  

 

So, we want the negation of this. So, is the opposite of this 2 is what we want know but does 

there exist a z such that V prime x y is V prime of z is equal to 1 is just a satisfiability query. So, 

you have a verifier which can be viewed as a formula also. So, you can the entire verifier is an 

algorithm which like in Cook Levin theorem you can do it as a formula and you are asking 

whether there is a z that satisfies it you are asking whether this is z that satisfies. 

 

It if there is a z that satisfies it. So, that is a satisfiability query. So, you can ask the satisfiability 

query and what we want is the negation of that. So, the negation is just you flip the output again. 

So, all that it boils down to is a negation query. So, that is what we need to do here it is a 

negation query it is a negation of a satisfiability query. So, just once again we need to have given 

a language in sigma 2 we need to view it as we need to see how it is in NP with access to sate 

oracle.  

 

So, sigma 2 means it can be written in this form with the polynomial time verifier V there x is y 

says that for all z, V x y equals n equal to 1. So, then NP and N can guess y and it needs to 

decide for all z, V x y that equal to 1. So, instead of doing that it we can we realize that we can 

view it as a satisfiability query does that exist as z that such that something happens and that can 

be easily be done because we have access to a SAT oracle.  

 

So, we just make the access we just make the query to the SAT oracle and then decide 

accordingly. So, that is why sigma 2 is contained in NP with access to SAT oracle. So that is one 

direction of the proof the other direction is pending. 
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What is the other direction that NP with access to SAT oracle is contained in sigma 2. So, again 

the same thing, so, we take an arbitrary language from the left hand side which is NP with access 

to a SAT oracle. So, which means L is decided by a non-deterministic polynomial time machine 

n with an oracle access to satisfiability. So, this is this direction is slightly more involved than 

the other direction. So, let me just go a bit slow.  

 

So, what can n possibly do in is in a deterministic turing machine. So, which means it has 

possibly multiple computation paths multiple acceptors x outcomes and it is also it also has 

access to a sad oracle which means it will keep it will query the SAT oracle from time to time it 

can query the SAT oracle from time to time and it can also use this in an adaptive manner. So, 

you can make a query and then if the oracle if the response is yes then it does something if it 

does sponsors no all this is part of the algorithm.  

 

So, these are the things that N is capable of doing. So, it is a non-deterministic machine not NP 

with access to a SAT oracle suppose. So, just to summarize or just to make say it very formally 

suppose x is in L that means it is an orthodontic machine. So, that means there is one sequence of 

choices that leads to x being accepted because it is not determinism. So, let these choices be c 1 

to c m. 

 



It will be a fixed number of choices for a fixed input. So, it let it make m choices by the non-

deterministic turing machine N. And in the in this process, so, this process will guide it using 

some computation paths. So, it is it has access to the SAT oracle. So, it may be making many 

questions queries to the SAT oracle. Let us say it makes k queries where k is another fixed 

number k queries to the SAT oracle let the responses to the k queries be a 1 to a k. 

 

These are all yes no responses equivalently we will view them as 0 one responses this is yes in 

sense this is no instance. So, for each of the queries it receives a as a response. So, what it does 

is? ah. So, I am just trying to represent what it does. 
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 In a pictorial fashion, so it makes many choices c 1 to c m and queries it makes queries phi 1, 

phi 2 etcetera phi k. So, I said it makes k queries. So, and recall it is each of them is a instance of 

satisfiability because that is the oracle that we have. So, let the query. So, every time it must be 

writing a SAT instance what is that instance it is a Boolean formula that the query. So, the 

Boolean formula instance let us let it be phi 1, phi 2 phi 3 up to phi k and the responses answers 

are a 1 a 2 up to a k, k queries k answers. 

 

And if x is in L there is a sequence of choices c 1 to c m such that which makes some k queries 

and which makes some corresponding to the queries you get the correct answer. So, again the 

one the queries are fixed by the choices and the answers are decided by the queries it s in sensor 



no instance is the oracle does not lie. So, it just gives the correct answer. So, this is what happens 

and ah. So, again this is just what I have written here if i denote the ith query.  

 

So, if the answer is 1 which means it is satisfiable y I is satisfiable which means that there is a 

satisfying assignment for phi 1 let it be let us call it u 1. So, u 1 is a satisfying assignment for phi 

1 which means phi 1 or sorry phi i sorry I said u 1 its u i. So, phi i when given the assignment u i 

it is it evaluates to true or one if a i is 0 if a i is 0 which means it is not satisfiable which means 

there is no satisfying assignment which means whatever assignment you try whatever assignment 

V i you try for all assignments V i phi i of Vi will be 0.  

 

So, whatever you input it will be 0 again what was the goal here? The goal here was to show that 

L is in sigma 2 we started by saying L is an NP with access to SAT oracle which means it makes 

non-deterministic choices and gets yes no answers and we are trying to interpret what these yes 

no answers are. So, if yes answer there is a satisfying assignment to the query if it is a no answer 

there is no satisfying assignment to the query that is where we are. 

 

Now all that we need to do now. So, till now it seems like we were just understanding what it 

means for this language L to accept a string x it needs to have a sequence of choices and then 

queries and then yes and no and all that. Now all that we need to do is to write these things in a 

formal logical sense and that will start looking like a sigma 2 language already. So, let us see.  
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So, all I am doing is to just write it very formally in a logical step sense. So, if x is in L or x is in 

L if and only if there exists choices c 1 to c m some m some fixed number responses a one to a k. 

So, choices guide the guide the machine to make queries and obviously there will be answers 

which due to acceptance. So, but then we will in we are also encoding acceptance here and u 1 to 

u k can be there are you into u k satisfying assignments for the ins the cases where this is 

important when a i equal to 1.  

 

So, phi i u i equal to 1 when a i equal to 1 and such that x is a u i. So, that is why it is all of these 

three things are coming under the existential quantifier. So, I will put a bracket and this thing for 

all we should be for all because if a i is 0 then whatever input you try should be should not work. 

So, this V should be for all quantifiers. So, we have a there exists quantifier and we have a for all 

quantifier and such that n accepts x using choices c 1 to c m and answers a 1 to a k and.  

 

So, this is the choices of this is acceptance of n and finally we also want to verify the correctness 

of the queries. So, this is just about n we also want to verify what the oracle did. So, that also we 

should be doing what is it that we should verify. So, whatever I had written here if a i equal to 1 

then it should we should verify that phi i u i is equal to 1. So, it is a, it is an implication that I 

have written here but as we have seen in previous lecture an implication can easily be converted 

to a Boolean formula. 

 



And if a is 0 then phi i V i should be 0 anyway the for the V i there is an external universal 

quantifier. So, that will make sure that all the this applies for all the V i’s and this we have to 

take an and over all the choices of i. So, in the in the 2 parts either the left side or the side may 

may get active depending on what a i’s. So, there is an existential quantifier followed by a 

universal quantifier and followed by this formula at the bottom and we have this part also. 

 

This light blue part but this light blue part is also it is just an non-deterministic it is just n accepts 

x using the choices m. So, all this is something that is verifiable in polynomial time. So, given m 

choices it is just a matter of verifying whether this non-deterministic choices lead to acceptance 

and what I have written the bottom this part also it is easy to verify by a deterministic polynomial 

time machine.  

 

So, the entire thing is deterministic verifier with preceded by an existential and a universal 

quantifier. So, that is the proof that an arbitrary language in NP with with access to a SAT oracle 

is contained in sigma 2p. So, basically we write down what it means for a language to be 

contained in NP with access to a SAT oracle. Once we write that down basically it is a bunch of 

non-deterministic choices with a bunch of queries and responses once we write that down we can 

encode it in a way with existential universal quantifier followed by a deterministic polynomial 

time verifier. 

 

And that is about it that shows that NP with access to SAT oracle is contained in sigma 2P and 

we have already seen the other direction. So, this shows that sigma 2 is equal to NP with access 

to SAT oracle. And other things that I said earlier sigma i + 1 is contained is equal to NP with 

access to q SAT i oracle and likewise for pi i + 1 the proof follows very, very similarly. So, I will 

not get into that. 

 

And one thing that you may wish to note here is that no I think that; no, so I was just trying to 

see if the quantifiers could be alternated but it is not possible here because the choices have to be 

made before v 1 to v k. So, you cannot alternate the quantifiers and with that I have we have 

completed the description of how we can get the languages in polynomial hierarchy using the 

oracle turing machine description. 
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Now let me just summarize what we have seen in this week 4. We saw 4 or 5 different items the 

first thing that we saw was PSPACE completeness. So, we saw what is PSPACE what is 

PSPACE completeness, we saw the language TQBF and one point I felt I did not stress enough 

during the PSPACE lecture was that all of polynomial hierarchy is contained in PSPACE 

because the q SAT k which is the complete language for sigma k is can be viewed as an instance 

of TQBF. 

 

Hence all of the complete languages of all the class all the classes in the polynomial hierarchy 

can all be reduced to the complete language or cannot be reduced to TQBF which is PSPACE 

complete. So, that is one point; PSPACE completeness and the fact that all of polynomial 

hierarchy is contained in PSPACE. We saw many instances of how games or the generalized 

instances of specific games such as chess are largely mostly PSPACE complete. 

 

Because basically the game just boils down to analyzing a position drawing the game tree and at 

the end deciding a winner or loser is basically just a you can you can encode it in a Boolean 

formula. So, it just becomes like a fully quantified Boolean formula and hence it becomes a 

TQBF instance that is the reason why the generalized versions of games are PSPACE complete 

again the finite versions of games are all finite. 

 



And then there is either a yes or no or whatever answer like tic-tac-toe. After this we saw 

Ladner's theorem which stated the existence of NP intermediate languages if P is not equal to 

NP. So, NP intermediate are the language R is a space between NP complete and polynomial 

time. So, it says that such a space exists if P and NP are different it cannot be that P is there NP 

complete is there and there is a void in between this the space in between is filled with 

languages. 

 

And finally we saw oracle turing machines we saw the definition we saw the definition and we 

saw some we saw the turing reduction. And we saw how polynomial hierarchy the classes and 

polynomial hierarchy can be can be characterized as the as a result of the oracle turing machines. 

And one more point is that one point that I missed maybe I will just add in the middle sorry one 

point that I missed in the summary. 

 

One point I missed in the summary which I will include now is space hierarchy theorem 

basically g is little o of f then DSPACE of g is strictly contained in DSPACE of f meaning there 

is something that you can compute with f space that you cannot compute with g space this is a 

space hierarchy theorem. This was proved also using diagonalization much like time hierarchy 

theorem.  

 

So, this was the main concept and with space hierarchy theorem and PSPACE completeness 

space complexity space bounded complexity part is complete. Now we are venturing into other 

aspects lists such as loudness theorem and oracle turing machines. So, till space higher till space 

hierarchy theorem or still space complexity I was referring to Sipser now I do not think Sipser 

contained in many us I think it may contain some of these topics. 

 

But I think it is better to refer to Arora Barak or Papadi Mithra's book for the for the remaining 

topics or you can also Google it there are many other lecture notes excellent lecture notes where 

people have exposed on this. Of course I will also share whatever I have been preparing but in 

addition to that you can also search for other material. And if you want other specific; there are 

specific request for other specific material please feel free to write to me in the forum I will be 



happy to share. And with that I will conclude this lecture and conclude week 4 as well, thank you 

and see you next week. 

 

 


