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Hello and welcome to lecture 23 of the course computational complexity. In this lecture we will 

see oracle turing machines. So, we have seen reductions and oracle which are many-to-one 

reductions; many one reductions. Oracle turing machines are another way to view reductions 

using what is called an oracle. So, if you if you Google for the word oracle obviously there is this 

this software company called Oracle Corporation. 

 

But if you for the english meaning of the word oracle. So, this oracles were people who were in 

like some in ancient times or mythologies or whatever people who used to be maybe in a maybe 

in the courts of kings or maybe otherwise who used to provide kind of advice supposedly from 

the gods or from the future or some somewhat prophecy type of things. I have pasted a snippet of 

the wikipedia entry for the word oracle.  

 

So, they are people. So, oracles were people who were consulted in order to get like advice. So 

this is keeping this in mind let us try to understand the word what is what are oracle turing 



machines. So, oracle turing machines are turing machines which have access to an oracle what 

are oracles. So, oracles could be; so, we will we will first define oracle as a specific problem or 

specific language. So, it could be for instance I think in this lecture mostly we will use the SAT 

oracle. 

 

So you know we know that SAT is an NP complete language. So, a SAT oracle if you write 

down a set instance if you write down a Boolean formula the oracle will immediately tell you 

whether this formula is satisfiable or not. So, this is what the oracle does. So, you get the yes or 

no answer immediately and the correct answer. So, it is not just any yes or no answer. So, an 

oracle turing machine has the functionality or has a has a way to ask the oracle queries and get 

responses and can use these responses in its computation.  

 

So, it can make the SAT query many times if it has a SAT oracle it may not be a SAT oracle it 

could be any oracle. So, it could be a three colourable oracle. So, whenever you give it a graph it 

immediately tells you whether the graph is three colourable or not. So, the oracle is well it is an 

oracle. So, it does not take any time you give it, it immediately gives you the answer back. So, if 

you give the question it immediately gives the answer back it does not spend it take any time it is 

just one step.  

 

So, how is it like how is it formalized in this notion. So, it is a turing machine and it has a special 

tape called the oracle tape or the query tape. And on the query tape you the turing machine will 

write queries. So, queries or it need not write in one step it could be constructed in the sequence 

of many steps. But and so, if it is a SAT oracle it will write a certain instance. So, when the 

query when the SAT instances or the query is ready at some point it will go to the it will go to a 

special state. 

 

The special state being the q query this is the first one is a quick queue query denoted by q with a 

question mark in subscript some text books may say query. And then the next step the oracle 

gives the response how does the oracle give the response it will look at the query tape or the 

oracle tape. So, it does not need time to read or anything it is just one step and then it will 

immediately move the turing machine to the yes state or the no state.  



 

So, this again this yes state and the no state are also special state. So, all of these three are special 

states q query, q yes and q you know. So, if it is a yes instance it will move to q yes if it is a no 

instance it will move to q no. So, this is what it does. 
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And an oracle turing machine is a turing machine with these properties and this is the oracle 

could be any language like as I said it could be SAT it could be three colourable it could be 

subset some it could be like two colourable anything. So, depending on how powerful the 

language that corresponds to the oracle is you will find different we will find will find different 

results. So, how does it function? I have already described but I will just go through it again the 

oracle is the; the oracle corresponds to some language.  

 

So, here we are denoting that language as A. So, it has access to the A oracle the language A 

oracle. So in what I described the oracles possible are like it could be like I said SAT or three 

colourable in it any language can be used as an oracle and at some point this the string is written 

on the query tape or the oracle tape maybe I will just try to. So, there are turing machine tapes let 

us see this is the in the work tapes. 

 

Let us say these two are the work tapes and let us see the black one is the oracle tape. So, this is 

the oracle tape the other ones are work tapes or the query tape. So, it will keep filling up the 



oracle tape and then it will move to a state the oracle state q query or the query state. And then 

depending on what is there on the oracle tape it will move to q yes or queue no. So, if it is a yes 

sense it will move to q yes. This is what basically it will the oracle will check whether the string 

is a part of A or not a part of A. 

(Refer Slide Time: 06:55) 

 

This is what happens and such an oracle is called or such a turing machine is called if a turing 

machine m is there with access to an oracle A it is denoted by m with superscript A. So, it has m 

and it has access to the oracle A and we will see later we will see generalizations generalizations 

of this where we will see complexity classes with access to an oracle. So, we will define what 

they are we will soon see. And we can even define again this we will not quite do but we will we 

can we can do that if you see textbooks you may see this notation where complexity classes have 

complexity classes as oracles.  

 

So, where both the; subscript as well as the superscript are both complexity classes. So, let me 

just define the first one C 1 with access to a means. So, it is a complexity class. So, first we will 

use P superscript A to define it. So, basically you have a polynomial time deterministic 

polynomial time turing machine. So, what is P? P is a collection of languages decidable by 

deterministic polynomial time turing machines. 

 



But now P superscript a means it is the class of languages decided by deterministic polynomial 

type turing machines it is exact exactly what it was for P but with access to an a oracle but with 

access to an a oracle. So, this red underline part was not there for P. So, that is the access to the 

oracle. NP superscript A is again the same thing it is; so, what is NP? NP is a class of languages 

decidable but non-deterministic polynomial time turing machines NP superscript A is the class of 

languages that are decidable by non-deterministic polynomial time turing machines with access 

to an oracle A.  

 

So, again the red underlined part at the end of the sentence is what changes. So, this is what a 

complexity class superscript game means it is the same machines that form part of the 

complexity class but with access to an oracle A, c 1 superscript c 2 will not define now just to 

avoid making too many definitions this is the notation.  
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So, what is the reason for making this definition or what is the motivation behind this. So, we 

have seen many one reductions which is denoted A less than or equal to subscript m B. So, we 

although we did not define it in this course you must have seen it in the theory of computation 

course that in your undergrad. But the same principle applies for the polynomial time and log 

space reductions both of which we saw in this course.  

 



So, what was the principle there. So, the principle was that f sorry W is in A if and only if f of w 

is in B. So, basically we are transforming an instance of A into an instance of B. So, you are 

transforming A instance w to a B instance f of w and then depending and then using that to solve 

A. So, basically using converting a instance to B instance and then using an algorithm of B to 

solve A, correct. This is what we did in the two in the many one reductions or polynomial time 

or log space reduction.  

 

So, many one reductions is just the same thing except that there is no restriction on the time or 

space used by the machine but polynomial time and log space are specific cases of many one 

reductions. So, tuning reductions which is what we are going to define now or we is some. So, 

there is one issue or there is one specific limitation with the mini one reductions or log space or 

polynomial time reduction.  

 

So, basically you convert the problem instance and then use the decider for B to decide A. So, 

this can be viewed as asking the decider of B just once. So, you are asking you just convert it and 

then ask the decider for B is it in B or not is the converted instance in B or not. So, basically we 

are getting only one query to ask the B decider. So, why not ask the B decider many times. Do 

we get any advantage out of that? Do we get any benefit by allowing us the greater possibilities 

of asking B many times. 
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So that is what turing reduction does. So, turing deduction is basically an access to an oracle of 

B. So, when you have an access to an oracle you could ask queries to the oracle multiple times 

not only once. So, the question is; question here with many one reductions was sorry why cannot 

we query B multiple times and that is what is addressed by the turing reduction. So, basically we 

say A turing reduces to B if A is decided by a turing machine m with access to an oracle B or B 

oracle.  

 

So, we will see one simple example. So, one is which is very, very simple and maybe you might 

find you might feel it is silly but even this simple or silly example illustrates something 

illustrates the power of turing reduction over many one reductions. So, the simple example is that 

SAT complement is reducible to SAT using turing reduction. So, subscript less than or equal to 

subscript T indicates turing reduction. 

 

SAT complement is reducible to SAT. So, what does it mean it means that there is a machine 

with access to a SAT oracle that can decide set complement. So, given a set complement instance 

so, let us say given a formula phi it is in SAT complement if it is not satisfiable or in other words 

if it is not satisfiable it is in SAT complement which means it is a yes and sense of SAT 

complement. So, which means it is a no instance of SAT.  

 

So, basically all that we do is we ask phi to the SAT oracle if the SAT oracle says that it is a yes 

instance you make you answer no and this hat oracle says it is a no instance you answer yes. So, 

which is what is written here if the SAT oracle accepts your reject and if it rejects you accept. So 

basically you flip the output of the SAT oracle. So, you start with an input you just make this you 

just write down the input in the query tape ask the SAT oracle one query and flip the output.  

 

So, what we have shown here is if this is a machine m that does this we have shown that SAT 

complement is decided by may be that small is decided by is a language of this machine m with 

access to SAT oracle. And if you notice all that m is doing is just writing down the input in the 

query tape which can be done in linear time and then flipping the output. So, this is certainly 

linear time.  

 



So, m is a polynomial time machine a deterministic polynomial time machine. So, I can as well 

say that so we can actually say that SAT complement is in sorry that complement is in P 

superscript SAT it is in P with a with access to a SAT oracle because m is a polynomial time 

deterministic polynomial time machine. In fact it is not very difficult to see that even SAT 

maybe I will write it above it is not very difficult to see that even SAT is sorry SAT is in 

deterministic polynomial time with SAT oracle with access to SAT oracle. 

 

Because it is it is trivial because you want to solve SAT and you have access to the set oracle 

then all the machine has to do is just copy the query copy into the query tape and make the query 

and then accept or reject accordingly the same thing without flipping. And in fact now SAT is a 

NP complete language SAT complement is a co-NP complete language and we have seen that 

using turing reduction you can reduce a co-NP complete language to an NP complete language 

which was not possible if we just used polynomial time reductions as we had learnt.  

 

So, you see that turing reduction is actually more powerful even though this particular example 

was extremely simple you see that even the simple example illustrates this fact. So, SAT is an 

NP complete language and SAT complement is a co-NP complete language. So, in fact both of 

them are contained in P superscript SAT which means that the entire class NP is contained in P 

superscripts at P with access to SAT oracle. 

 

Because SAT is contained in P superscript squared because you could take any NP instance you 

can reduce it to a SAT instance and then ask the and SAT is in P superscript SAT. And co-NP 

likewise you can reduce it to S SAT complement instance and even that has been shown to be in 

P superscript SAT. So, both NP and co-NP are in P with access to a SAT oracle. And notice that 

P with access to a SAT compliment oracle is the same thing. 

 

Because if you want if you get yes no answer a SAT compliment will tell you whether it is not 

satisfiable or satisfiable it is the same thing that SAT oracle also tells you just that it answers the 

flipped output. So, you take the answer of the SAT oracle and flip it you get the SAT 

complement. So, P superscripts SAT which is equal to P superscripts SAT complement ah. So, 

NP and co-NP are both contained in that.  
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One maybe two exercises the first exercise is to kind of see how or to for you to see how 

powerful is this idea of making multiple queries to a certain oracle can be. Suppose you have a 

SAT oracle which tells you yes or no given a SAT instance whether it is satisfiable or not. Now 

try please construct an algorithm which given a Boolean formula if it is not satisfiable then you 

just output it is not satisfiable. 

 

If it is satisfiable then actually the algorithm should provide and should output an assignment a 

satisfying assignment for the formula. So, if given phi it should tell if i is satisfiable it should 

give it should tell a satisfying assignment for the formula phie. So, try to construct this using a 

SAT oracle and you will nee and what I am telling you now is that you will need to make 

multiple calls, calls to the SAT oracle, multiple queries to the SAT oracle. 

 

But still you can find it. And the idea used in this is it is not that difficult to find but if you think 

hard you can find it. And the idea used in this will be useful in for a theorem that we will see 

later in the course. So, this the idea used here maybe I will just tell the name of the idea it is 

called self reducibility. But anyway you do not need to know what self reducibility is etcetera to 

answer this exercise just try to see.  

 



So, maybe what the first step is let us say you given a formula phi you just give phi to the SAT 

oracle. So, SAT oracle will say whether it is satisfiable or not. If it is not satisfiable you are done 

because there is nothing to be done. If it is not satisfiable there is no satisfying assignment. If it is 

not satisfiable you are done. If it is satisfiable then you have the task of producing a satisfying 

assignment. 

 

Think how you will go about this. So, remember the SAT oracle can take any formula any 

instance of status satisfiability as an input. So, what instances can we give think about this. 
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Next exercise is to show that if A is in P then the class P with access to an A oracle is P itself. 

So, we saw that P with NP is contained in P with access to a SAT oracle and P and co-NP are 

both contained but however that was for SAT if A is in P then P with access to an A oracle is 

actually P itself. So, obviously P is contained the this direction is easy P is contained in P with 

access to an A oracle.  

 

So, usually just again this is one of these things I will just say whenever you have to show that 

two sets are equal two classes here in this case are equal one of the standard ways to go about 

doing this is to show that the left hand side is a subset of the hand side and the hand side is a 

subset of the left hand side. So in this case P is obviously contained in P with access to an A 

oracle because P is well P itself.  



 

So, even without accessing even without accessing the A oracle we can say P is. So, air equal 

only adds more power but the other direction P with access to A oracle we have to show that it is 

contained in P this will be again this is not very difficult to see because A itself is in P or A is 

also a polynomial time. A is also decidable in polynomial time. So instead of asking the oracle 

this machine itself can run the algorithm for A.  

 

So, that is why the second the second the other direction P with access to A oracle is contained in 

P that is how that comes about that is a slightly; that that will require a bit of explanation but the 

other one is even easier and yeah that is what I want to say in this mini lecture. Just define oracle 

turing machine which is a special type of turing machine which allows us to ask an oracle some 

queries. 

 

And I defined m superscript a as a machine m with access to an oracle A and P with superscript 

A is the complexity class machines in complexity class B with access to an oracle A. Likewise 

NP superscript A we define turing reductions as instead of reducing it to that language you can 

have oracle access to that language. So, turing reduction is A to be released to B there is an 

oracle turing machine m says that A is the language of m with access to oracle B. 

 

And finally some simple inferences using for these complexity classes and the exercises and that 

is all I have for lecture 23, thank you. 

 

 


