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Hello and welcome to lecture 18 of the course computational complexity. In the previous lecture 

we were seeing the proof of the Immerman and Szelepcsinhi theorem that was that NL is equal 

to co-NL. So, we saw how given the count of; so, we wanted to show that path complement is in 

NL that is given a graph s, G and s and t we should be able to verify or we should be able to 

show using an NL machine that there is no path from s to t.  

 

So, we saw how to do this given the count of reachable vertices from s. So, given the count of 

reachable vertices from s let us say 10 or 20 or whatever we could guess 20 vertices reachable 

from s none of which being t and we can verify that these 20 vertices are indeed reachable from 

s. So, now we have to see how to get this count using the NL machine. So, the count of reachable 

vertices from s. So, that part we did not see in the previous lecture. So, let us see that.  
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So, first step we need to see what does it mean. So, now how does what does it mean to say an 

NL machine non-deterministic machine computes a function. So, here we are trying to see how a 

non-deterministic turing machine computes the number of reachable vertices. So, we say that an 

NL machine or non-deterministic machine correctly computes a function if on each computation 

path it either rejects the computation path or correctly estimates the function.  

 

So, let us say the function value is let us say 100. So, let us say if the machine has a 4 

computation paths from root to all of them. So, it could reject every path and one computation 

path has to come at least one computation path has to output the correct value. So, it is not 

possible it is not to have. So, this is ok. So, even this is ok, like you could have something like 

this R 100, R 100 this is however it you cannot have this that I am drawing on the right side you 

cannot have R 100 R let us say 200 this is not ok because the correct value is 100.  

 

So, in no computation path could you have the wrong answer. You can even this also does not is 

not useful as you may guess if all the paths rejected it is also not useful. So, it should have at 

least one path which goes to the which outputs the correct function value it could have more than 

one path that outputs the correct value but everything should be reject or the correct value. This 

is the meaning of a not this is how a non-deterministic machine should compute a function. 

 



Each path should either be a reject or estimate the correct function value plus at least one path 

should give us the correct function value. If all of them are rejected it is of no use.  
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So, now to compute c. So, this is the definition of what we are trying to attain. So, we want an 

optimistic log space bounded machine that has at least one computation path that leads us to the 

number of reachable vertices from s . So, how does how do we compute the number of reachable 

vertices from s. So, what we will do is to have this kind of step by step process. So, we will 

define a sequence of sets called A 0, A 1, A 2 and so, on. 

 

A 0 is nothing but the number of vertices or the set of vertices reachable from s in 0 steps A 1 is 

a set of vertices reachable from s in one step A 2 is a set of words as reachable from s in 2 or 

smaller than 2 steps and so, on. So, A 0 is nothing but the set s itself right because if it if you are 

not allowed any steps then only the only vertex that we can reach from s is s itself. We can reach 

in zero steps. A 1 let us say this is s and s has 3 vertices or three neighbours then A 1is all of this 

this is A 1.  

 

So, A 1 has 4 vertices whereas A 0 has only one vertex right and A 2 has perhaps more vertices. 

So, A 0, A 1 etcetera are kind of a 0 is contained in A 1, A 1 is contained in A 2 because each 

one we say it is the number of A i is the number of word is a set of vertices reachable from s in i 



steps or lower and corresponding to A 0 A 1 A 2 we could also have C 0 C 1 C 2 and so, on 

which is the size of each of these.  

 

So, C i is size of A i and what we want is a total number of vertices reachable from s. So, if any 

vertex is reachable from s there is a there is a path of length at most V where V is the number of 

vertices it cannot be longer than V overall we have V vertices. So, any path has to be of length at 

most V in fact V - 1 would do the number of steps cannot be more than V - 1. So, A subscript or 

C subscript V will give us the actual number of vertices reachable from s.  

 

So, our goal is to compute C subscript V which is the num which will be the count C. So, and 

again so, we do not compute C subscript V in one shot what we will do is. So, we know C 0 

which is 1 and C 1 can be computed from C 0, C 2 can be computed from C 1, C 3 can be 

coupled from C 2 and so, on that is the approach that we will follow. So, let us see how using a 

non deterministic log space machine we can compute C i + 1 from C i. So, we know C 0 is 1 

then we will see how to compute C i + 1 from C i. So, for each of the vertices V, so, now we are 

going to see how to compute C i + 1 from C i.  

(Refer Slide Time: 07:12) 

 

So, for each of the not vertices V the non-deterministic turing machine it verifies if it can be 

reachable in i + 1 steps or less. So if we can guess a path that is that that of i + 1 of length i + 1 or 

less than good we know that is reachable in i + 1 steps or less. But how do we verify that a vertex 



is not reachable in i + 1 steps because maybe just we just guess the wrong path. Here again we 

will use the trick that we saw in the previous lecture.  

 

So, notice that when we compute or when we attempt to compute C i + 1 we already know C i. 

So, if a certain vertex if ever let us say this is A i and. So, let us say this is A i + 1. So, all the 

vertices let us say all the vertices that are in A i + 1 but not in A i there will be a neighbour or 

there will be a vertex let us say u is or V is in A i + 1 but not in A i there will be some use in A i 

such that u V is an edge. 

 

Because if otherwise it like if V can be reached in i + 1 steps then it has to have a predecessor 

that can be reached in i steps. So, in order to verify that let us say some vertex w cannot be 

reached in i + 1 steps how do we verify that it cannot be these i + 1 steps. So, what we will do is 

to actually show that we have explored all the vertices in A i. We have explored all the vertices 

in A i . 

 

Let us say we know that A i has 100 vertices we will say that we have x we have identified all 

these 100 vertices in A i and none of these vertices in A i were found to have an edge to w. So, 

this edge did was not found. So, we know that there are hundred words and we found the 100 

vertices none of them had an edge to w. So, that means w is not in A I + 1. This is how we will 

establish that a vertex is not in A i + 1.  

 

So, for that we will have to verify all the vertices in A i. So, this is the way we will do it. So, for 

each vertex each we need to either verify that it is reachable or we need to verify that it is not 

reachable. So, how do we verify that is not reachable we need to actually reconstruct the entire 

set A i and show that none of these vertices has an edge. So, for each V we have to check that we 

have to check the all the elements that are in A i. 

 

And check whether there is a predecessor in A i such that either the predecessor had an edge to V 

or the predecessor was V itself. So, we could be in A i also.  
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So, the challenge here again is that we cannot guess the entire set A i or we cannot guess the 

entire set and write it down somewhere because A i could have let say n by 2 elements and that 

storing that that requires order N space or even at least order N space. So, we cannot guess the 

entire set A i and write it down somewhere. So, we have to kind of like we have seen before in 

the case of space boundary classes we have to make these guesses in a serial fashion by 

remembering only the little things that are necessary.  

 

So, whatever is necessary just that is what we will remember. So, here what we will remember is 

only the count and we will see how to using the count we can verify that. So, this is the algorithm 

more formally more formally. So, let us see what the algorithm is. So, first we say C 0 is equal to 

1 which is 1 vertex is reachable from s in 0 steps or less. Now we are going to see how for each i 

we are going to compute C i + 1 from C i.  

 

So, for each what for each i this loop the for loop in step number two is saying how to verify how 

to compute C i + 1 from C i. So, we start with C i + 1 being equal to 1 because s is always in all 

these A i + 1. So, remember A i + 1 is a set of all words is reachable in i + 1 steps are less and C 

i + 1 is the size of A i. So, always s is a member of A i or A i + 1 for all i. So, we can assume C i 

+ 1 and start from s start from 1. Now for each node each vertex that is not equal to s we check 

whether there is a path from s to u.  

 



So, what we do is we guess a predecessor sorry we do not guess a predecessor we for each u in 

the graph we check whether u can be reached in i steps or less and for that we use check path 

which we defined in the previous lecture which is just verifying whether s to u is reachable in i 

steps. So, we are trying to build the set but we are not building the set and saving it somewhere 

we are just going one by one and verifying the count. 

 

And at each point whenever A u is found to be reachable from s and i steps we are checking 

whether u has V as its out neighbor or V u is also. So, there is a small typo here or u equal to V. 

So, if one of these things happen then we know that V is also reachable in i + 1 steps if V is not 

reachable in i + 1 steps we actually need to make sure that we have covered all our possibilities 

that all the vertices that were supposed to be reachable in i steps or have actually been identified. 

 

So, whatever I said over here we have indeed computed all the vertices in A i. So, that is done in 

step number 13 that have we checked that uh. So, we are we are keeping a count of for each 

vertex that was identified to be in A i that running count is d and we are checking whether d was 

equal to C i. So, we already know from the previous loop that C i was computed C i is a count of 

vertices that are reachable in i steps or less.  

 

So, we are checking whether we found d or is a running count d is actually equal to the actual 

count of the vertices C i or the number of word is a C i if it is not equal that means some things 

were not reached some count did not get checked. So, we reject the computation path entirely but 

there will be a computation path that will actually go through the identify the correct number of 

vertices and we can using in that computation we will correctly identify that V was not reachable 

or V was reachable.  

 

So, suppose we found a vertex V to be reachable then again we start from step 5 which is that d 

equal to 0 which means we again start from zero for each we are again estimating each vertex in 

A i. So, every time we are for each vertex V we are re-estimating or recounting the the set A i. 

So, we are doing a lot of computation again and again redoing a lot of computation but that is the 

only way out because our space is very limited and we are not bounded on time.  

 



So, we can afford to do the recomputation because we are only paying by space in this case. So, 

we start from. So, in this loop starting from line 2 what we are doing is that with the assumption 

that we have C i using that and assuming that it is correct we are counting or we are estimating C 

i + 1. So, if we correctly identify the set A i say this is A i and then we know exactly what are the 

vertices that are reachable in one more step from A i. So, we can correctly estimate C i + 1. 

 

To check that we have correctly counted correctly accounted A i all that we need is the. So, we 

do not keep track of A i we do not save the set A i anywhere instead we just save the count. And 

every time we regenerate A i and we check whether the count is correct? If the count is correct 

we can be assured that this computation is correct. So, there will be a lot of parts leading to reject 

but that is ok because there will be some path at least one path that will lead to the correct 

computation path meaning the computations. 

 

And this loop runs till V - 1. So, which means that at the end we will have correctly computed V, 

c V which is equal to; so, c V is equal to the actual count of reachable vertices from s if we have 

not rejected. If in any stage we if we return a value that will be correct and what are the things 

that we need to store here? We need to store i we need to store C i we need to store C i + 1 we 

need to store V we need to store u, C 0 not C 0, i, C i + 1, d, u, V and we also need C i. These are 

the things that we require. 

 

And notice that just to store C 0, C 1, C 2 up to C V let us say the number of vertices is n these 

itself are n values. So, we cannot even store these n values because n values itself are n things we 

do not have in order N space. So, instead what we will do is that once we compute C 0 or once 

we compute C 0, C 1, C 2 and then C 0 can be forgotten and C 1 can be forgotten only we only 

need C 2 to compute C 3 and once we have C 3, C 2 can be forgotten and once we have C 3, C 4 

C 3 can be forgotten. So, we only need the previous value C i to compute C i + 1 and once we 

have C i + 1 we can forget C i.  
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So, we do not store all the C i's together we only need the latest the previous value and the 

current running value and each one of these numbers are is either a vertex or a count that is no 

more than n. So, each one of them requires only order log n space. So, finally the function 

returns C V if it has not if it has not rejected it will correctly compute C V. Again this algorithm, 

so, that is the com that is pretty much the Immerman and Szelepcsinhi proof. 

 

This proof is not so, straightforward. So, because it it has this intricate use of non-determinism 

and reusing recomputing again and again in order to save space this idea is you being used again 

and again. So, there are two or three key idea ideas. One is computing again and again to save 

space and then non-deterministically guessing a sequence of vertices right and then for each one 

choosing whether it is in the set or not in the set or non deterministically guessing a sequence to 

find a path from ever s to t.  

 

So, for each vertex in the path is guessed one by one. So, these are the tricks that are used in this 

proof but it is very, very instructive to understand how non-determinism works and also how 

space bounded computation works. So, what I am saying is that if there are parts that you cannot 

follow please do not feel disheartened it is only natural because this proof is a bit involved. 

Please you can you can read Sipser or this notes that I will share and also I had also typed up a 

pdf sometime back. So, I can also share that pdf um.  

 



So, the result is that NL is equal to co-NL uh. So, we do that by it is called Immerman and 

Szelepcsinhi theorem we do that by showing that path complement is in NL which is to show 

that we should be able to decide using an NL machine that you cannot reach t from s.  
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So, first we saw how to show this using an NL machine given the count of what is reachable 

from s and in this lecture we saw how to come up with that count. So, we came up with that 

count by by have having these counts of the successive sets A 0 A 1 A 2 etcetera where A 0 is a 

set of words is reachable in zero steps from s, A 1 is set of course is reachable in one step from s, 

A 2 set of versus reaching two steps from s and so, on. 

 

And most of the algorithm was about how to compute A i + 1 from A i and we need to store a 

bunch of variables maybe 5 or 6 variables and each of one of them being taking at most log order 

log n space maybe it can be erased. So, we have seen some complexity classes. So, just uh. So, 

we could have a short recap let us say let us say a or let us say a subset of B this is denoted by; 

so, I am using a right arrow to denote containment. So, let me draw the status of the complexity 

classes as we know it.. Now in the course, so, we know that L is contained in NL. So, I am using 

the right arrow to denote containment and we know that NL is contained in P. We do not know 

whether LN is a strict subset of L is a strict subset of NL we do not know if NL is a strict subset 

of B and we saw P is contained in NP. 

 



We saw P is contained in co-NP but between NP and co-NP we do not know how they interrelate 

we saw NP is contained in sigma 2 sorry sigma 2, co-NP is contained in pi 2, co-NP is contained 

in sigma 2, NP is contained in sigma pi 2 sigma 3 pi 3. So, notice that if P is in NP and NP is in 

sigma 2 it automatically implies that P is in sigma 2 and so, on. So, you can write pi 4 sigma 4 

everything and so, on. 

 

And we will see that all of these are contained NP space which is polynomial space D space of 

polynomial and we already saw in the lecture where we talked about Savitch’s theorem that in 

the case of space complexity P space and NP space are the same. So, P space is same as this and 

another point is that NL in this lecture we saw that NL is equal to co-NL. So, this is what we 

know as of now and none of these arrows that have drawn here we do not know whether any of 

them are strict or equal.  

 

So, L equal to NL or L is a strict subset we do not know NL equal to P or a strict subset we do 

not know P strict subset of NP or equal we do not know NP sigma 2 we do not know and so, on 

anything NP pi 2 we do not know. The only equal equality that we know is P space is NP space 

NL is equal to co-NL. The only other thing that we know is that the left endpoint P space sorry 

left end point is L and the right end point being P space. 

 

These two are not the same because L uses log space and P space uses polynomial space. So, just 

like we had time hierarchy theorem we will also see a space hierarchy theorem in the next week's 

lectures. Where we will show that if there are two like if two sufficiently separated functions D 

space of the first function is a strict subset of D space of the second function as long as they are 

sufficiently separated.  

 

So, log space is a strict subset of P space. So, we know that L is not equal to P space but then 

none of these individual arrows we know whether they are strict or not. This is just food for 

thought there is so, much that we have learned. So, far but even in the world of; even the most 

up-to-date state-of-the-art research we do not know so, many things about these complexity 

classes and that is what makes this an interesting field.  

 



There are so, many things that are still to be known and still being studied and understood with 

time. And with that thought I will stop this lecture I will end this lecture 18 and thank you. 

 

 


