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Hello and welcome to lecture 17 of the course computational complexity. In this lecture we will 

see an important result in the space complexity theory called which is a result by Neil Immerman 

and Robert Szelepcsinhi when they proved that NL is equal to co-NL this was proved in 1987 

and these two people independently proved these the same result. So, in these times much like 

Cook Leven independently proved from the US or Canada and the other person in Russia. 

 

Similarly Neil Immweman was in the western side of things and Robert Szelepcsinhi was in the 

eastern side of things and they independently proved the result NL equal to co-NL this is just like 

Savitch’s theorem where we do not have an analogous result in the time complexity classes this 

is also a result where we do not have an analogous result. Because an analogous result would 

have been NP equal to co-NP but unfortunately we do not have that result. 

 



And so, it was believed to be the opposite that NL and co-NL are distinct classes but then it was 

a bit of a surprise when somebody came along and showed that these two classes were the same. 

So, let us see how the proof goes.  
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So, we have already seen in the previous lectures that path is NL complete. So, what is path? 

Path is the problem of given graphs G and designated vertices s this s and t is there a path from s 

to t in the graph G that is a problem path. Now what we will show is that path is in; so, we have 

already seen that path is NL complete and then we will show that path complement is NL 

complete. So, the whole proof is going to show that path complement is in NL.  

 

So, let me at the beginning itself let us say let us see why this showing that path complement is 

in NL is sufficient to show the result that NL is in NL is equal to co-NL. So, this is because since 

path is an NL complete language, since path is NL complete the complement of path is co-NL 

complete. So, just like we had SAT complement being co-NP complete path complement is co-

NL complete. Now if we show that path complement is in NL which is what we are trying to 

show we are actually showing that a co-NL complete language is in NL which means by 

reduction anything that is in co-NL can be can be accomplished or can be reduced to n.  

 

So, this implies that anything that is in co-NL can be reduced to NL or rather co-NL is contained 

in n l. So, now we want to show energy equal to co-NL. So, we have one direction of the proof 



and for the other direction if path complement is in NL it also implies that path is in co-NL. 

Because anything that is in NL its complement is in co-NL. So, the complement of path 

complement is simply path and path is an NL complete language.  

 

So, if that is in co-NL anything in NL can be reduced to co-NL because it is an NL complete 

language. So, anything can reduces anything in NL reduces to path and that is in turn shown to 

be in co-NL. So this shows that NL is contained in co-NL. So, we first showed that path in NL 

implies co-NL is in NL and then showed that path is in an or sorry path complement is an 

implies that co-NL is in NL is contained NL and then we show that path complement is an 

implies that NL is in co-NL.  

 

So, together these two implications or these two containments show that NL is equal to co-NL. 

So all that we have to do is to show, now show that path complement is in NL this is what we 

will show for the rest of this lecture because this is enough as we have already seen to show that 

NL is equal to co-NL.  
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So, what is path complement let us just write it down path complement. So, path is G, s, t such 

that such that G has a directed path from s to t. So, path complement is G, s, t such that G has no 

directed s, t path. So, there is no path from s to t in G. So, that is a complement. So, just one 

small point about complements maybe it is a good time to make that point. So, whenever I say 



the complement of a language we are just taking the opposite but there are a lot of inputs that 

that are not even conforming to this particular specification and we usually do not refer to those 

inputs at all.  

 

So, it is enough to restrict because these are usually easy to see that they are not in the correct 

format. So, this can be usually very easily decided. So, when I say path complement I am only 

talking about inputs in the correct form G, s, t and since path contains all the G, s, t such that 

there is an s, t path in G path complement contains all the G, s, t such that there is no s, t path in 

G. So, now to show that path complement is in NL we want an NL machine to show that there is 

no path.  

 

So, in a way you want an NL verifiable certificate just like we had certificates in NP. Now we 

want an NL verifiable certificate that shows that there is no path from s to t. How can somebody 

produce a certificate that there is no path from this vertex to this vertex. If I want to say that there 

is a path from this vertex to that vertex then I can tell you the path and you can verify that this is 

a correct path. So, that is okay. 

 

However how can somebody tell you something that you can use to verify that there is no path. 

So, that is the challenge here. So, that requires some some intelligences some cleverness some 

smartness. So, first we will actually in this particular part of this lecture we will answer a slightly 

different question. The question being given c where c is the count of the number of reachable 

vertices from s.  

 

So, let us say from s you can reach 10 vertices. So, c is a number of vertices reachable from s. 

Now can we show that t is not reachable from s. So, again it is the same problem and exactly the 

same problem except that we are giving an extra bit of information which is the count of 

reachable vertices from s. Suppose somebody is giving us that. So, let me ask you a question 

suppose the count of reachable vertices from s is 1.  

 

Now is t reasonable? Notice that s is always reachable from itself. So, if the number of reachable 

vertices from s is just 1 that means the only vertex reachable from s is itself. So, t is not 



reachable. So, suppose we know s has a neighbour let us say u and I say that the count of 

reachable vertices is 2. So, then now we know that the reachable vertices are s and u. So, these 

two account for the count given. So, that means no other vertex is reachable.  

 

So this is the idea that we will use. So, what we will do is to if a count of 10 is given we will 

show 10 vertices that are reachable from s and actually verify that they are all reachable from s. 

So, we are converting the non-reachability into a reachability problem. So, we want to show t is 

not reachable. So, instead we will show 10 vertices that are reachable. So, and because we know 

that there are exactly 10 vertices reachable from s these must be the 10 vertices. So, t cannot be 

one of these 10 vertices. So, t is not reachable.  

 

So, this is how we convert the non breachability into a reachability problem or non reachability 

verification to reach a verification of reachability. So, this is the high level idea. Now let us see 

the details. So, given G, s, t and c where c is the count of the vertices reachable from s we need 

to verify that t is not reachable.  
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So, perhaps the NL machine what it can do is to. So, now since we have non-determinism the 

cases that I explained had was easier cases. So, now we want to guess c vertices that are 

reachable from s. So, now we have non-determinism what we can do is that we can guess the c 



vertices that are reachable from s and verify that they are they are indeed reachable from s. So, 

the NL machine can non-deterministically guess c vertices and verify.  

 

So, the non-determinism is used to guess and then verification can be done easily verify that they 

are indeed reachable from s and one small point when we guess c vertices. So, this none of these 

should be t, c vertices none of which should be t because if we try to show that if t is one of these 

vertices that means the t is reachable. So, then that means that this is opposite of what we want to 

show.  

 

So, all the guest vertices none of it should be none of it should be t. So in other words what we 

are trying to show is that to show that t is not reachable which is what I have written here in the 

side we will guess we will show the existence of c vertices none of which is t none of which are t 

and that all these vertices are reachable. So, to show that t is not reachable we will show c versus 

other reach.  

 

Now again there are there are implementation details here all this we want to do in non-

deterministic log space we want to show path complement is in NL. So, we cannot simply guess 

10 vertices or something c vertices because c could be like maybe there could be n by 2 vertices 

reachable from s and just to write down the n by 2 vertices will require order in space at least 

order in space. So, we cannot have the NL machine just guess all the n by 2 vertices note them 

down somewhere and then and then go about verifying them this has to be done in a way. So, 

that no the space is not the space usage is is carefully maintained. So, how do we do this?  
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So, what we will do is we will guess a sequence of vertices and ascend when each one of them is 

guessed to be in a guessed to be a vertex that is reachable from s we will also complete the 

verification part. So, all that we will do is to keep track of the counter and we will go about these 

it is choosing these vertices in an order, so, that we will not end up guessing a vertex two times. 

So, we go. So, each vertex is either picked or not picked once it is picked we will verify that 

there is a path. 

 

If there is if this cannot be verified then this whole computation thing collapses because it is non-

deterministic we want to show that path complement is in NL which is not deterministic then all 

we need to do all we need to do is to show some way of guessing and correctly verifying. Some 

sequence of guesses lead to a correct verification this is all that we need to do. So, what we have 

is a counter that iterates through all the vertices. 

 

A counter that iterates through all the vertices at each vertex, so, the counter could be let us say 1 

to n if there are n vertices. So, each vertex is a number from 1 to n. So, when you are at each 

vertex the machine can guess whether it is part of a reachable vertex from s or not. So, let us say 

the first vertex is guessed to be reachable. If it is guessed to be reachable we also guess a path 

from s to that vertex s to vertex 1. And once we get a path we can verify that this path is a correct 

path.  

 



If vertex a vertex say vertex number 1 is guessed and correctly verified we increment a count. If 

we guess if anywhere our guesses go wrong. So, even in guessing whether it is reachable or in 

verifying then that whole computation path is rejected if there is any mismatch anywhere that 

whole computation path is rejected. All that we need is some computation path that leads to 

correct verification it there could be 100s and 1000s of other paths other computations that could 

lead to reject that is okay. 

 

All we need is one correct path there is a path I mean computation path. So, at each instance we 

guess whether a vertex is reachable let us say vertex 10 is reachable we correctly guess a 

computation correctly guess a path from s to that vertex 10 and verify it and then the counter is 

incremented. If we guess if we cannot correctly verify it or so, that can happen due to reasons 

either the guest path is incorrect or the vertex is also if the vertex is reachable but the path is 

incorrect or the vertex itself is unreachable. 

 

Whatever be the case we the entire path entire computation is rejected is terminated. But if there 

is there will be a correct set of since we know c the number of guesses number of words that are 

reachable there will be a sequence of guesses that will lead to correctly identifying these c 

vertices.  
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So, and since t is not reachable if t is not reachable we will correctly identify this c vertices and 

none of it will be t and we will we will accept because we need to show that t is not reachable. 

So, if t is not reachable that needs to accept this is what we will do this is a high level idea. So, 

let me just say it once again. So, and there is this part. So, this is a small bit. So, d is initial d is 

the count of the vertices reachable from s. 

 

If we assign it to zero. So, I am talking about item number one here we initialize to zero and for 

each vertex u in the graph we either select it to be reachable or we select it to be an unreachable 

vertex if it is selected to be a reachable vertex then we call the function check path of G, s, u, V 

check path what it does I will just briefly explain now and later we see it in detail. It will check 

whether there is a path from s to u that of length at most V size of V this is what it does.  

 

So, if it is a vertex that is reachable then we will guess it correctly and we will call the function 

and if at any point the guessed vertex if u is guessed to be reachable sorry t is guessed to be 

reachable then the whole computation path is rejected because t is something that we do not want 

to reach. If at any point t is found to be reachable we do not proceed with that computation and 

for every vertex that is correctly verified to be reachable we increment d. 

 

At the end we see if we have not rejected the computation then we see what is the count? Is the 

count actually equal to the actual count that is given to us which is c. So, recall we are given G, 

s, t and the actual count of vertices reachable from s which is c. So, we check whether we 

guessed c vertices that are reachable from s. If we guess the c vertices that are reachable from s 

none of it being t we accept otherwise we reject.  

 

So, if t is not reachable this will accept exactly when t is not reachable and we are able to guess 

the vertices that are not the that are the vertices reachable from s. Because if t is reachable then 

the count of words is reachable from s will include t and the algorithm will break because we 

also check that none of the words is reachable r equal to t okay. So, what is the space usage here?  
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Let us see what is required to be saved here d is a counter that needs to be saved and u is a 

counter u is a vertex you need to check for each vertex u equal 1 to 3. So, that is also a counter. 

So, d and u are the things to be that occupy space. We also call the function here check path. So, 

the check path will use some space but that we will worry about when we actually see the 

function check path.  

 

So, right now we do not let us not worry about that because we have already seen that calling a 

function if a program if a machine runs in NL space or logarithmic space and you can always 

make a function called the function call may also be NL space and you can always do that this 

we have already seen at the beginning when we showed the why the log space reductions make 

sense. So, you can combine these but anyway the check path function we will see very soon.  

 

So, the only things that we need to save here are u and d, d is a counter of length at most c. So, of 

c which is a at most c and c is a number less than the number of vertices in the graph which is 

less than n, u is also a counter that will go up to at most n. So, both of them are numbers at most 

n so, can be represented in O log n bits. So, this total space usage is O log n. So, just to illustrate, 

so, suppose this is s and c is 8.  

 

So, which means there are 8 vertices reachable from s including itself. So, so these 8 vertices are 

guessed and we correctly get guess these 8 vertices and verify the paths. So, now this means the t 



is not reachable because these are the exactly the set of vertices that are vertices that are 

reachable from s. So, what we are doing here is to like first we guess the list of 8 vertices 

reachable from s and this is not done in a collective manner. 

 

We not guess all the words is reasonable we just do that one by one and then for each such vertex 

v that is guessed to be reachable let we guess the path from s to b and this is not done in the code 

that we showed right here because that is being done by the function check path. So, here what 

we do is we one by one we guess each vertex to be reachable or not reachable if it is reachable 

we guess the path. 

 

And if any of these does not work out either we guess an unreachable vertex to be reachable or a 

reachable vertex to be unreachable or t to be reachable or we guess that everything correctly but 

one of the paths from s to a vertex p is incorrectly guessed anything of this happens that 

computation path is cancelled. All that we need is some computation path gets all the cases 

correct and that is enough for us.  

 

So, then we can verify that t is indeed not reachable from s by guessing the correct set of vertices 

that are reachable from s. Now what remains is to see the function check path how do we check 

that a vertex there is a path from s to u in V steps.  
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So, check path checks if there is a path from s to u in the graph G with at most v edges. So, again 

I have already kind of explained what it does but. So, this is a very simple subroutine there is not 

much high level ideas here all we do is something like this. So, suppose s is this and u is this we 

just guess a sequence of vertices let us say w 1 w 2 and something w 1, w 10, w 6 some 

something like that and we keep moving ahead and we check if we reach u at any point. So, what 

we do is we guess a sequence of vertices. 

 

Let us say w 1, w 10 something. So, for each successive pair we check whether it forms an h. So, 

what happens is initially we call s to be equal to w and sorry w prime and we guess a w. So, let 

us say the guess w is w one and then check whether there is an edge from w prime to w. So, now 

in this case s is w prime, w 1 is w. So, there is an edge, so, fine. Now what we do is we rename w 

to be w prime not just that we also increment a counter.  

 

So, now we have verified one edge we increment the counter to one. So, the counter here is the 

counter that is used here is j. So, j is equal to 1. Now . Now this is w prime we guess another w. 

So, let us say this w 10 is decide guessed check whether there is an edge from w prime to w. So, 

w 1 to w 10 indeed there is an edge. So, j is incremented to 2 and w is again renamed to be w 

prime. 

 

Now let us say we guessed w to be let us say some other vertex let us say some w15 from which 

to which there is no edge. In this case we will check that there is an edge and we will not see an 

edge. So, this computation path gets rejected this entire computation goes. But the point is if 

there is a path from s to u we will there will be a sequence of guesses that will help us verify that 

s u is reachable from s. 

 

Finally why do we have the counter here that is because we know that the we are checking 

whether the path is of length at most k check path is called for G, s, u, k whether there is a path 

from s to u in G of length at most k. So, here we use at most here we use V but we will we will 

see that we will need this for other variables that is why it is given as an argument. So, we are 

trying to see whether there is a path of length at most k. 

 



In fact there is a small typo here no there is no type ok sorry we not eternally secretly non-

deterministically guess the next vertex and keep moving ahead. If there is a path of length at 

most k we will find it.  
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So, if the counter, so, this is this part is written for size V, k is equal to size V. So, maybe I will 

just modify it slightly. So, what is check sorry what is check path G, s, u, k and rejective counter 

becomes greater than k. So, when counter becomes greater than k means there is we are 

exceeding the limit. So, we will stop. So, this is all that we do, if we keep progressing this 

pointers w prime ahead with incrementing the counter and it we accept if the counter j does not 

cross k and w prime reaches the target destination u.  

 

So, if at any point w prime or w is equal to u then we accept otherwise we reject. So, there are 

two things checked here whenever w is guessed we reject if there is no edge from w to w prime 

w and if w is not equal to w prime. If w is equal to w prime then it is fine that that leads to an 

accept. So, basically this is the algorithm to check whether there is a path from s to u of length at 

most k.  

 

So, you guess a w we reject if w prime and w do not form an edge and w prime is not equal to w. 

So, in other words this is the using this de Morgan's laws it is nothing but w prime w is is an 

edge or w is w prime this whole thing the negation of this whole thing is what we have. So, we 



are if either of this is the case we reject if the opposite of this happens the complement. And we 

accept if we reach w equal to u otherwise we reject when the count of the the steps crosses k.  

 

So, what are the things that we need to keep track here the things that we need to keep track is w 

prime w which are variables either of and then j which is a count. The count will be less than at 

most the number of vertices n and even for w and w prime these are labels of length of which it 

can be at most n if you use the numbers to name the vertices. Even if you use something else it 

will be something similar. 

 

And each one of them is at most n and can be can be written in a log n space register or memory 

location. So, each of them require login space. So, total we need o log n space there are constant 

number of items that require log n space again we use non-determinism but are in log n space. 

So, we have seen given a count of number of vertices reachable from s how to verify that t is not 

reachable from s. 

 

By guessing a set of vertices reachable and then verifying that they are indeed reachable and 

none of these vertices are t we verify that we verify that t is not reachable. So, now the question 

remains we started with this assumption how do we that the number of words is reachable is 

given but. Now how do we compute initially the original problem statement did not have this c 

provided to us.  

 

Now how do we estimate c or how do we come up with c using in non-deterministic log space 

machine. So, that part I think I will defer to the next lecture video just for ease of keeping the 

videos short. So, just to summarize here we wanted to verify that t is not reachable from s. So, 

we saw how to do that. If we are given the count of vertices that are reachable from s we if you 

are given the count we guess if c is the count and c is 10 we guess 10 words is reachable from s. 

 

None of which is equal to t we just guess them and verify that they are each other. So, this is 

what we have seen. So, far and in the next lecture video I will explain how to come up with the 

number of vertices reachable from s in non-deterministic log space. 


