
Computational Complexity
Prof. Subrahmanyam Kalyanasundaram

Department of Computer Science and Engineering
Indian Institute of Technology, Hyderabad

Lecture -16
Savitch's Theorem

(Refer Slide Time: 00:15)

Hello and welcome to lecture 16 of the course computational complexity. In this lecture we will

see Savitch's theorem. This was discovered by or proved by Walter Savitch in 1970. In this

theorem we see a relation between what is achievable in non-deterministic space bound machine

and what is achievable in deterministic space bounded machine. So, in very simple terms what it

says is that if there is a non-deterministic space bounded machine whose space usage is

then there is an equivalent deterministic space bounded machine whose space usage is

.

So, if there is an NSPACE machine which runs in space then there is an equivalent

DSPACE machine which runs in at most space. So, you can go from a non-deterministic

space bounded machine to a deterministic space bounded machine by just squaring the space

required. So, you can give up non-determinism in exchange for squaring the amount of space

that is required and like I said in one of the previous lectures, we have this requirement that

we always assume to be at least .

So, it is bit of a surprising thing because we saw that if a language is an NP such as SAT, we do

not know whether it is in P. So, we know that SAT is in probably some NP non-deterministic

polynomial time and there is nothing like you can square the time required and get a

deterministic machine for that because square of a polynomial is still a polynomial. But in the

case of space if a language can be decided in non-deterministic polynomial space

then it can be decided in deterministic space .

So, that in that sense it is a bit of a surprise. So, this is one place where we see the differences

between space bounded complexity and time bounded complexity. So, just to write it informally

if we can square the space usage then we can give up the non-determination. So, basically you

can exchange or trade non-determinism by using extra space like squared space.

(Refer Slide Time: 03:14)

So, now let us see how this goes. So, this is very, very interesting because we are giving up

non-determinism in exchange for a bit more space and we do not have anything like this in the

case of time complexity. So, let us see how to prove it and the proof turns out to be surprisingly

simple. So, suppose there is a non-deterministic Turing machine or suppose there is a language

that is in decidable by an non-deterministic Turing machine.

And we already saw that to simulate this non-deterministic Turing machine all we need to do is

check whether there is a path from the starting configuration to the accepting configuration. So, I

will just write that down, as we saw in previous lectures at least 2 lectures before, we saw this

simulating a space-bounded Turing machine or a non-deterministic Turing machine can be

accomplished by searching for a path from which is notation for starting

configuration to which is the accepting configuration in the configuration graph.

So, and we also saw in the previous lecture that given a non-deterministic Turing machine, we

can modify it in such a way that there is a unique accepting configuration. So, in the

configuration graph all we have to do is search whether there is a path from the to

the .

(Refer Slide Time: 05:25)

So, suppose A is a language that is in NSPACE(. Now that means there is a

non-deterministic Turing machine N that runs in space and decides A. Now

how many configurations can N possibly have? again this calculation we performed already in

one of the previous lectures.

N can have at most configurations. So, instead of working with an asymptotic

and O(, let us fix the constant involved in this O(Let us call it

where d is some constant. So, in calculations it is always it sometimes helpful to

actually work with exact constants instead of the O notation.

Because sometimes it is risky to work with the O notation because you do not know sometimes,

it is possible to lose track of the way the order notation explodes. So, that is why to be extra

careful, we use the exact constant here. So, we will just you call it . Now we

need to decide if there is a path from to but instead what we will do

is we know that there are at most configurations. So, we will just check whether

there is a path of this length because if there is a path of length longer than this that means that

path revisits some vertex again.

So, it can happen something like this. So, let us say this is . Now if there is a path of

longer length it means it may loop and finally it goes to . So, which means

actually there is a shorter path you could go without looping from to

.

So, whenever there is a path in this graph which has at most vertices, you can

remove all these loops that arise. So, perhaps there are loops in multiple locations, perhaps there

is a loop big loop here also, but then you can ignore all that and get a simple path of at most

vertices.

Now again we named this problem of finding whether there is a path from a vertex s to a vertex t

in a directed graph as the PATH problem.

(Refer Slide Time: 08:22)

So, now we will make a function call and here this , t) is a program

or is a pseudo code that will tell whether there is a path from v1 to v2 using at most t vertices or at

most t steps. This is what we are trying to do with this sub routine or pseudo code and the reason

we named it like this is that we can make recursive calls.

So, I will use this recursively that is why I called it , t) this is asking

whether there is a path of length at most t from v1 to v2. So, when t is equal to 1, we are checking

whether v1 to v2 is an edge or v1 = v2 i.e., both can also be the same vertex. So, if it is not the case

what we do is we check for all the vertices w.

So, if there is a path of length at most t that means there is a middle vertex. So, let us say the

middle vertex is w. Then there should be a path of length at most from v1 one to w and

there should be a path of length at most from w to v2.

So, now what is the midpoint w we do not know. So, to have to figure that. Now what we do is

we just try out all possible w's. So, remember we are in the space bounded setting and we are

trying to get a deterministic space powered machine. So, we just try out all possible w's and call

the subroutine ,) and ,) .

(Refer Slide Time: 11:02)

And if both of these are there then you accept ok. So, notice that if there is a path from v1 to v2 of

length at most t then it has a midpoint w and there will be a path from v1 to w of at most

and w to v2 of length at most . So, if v1 to v2 there is a path of length t we accept the top

level call , t) if both of these accept and we reject if for even one of

them, for no w, this leads to an accept i.e., there is no midpoint vertex w. It means in reject case,

there is no path.

So, this is a simple pseudo code using a very simple recursive technique and somehow this is all

enough to show the Savitch’s theorem. So, you may be surprised how such a simple idea is

leading us to such a powerful theorem statement.

So, again this is just what I said there is a path from v1 to v2 using at most t vertices if there is a

midpoint vertex w such that v1 to w is vertices and w to v2 is at most steps. So,

now all that remains is to show the analysis of this i.e, to show that this recursive function call

uses at most space. So, what is t here? t is used for checking whether

there is a path from cstart to caccept that uses t steps and t is which is the number of

vertices in the configuration graph. The configuration graph has vertices.

(Refer Slide Time: 13:44)

So, how much space does it take? So, let us see what happens when the recursive call is made all.

So, at any level of recursive call you may recall from what you learned in algorithms or data

structures that. When a recursive call is made the program needs to store some information in the

stack. That is how recursive calls are made and when the recursive call returns the answer and

then it needs to resume the computation from wherever it left off.

So, it needs to store some state information and then need to resume the computation. So what is

the state information that is required here. So, at the top level we are making the call

, t). This and t will be kept in stack. Again when we

call ,) we store , in stack and when we

call ,), we store , in stack. All the nested

calls we make, those many are stored in stack. So, the idea is to measure how much of the stack

or how much space is you being used for all these things.

(Refer Slide Time: 15:03)

So, let us try to understand this. So, let us see how many levels of these recursive calls are

required. So, initially at the top level we need the number of steps that are required i.e., we need

to check from v1 to v2 there is a path of length at most t and in the second call we are checking

whether v1 to w there is a path of length at most and over here again from w to v2 we

check whether there is a path of length at most and so, on.

And then each of these calls make further calls and we are where we are checking whether there

are parts of length and further calls are of length . So, now how big is this tree?

well at each level the distance between the starting vertex and the destination vertex is becoming

half. So, how long does it take for t to become a constant or t to become 1? The answer is simply

.

So, we will need levels. I am not sure if I said this said it before but I will say it.

Now whenever we say log without specifying the base in this course i.e., if the base is not

explicitly mentioned you can assume that the base is 2 and this will be most likely the case for

most of the computer science courses. We will need levels where it is .

The initial call has t = .

So after levels what happens is that then we are just checking whether there is an edge

of length 1 or something which is the base case that we already saw in the pseudo code. And for

each recursive call we need to store this, what I said. So, we need to store some information in

the stack. So, where we called from. So, that is v1, v2 and t in the stack. So, when I say v1, v2, t, I

mean from whichever state of the function we are calling from.

So, at maybe in some interim call it will be some specific vertex starting vertex somewhere

specific ending vertex and instead of this it may be some other value in the stack.

And each one of this v1, v2, t; v1 is a is a name of a vertex and there are vertices v2

is also the name of a vertex and t is also . And to store this v1 or v2 or t we need a

bit string of length log of that.

So, to store a number of size 100 we need a space of log 100 which is about 7. So, if there are a

1000 vertices we need a bit string of length around 10. So, if vertices we need log

= because log with base 2 and 2 power cancel and for this is what

is required for each of the v1 , v2 and t. And hence since this is what is required for each of v1, v2

and t, the total space required is per recursive call.

(Refer Slide Time: 19:06)

For each recursive call we need to save this so total we need and what is the

number of levels? Again the number of levels is what i said earlier it is it is a number

of levels again that is again another is also . So, number of levels is

also at most . So, the total space required is just the number of levels multiplied

by the information stored at each level.

So, you have a stack and at each level you need to store this much information and multiplied by

the space required to store each information. So, space for one level of information multiplied by

number of levels it is which is simply maybe there is

a 3 here but it is still . Because is a constant and 3 is also a

constant.

So, is still . This is the total space required

and that is it this is what we set out to prove. So, we have a deterministic algorithm. So, notice

that it is a deterministic algorithm here else for all vertices w is simply there is no

non-determinism here we are just checking one by one by one w and there is no non-determinism

guessing going on here and we have a machine that uses a deterministic machine that uses

space.

So, we started with a non-deterministic machine that uses and we are

achieving the same computation by a deterministic machine that uses

space. And that is it. So, that is the statement of the Savitch's theorem - non-deterministic space

machine whatever it does can be accomplished by a deterministic space

machine. Now just one more comment.

(Refer Slide Time: 21:25)

So, now to actually do this i.e., to actually devote space and make this call etc. we need to know

beforehand because otherwise this computation cannot happen because the initial call

has to be for . So, we need to know beforehand. What if we do

not know beforehand? We can still do the same thing by simply trying out

and so on.

Just that we will eventually be successful in computation in computing the in simulating the

non-domestic machine then when we are at which is a square of the space

used by the non-deterministic Turing machine. So, what I am saying is that if suppose we do not

know how much space the non-deterministic Turing machine uses and still we have to

accomplish the simulation we can still do that by simply trying out

and so, on.

So, what we can do is that the simulating machine can try out and

so on till it finds a decision. So, what it should try to do is accept reachable when it is limited to

. If the accept is reachable then you accept, if the accept is not reachable,

now are we trying to move to configurations of bigger length. If you are not able to move to any

bigger length configuration then that means even by trying out bigger space we are not going to

reach anywhere.

So, we accept if we reach the accepting state we reject if we are not able to reach any bigger

configurations. If accept is reachable, we accept. if no configuration of bigger length is

reachable, we reject else we move to next value of . So, just we continue the

computation. This is what we can do. So again this is a minor point that I said at the end. But the

fact is that we can continue this we can do this simulation even without knowing

that is how nice this construction is.

So, once again what this shows is that whatever is accomplished in non-deterministic space

machine can be accomplished in deterministic

machine. So, maybe you'll just write down one or 2 consequences and then

stop.

(Refer Slide Time: 25:20)

So, consequences maybe. Let us say where NL is

non-deterministic log space and another result -

,

.

So, what we have shown is that non-deterministic polynomial space is contained in polynomial

space deterministic polynomial space. So, when I say contained in the other direction

containment is obvious. Deterministic polynomial space is always a sub class of

non-deterministic polynomial space. Now we have shown the reverse direction as well. So,

is actually equal to PSPACE.

So, this is also something surprising to us because in time complexity, the biggest problem is that

whether P equal to NP or P a strict sub-class of NP but in case of space bound complexity we

have NP space and P space both are the same. So, today we saw the Savitch's theorem which

said that non-deterministic space can be simulated by deterministic space

. So the proof using a recursive computation and some consequences and that is all,

thank you.

