
Computational Complexity
Prof. Subrahmanyam Kalyanasundaram

Department of Computer Science and Engineering
Indian Institute of Technology, Hyderabad

Lecture -13
Time Hierarchy Theorem

(Refer Slide Time: 00:15)

Hello and welcome to lecture 13 of computational complexity. In this lecture we will see time

hierarchy theorem and this will be the last topic on the complexity based on complexity classes

based on time at least for now. So, what is time hierarchy theorem? So, we know that if we give

more time to a computer or a Turing machine, it can possibly do more. So, you allow it to

compute for longer then maybe it can do better.

However, is there a way to formalize this? So, we know that non-determinism also seems to help

we said that verification is easier than actually deciding but then we also know that we still do

not know whether P is equal to NP or not. So, something seems to be true need not necessarily

mean that it is, there is an easy way to show that it is true. But the statement that I just said about

if we give a machine more time can it compute more?

This particular thing we will see that it is indeed the case. There are languages that we can

compute if we have more time as compared to if we had lesser time. So, we will see what these

languages are. So, more formally how much of, like, if you have more time how much more time

should you need to give so, that there is we can compute more. So, we will see that this is called

time hierarchy theorem.

(Refer Slide Time: 02:03)

And I will just formally state it, let and also, called time constructable functions. So,

we will at the end of the lecture I will define what is time constructable. So, it is a bit of a

technical definition such that is . Then the

time is contained in the time this is what we will expect. So, what we

are saying here is that has to be and not just must

be we want to be .

So, for instance let us say is n, and is then n log n is

. So, that is indeed the case of is and is even then

is . So, that is also fine. But so, you need at least this

logarithmic separation. That is what we are saying here in that case is

is contained in

This is not very difficult to see because one is contained inside the other because is

bigger than . That is not so difficult to see. What time hierarchy theorem says that it

is strictly contained inside the is is contained in

and it is strict. Meaning there are some languages in

ie., which are not there in is

. Meaning the languages that require time to compute but cannot be

computed or cannot be decided in time .

So, the main idea for this proof is by diagonalization. You may have seen diagonalization in the

theory of computation course to show undecidability. However, we will do a very small recap

here because the proof of time hierarchy theorem also is along very similar line. So, it will also

help as a small warm up to see the diagonalization. So, what was the undecidable language you

might have seen.

One of such language is what is called , the acceptance problem. So, given M a Turing

machine, the encoding of a Turing machine and w which is an input, is a class of all

M and w such that M accepts w. So, it is simply the question is to decide whether M accepts w.

So, it seems like a very simple thing to do to decide whether M accepts w but it turns out to be

extremely hard.

Because suppose the computation is ongoing you do not know how long to let it go. Either M

could accept w, M could reject w or M may just not do either. It may just continue computation

keep continuing computation. So, then how do you distinguish - is it just running on a loop or is

it just going to stop at some point. How do you know when to stop. So, we do not know that and

that is what makes this challenging.

(Refer Slide Time: 05:54)

And this problem is undecidable given M and w whether M accepts w or not it is undecidable

mainly because we do not know to determine whether it halts or not. So, sometimes this is also

referred to as a halting problem. But there is also another language where M on w even that is

undecidable but anyway let us stick to this now in order to not have any confusion. We will stick

to A TM where we have to decide whether given turing machine M accepts a given string w.

So, now how do you show that it is undesirable. So, like many of these proofs go we start by

contradiction. Suppose there exists a turing machine that decides A TM. Suppose let us

say it is decidable which means it has to have a decider and we call it . Now let us

construct a turing machine D as follows. So, using . Now we will construct a turing

machine D and what does D do given an input.

So, D just takes one input which is a description of a turing machine. So, now when I write it like

this M with <M> it means I am giving D the input M which is the description of a turing

machine m. So, the angular brackets denote it is a description of a turing machine. What do we

do? We run on this. So, what we do is we run . So, is a decider for A TM

which means it is given a string and a given a turing machine and a string and it starts to decide

whether this turing machine accept this string.

So, run M’ which is a known decider on this or an assumed decider on this. So, what is this?

is a decider and these <M> and <M,<M>> are description of the turing machine M. Any

Turing machine has a description. So, you can say list down the number of states you can list

down the alphabet you can list down all the transitions like that you can write a description. Now

then so, is a decider which means it halts on all the inputs. So, then what do you do –you

accept if M’ rejects and you reject if accepts.

So, it is very simple. So, basically what you do is you run the decider of A TM on M and its

description, and you do the opposite. So, this is fine. So, far so, good. we have a decider for

called and we build another turing machine using a as a subroutine which is

D. So, where is the contradiction? Till now there is no contradiction.

Actually, the contradiction happens when you run when you run D on its own input. So, D is this

turing machine that we just constructed and what happens when you run D on its own

description. So, what will happen here, so, note that now D will take the place of m. So, now M

prime will be run on D and its description. So, then will see whether D accepts this

description if D accepts this description then M prime will accept in which case there will be a

reject over here.

So, if D accepts its own description then accepts D, its own the description of D then D

ends up rejects it its own description. So, now note where we started and where we ended up. If

D accepts its own description then accepts the description of D but then D does the

opposite of what is doing. So, D will reject then the string. So, there is a contradiction

what if the other way if D rejects its own description then also rejects its own description

but then D will flip the output, flip the result.

So, then D will accept its own description. So, it is a contradiction. This concept may be a bit

confusing especially if you have not seen diagonalization before. What is happening is we are

constructing this machine that’s all. So, this is the diagonalization part and this is why it is called

diagonalization. So, you can read up more if you are interested. So, this is the flipping of the

output. So, when you feed the its own description as the input M prime will reject if it accepts its

own description but then D flips M primes output.

So, it ends up doing the opposite of what it is supposed to end up doing. So, this is the

contradiction here. So, this means that contradiction to what. So, everything here was a natural

consequence of what we did assuming that there is a machine that decides . So, that is

the only assumption that we made. So, consequently is undecidable this assumption

was wrong and hence is undecidable. So, is undecidable.

So, just to quickly recap what we did. D was to simulate M on its own description or rather we

ran with M and its own description and then we flip the output. So, when this M is

replaced, this M and <M> the description of M, the part that I am circling in green, when this is

replaced by D and its own description, then we go to a contradiction.

(Refer Slide Time: 14:19)

So, let us now try to see what is the time hierarchy theorem? So, time hierarchy theorem follows

pretty much the same proof except that we will bring in a time factor into this whole thing. So, it

will also follow diagonalization. It will also follow pretty much the same thing except that we

will also start looking at the time and we will show a contradiction.

So, once again statement of time hierarchy theorem if , are time

constructible functions such that is contained is

then DTIME() is contained in DTIME() which is not that

difficult to see but it is strictly contained. Meaning there is some language or there are some

languages that are in DTIME() but which is not there in DTIME() and

for the proof we will demonstrate the existence of such a language.

And just for the ease of explanation we will just stick to some simple specific functions because

it is just simpler to explain. Let us say is and is n which is fine

because n log n is . So, this fits the requirements of the time hierarchy theorem. So,

we will show it for this n and and the proof is exactly the same it is just that for simplicity

we are it is easy to explain.

(Refer Slide Time: 16:00)

And the language L that we construct that is in but not in DTIME(n),

we will not explicitly give what language it is, rather we will construct a turing machine D and

whatever is recognized by that turing machine D will be the language L that is in DTIME(

) but not in DTIME(n).

So, what is D? So, again like I just said for the for the diagonalization of decidability this is very,

very similar.

(Refer Slide Time: 16:54)

So, D again takes a description of a turing machine M as the input and then it computes the

length of the description <M>. So, let n be the length of the description. Now what we do is we

simulate again this is very similar, earlier we said that M is ran on its own description. So, now

we are simulating M on its own description and the simulation we run for steps.

So,why because it is some number that is between and n. So, we simulate M on

its own description for steps of the simulation. So, the total simulation will happen for

steps’ time. This is the amount of time that we are willing to devote for the simulation.

So, in that much time steps whatever happens, happens. We if M accepts its own

description we reject. D rejects if M does not accept its own description. So, the three

possibilities M can accept M its own description, the second possibility - may reject its own

description and the third possibility is that we run out of time because we are only doing this for

a fixed number of steps.

So, if M does not accept. So, if it rejects or does not accept its own description then D accepts

the description of M. So, again there is a flipping happening if M accepts <M>, D rejects and if

M does not accept <M>, D accepts. So, again the only thing here is that earlier we had a decider

and then we flip the output. Here we are doing a simulation. So, this is the key part that is

different. This the step is the key difference here. We have a simulation that is a time bounded

simulation and then we flip the output.

(Refer Slide Time: 19:15)

And now we claim that the language recognized by this machine the Turing machine D is in

order time is recognizable in DTIME() but not in DTIME(n). First part is easy why

is it in DTIME() this is easy because we run the simulation only up to steps. So,

it is less than o(). So, as simple as that this is easy. Second part is the harder part why is it

not contained in DTIME(n)?

So, again just like earlier we proved the diagonalization we will prove. We will use

diagonalization to show that why this language recognized by this Turing machine cannot be

decided in time n. Let us see why? Suppose it was decidable in time DTIME(n). Now suppose

we know the Turing machine D runs time and now we are saying that suppose it can be

decided in order n time ie., DTIME(n).

So, maybe there is another tuning machine that decides it in order n time. Let that turing machine

be called R. So, this is R, R is a decider that decides the language decided by D in order n time.

Now let us feed R as an input to the machine D. So, now instead of earlier we fed D its own

description. we will feed D the description of R and then we will see what will happen.

(Refer Slide Time: 21:34)

So, now we will feed R as an input to D. So, the key thing here is if you may have noticed that

the statement of time hierarchy theorem there is a log thing happening here. Only when

is contained in which is , can we say

this. Meaning if is n and is n log n or let us say

then we cannot apply time hierarchy theorem because

t will be not .

So, this case this way it is not possible. So, what I am saying is that we have this log requirement

here. Why does the log requirement appear because how does the simulation happen. So, how

does one machine simulate another turing machine. So, earlier we use in theory of computation

course you might have seen that we used to just say we simulate this machine on that machine

and so on.

But here we are bothered about the time. So, we need to keep track of how much time it takes.

So, a turing machine that runs in time t(n) actually needs t(n)log t(n) time to be simulated. So, it

requires t(n)log t(n) time to be simulated by a universal turing machine. So, universal turing

machine is something that that can simulate everything. So, this is a result by Hennie and Stearns

from 1966. And basically a machine that runs in t(n) time for another machine to simulate the

same thing it takes t(n)log t(n) time.

So, for simulating one machine by another the time increases logarithmically by a logarithmic

factor. So, this is the reason why we have a logarithmic factor in the statement of the time

hierarchy theorem as well. If this was not there then we would also donot need to have the log

factor in the time hierarchy theorem. This log goes all the way to that log. So, and this is the best

that we know Hennie & Stearns results has not been improved from 1966. So, now how does it

follow?

(Refer Slide Time: 24:06)

So, now again the goal here is what we have now is a turing machine D which runs in o(n^2)

time or endpoint n^1.9 time we assume that it has an order n decider and that decider is called R

and now we are going to feed the description of R to D. Amongst all the descriptions we pick a

description x. So, let n be the length of the description of x.

So, we said that. So, obviously n power 1.9 is bigger than n log n but we will choose n such that

um. So, maybe for small values of n may be the right hand side is bigger. So, we will choose n

such that in left hand side, the asymptotic’s kickin. So, maybe the at t the initial part smaller

values of n, it could be that the right hand side is bigger. So, we will choose beyond a point the

left hand side will be bigger. So, we will choose n like that.

So, now we run D on the description of R or a specific description of R called x. Now what

happens. So, you are giving x as the input of D. So, what is D does is it simulates R; recall that x

is a description of R. So, D will simulate R on x for steps. And R is assumed to be linear

time. So, by O(n) time R would have decided either way and even in taking into account the

logarithmic overhead required for the simulation n log n is smaller than and even c n log n is

smaller than .

So, we will certainly have known whether R accepts or R rejects are not this being able to decide

and terminating is will not happen because we know that R terminates in order n time and we

have accounted for enough time. So, now D rejects x if r accepts and D accepts x if R rejects. So,

now what does it mean D and R were supposed to recognize the same language. So, that is how

we picked R.

R was picked to be another machine which decides the same language as D in a smaller time.

But now we are we are seeing in x that does not behave the same way in D and R. So, whatever

D does with whatever R does with x, D does the opposite. So, this is a contradiction L(D) is not

equal to L(R). Again this is a diagonalization proof and diagonalization proofs can be tricky.

So, let me just go over it once more so D is the following machine given an input which is a

description of a turing machine it first computes the length of that input. So, given M it computes

the length of M and simulate the machine on its own description. M is simulated on its own

description for steps and D rejects if M accepts and D accepts if M does not accept, so,

basically flipping the output of M.

(Refer Slide Time: 28:13)

And this the language decided by D we claim that it is in order it is in

but not in DTIME(n) why? So, it is in because the simulation runs in

time and it is not in DTIME(n) because we assume the quantity assume the opposite

and arrive at a contradiction. So, we assume that it is in DTIME(n) through a machine R. So, R is

a decider for D which runs in DTIME(n).

And now we feed a specific input specific description of R called x to D and this specific

description is chosen such that the length of the description is n and we can complete the

simulation in time. So, now what does D do on when it takes x as input , recall that x is

a description of R. So, it will run R on x and then do the opposite and we know that R will

terminate the computation on x and D will do the opposite.

So, by definition D does the opposite of what R does on the same input but then R was chosen to

be or R was decided to be something that recognize or decides the same language as D and that

is a contradiction. Just some just some so, this is the time hierarchy theorem. So, why what is

hierarchical about time hierarchy theorem. So, with this I can show that D time we have already

seen the DTIME(n) is contained in but not it is it is not equal to meaning the in the contained is

strict in DTIMES() is contained in the time anything.

Maybe I can say even more things DTIME() is even contained in the DTIME(

) because again you can work out with it. So, like that we can. So, if there is significant gap

between and then there is a language that that can be decided in

but not in and these languages are usually. So, you can see how non-explicit

this is we are not specifically telling which language it is but we are saying that this is a

language. Now finally I will just conclude by saying what are time constructable functions?

(Refer Slide Time: 31:03)

So, the key point here is we should be able to compute in time. So,

here D runs simulates M on M on steps, so, this it needs to compute. So, if

itself takes time to compute then this what we said here is not correct

the value may be smaller but to compute that takes time then it is not in DTIMES().

So, we need to make sure that can be computed in time and this is exactly

what time constructability is. The function should be computable in

time and this is what is time constructability. So, more formally a function t is called time

constructable if we give n ones(), a string of length n as an input to a turing machine, it

takes that as input and computes and outputs the binary t(n) in O(t(n)) steps. So,

example almost everything n, . So, n can be computed in n time. can be computed

in time , and similarly ,log n etc

So, you can maybe you can try this why is this time constructable you can think about this these

are all time constructable functions in fact most of whatever we can think of are time

constructible functions. To demonstrate something that is not time constructable we again need

to resolve diagonalization some make highly artificial functions that is about time

constructability. And finally, one more thing I said that DTIME() is strictly

contained in DTIME() if is contained is o(

).

And I said that there is no better simulation known but there is a better simulation known due to

Furer, if we fix the number of tapes. So, if we fix the number of takes to k then there is a better

simulation known where and because of that we can get a strict hierarchy DTIME()

is contained DTIME() strictly content contained but not equal to whenever

is o()). So, even in this case like the one that I wrote here I have not have here

is that probably even when is even when is and is

even then this containment will work.

But this is only when we when the number of tapes are fixed for both left hand side as well as

right hand side and not in general. So, that is the time hierarchy theorem. So, now given any two

functions like which are sufficiently separated then there is a language that can be

computed in time but not in time. That is the summary of this lecture. Again

diagonalization can be bit confusing just keep re-watching it and thinking about it I think after a

while it will become clear, thank you.

