
Artificial Intelligence: Search Methods for Problem Solving
Prof. Deepak Khemani

Department of Computer Science and Engineering
Indian Institute of Technology, Madras

Chapter - 7 and 10
A First Course in Artificial Intelligence Lecture - 68

Algorithm Graphplan 

(Refer Slide Time: 00:15)

But this is kind of you know merging everything together into one structure and it is not clear

as to what can be what can be a possible set of actions which will be a solution for the plan,

but the advantage of constructing this planning graph is that it can be constructed in

polynomial time and we kind of defer the act of searching for a plan onto the planning

problem.



Now, as I have said often that the planning problem has been shown, it was shown by Gupta

and now in 1992 or so. Be in B space complete which means it is in exponential time, but

polynomial space.

So, you cannot say that you have found a solution to problem which is cheaper than that, but

within those bounds you can find algorithms which are faster than other algorithms and that is

what these new approaches tend to do, but now we must also figure out as to how to identify

states in this proportion layer and how to identify actions which can in practice be executed in

these action layers.

(Refer Slide Time: 01:40)



So, to do that we introduce another set of links and these are links which are within every

layer these are called Mutual Exclusion Links. So, there are two kinds of mutual exclusion

links. One is that between actions and the other is between propositions.

So, in the case of actions mutual exclusion link says that certain actions cannot be done in

parallel. They cannot be done simultaneously. So, either you can do one action or you can do

the other, but you cannot do both and this mutual exclusion is stored in the planning graph as

a binary relation.

Though it is possible that you could have thought of something which is a higher order

relation tertiary or whatever, but it is always a trade off between how much you represent,

how much work you do to represent these kind of constraints and how much time you spend

in solving those constraints essentially. So, maybe when we talk about constraints, we will get

a little bit more flavor of that sort of a thing.

So, the mutual exclusion relations in planning graph or binary relations, so either two

propositions are not feasible at the same time in the same layer or two actions are not feasible

together in the same layer. So, we say the two actions in the same layer. So, observe that the

layer is A i in this case.

So, in any layer two actions a and b we say we use a term mutex. The term mutex as you can

imagine comes from mutual and exclusion. So, the first part of the word comes from mutual

and the second part from exclusion.

So, we say that two actions a and b are mutex if one of the following holds that they have

competing needs. So, if there is some proposition p a in the preceding layer which is a

precondition of this action a and there is another proposition p b which is also in the

preceding layer and it is a precondition of this action b and these proportions are such that the

two propositions p a and p b, they are mutex essentially.



So if they are mutex, then the two actions cannot happen together because they are

preconditions cannot be true at the same time. So, in general in the solutions returned to us by

graph plan if there are two actions in the same layer and if they are not mutex, then in

principle they can be executed in parallel essentially and in that sense this is very similar to

what we studied for planned space planning that if there are two actions which in which there

is no ordering link between them, then you could in principle execute them in parallel

essentially.

But here we are saying we identifying which two actions cannot happen at the same time and

these are the mutex actions. So, one the first one condition is that they are preconditions of

mutex that is the competing needs. Another condition under which two actions are mutex that

if there is a proposition p such that it is a positive effect of action a and it is a negative effect

of action b.

So, imagine that p is being produced by one action and being deleted by the other action or

vice versa. The semantics of these actions in parallel are clearly not defined because if you do

both the actions in parallel, there is no way of saying whether p is true at the end of it or

whether p a is false at the end of it.

And if you linearize them in some order, then the outcome will depend upon the order. If you

do the adding action first, then at the end of it, it would be deleted because of deleting action

will come later and if you do the deleting action first, then it will be true at the end of the this

thing.

So, we want our planner to give us plans whose semantics are clearly defined and this was the

case in partial order plans as well we said that any linearization of the partial order plan or

any topological sort of a partial order plan should be a valid plan. Now if you allow these two

actions such that one of them deletes p and the other one adds p, then clearly their

linearizations may have different effects.



So, we just say that these two actions are mutex and they cannot be executed at the same time

in that layer. Another condition is that there exists a proportion p, such that p is the

precondition of action a and it is deleted by action b. So, in the previous case we were saying

that both of them have conflicting effects. Now, we are saying that p is a precondition for a,

but it is deleted by action b.

So, if you if you do actions a and b in parallel, then clearly the you can imagine that the

semantics is defined, but when you do linear ordering, then you can see that these two actions

will result into different states. So, in one state if you if you execute action a first and then

you action b, then there is no problem. Both can be executed, but if you execute action b first

because it is deleting the proposition p action, a cannot be executed after that.

So, only one linear ordering of the two would be feasible. So, again we say that the two

actions are mutex and finally, one condition which is a kind of a special case of the of the

third condition it says that if there is a proposition p such that p is a precondition of both a

and action b and p is deleted by both actions a and b then we say then they are mutex.

So, you can see that one example of this would be the precondition arm empty ah. So, if arm

empty is a precondition for pickup and unstack both and arm empty is deleted by both, then

we are saying that a pickup action and an unstack actions or two pickup actions for that

matter cannot be done simultaneously because they are consuming the precondition and

deleting it.

So, both cannot consume it at the same time. So, these are the four conditions under which we

say that the a set of actions is mutex.



(Refer Slide Time: 08:36)

So, let us look at the example that we have been looking at. We had two actions and if we had

a host of no-op actions out of which I have drawn only one just to illustrate this idea of mutex

actions.

So, you can see that Pickup C and Unstack C on mutex because both consume arm and TC

and that is depicted in this diagram by this link between the actions Pickup C and the red

colored dashed link that you can see and the set of mutex links are links within a layer. So, in

every layer you would identify what were the actions which are mutex and in every

proposition layer as we will see shortly, you will identify the propositions which are mutex.



The action pickup C is also mutex with the no-op action that we have depicted here on which

says that you know it carries forward on table C to the next layer because on table C is in the

negative effects of pickup C and it is also on the positive effects of pickup C.

So, by condition two we say that these two actions cannot happen at the same time. Either one

of these two happens. Now, this business about identifying mutex actions will be useful when

we are extracting a plan out of that. So, we can in principle extract a parallel plan, but if two

actions are mutex, then we cannot put them both into a plan.

(Refer Slide Time: 10:15)

So, when it comes to propositions we say the two propositions p and q both belonging to the

same layer P i are mutex if all the ways of generating them all combinations of actions a and

b which are in the preceding layer which is also called A i are mutex.



So, if p is a effect of a and q is the effect of v positive effect and if a and b you cannot find a

pair of actions a and b which are non-mutex, then clearly you cannot produce p and q at the

same time. So, p and q are mutex if all possible ways of generating them are mutex and they

would be non-mutex if there is at least one pair of actions which can generate them which is

non-mutex essentially.

So, here in this some example here are some mutex links that have identified not all. There

are quite a few if you look at it carefully, you will be able to identify many more, but here is

some example of a mutex p. Now, there is one thing which I have not mentioned here is that

an action a is applicable. So, we are talking about actions here. We say that action a is

applicable if its preconditions are all non-mutex in the preceding layer.

So, we cannot add all actions in general, but we can only add those actions whose

preconditions are non-mutex. Now, if you observe this the initial state p 0 will always be

non-mutex because it is a given state and hopefully it has been it is a consistent state given to

us by the user. So, it can exist in practice. So, it is non-mutex and therefore, the actions that

we have identified were already non-mutex in the preceding states.

But as we construct the planning graph further, we have to be careful that we only pick those

actions whose preconditions are mutually non-mutex from each other which means that the

action has to be applicable to be added to individually applicable to be added to the action

layer essentially.



(Refer Slide Time: 12:41)

So, the planning graph now is can be seen is a made up of following sets associated with each

index i, the set of actions A i in the ith layer, the set of propositions P i in the ith layer. So, the

set of propositions are the effects of the set of actions in the previous layer including no-op

actions remember.

Then the set of positive effects which connect the, so we will call this link as post effects of

actions and p stands for positive here in the ith layer. So, we must know as to which

propositions are produced by which actions.

So, remember that when we wanted to identify whether through propositions are mutex or

not, we needed to identify the actions from where which produced them. So, that is captured



by the positive effect links and likewise we have the negative effect links which tell you that

this is a negative effect of that action.

Then we had the set of preconditioned links going from the set of actions in the ith layer to

the propositions in the i minus first layer which tell you what the preconditions are and we

can add the action only if the preconditions are mutually non-mutex and then, there are of

course the mutex layers in the ith layer the action mutex in the iths action layer and the

proposition mutex in the ith action layer.

So, each layer has this different sets of information stored alongside the set of actions, the set

of propositions, the set of positive effects, the set of negative effects of actions, the set of

preconditions of those actions and the set of mutex relations in each layer saying which two

actions cannot be done in parallel and which two propositions cannot be true at the same

time.



(Refer Slide Time: 14:43)

So, the planning graph is grown as we have said is grown from left to right. Now if two

propositions are non-mutex in a layer, they will be non-mutex in all subsequent layers

because of the no-op actions essentially and just imagine that it you do not introduce any

action here.

And because the no-op actions will produce those non-mutex predicates, anyway they will be

the set of actions which produce those propositions and therefore, because no-op actions are

always non-mutex amongst themselves, the propositions also will be non-mutex.

So, we had said that in the initial layer P 0, the setup propositions are non-mutex because you

know that is a start layer. So, with this means that all the propositions which are true in the

start layer will always continue to exist in all layers and in all layers they will be non-mutex.



Likewise if two actions are non-mutex, then they will continue to surface in every layer that is

constructed after that essentially. So, in P 0 all propositions are non-mutex. In P 0 it depicts a

start state and as the graph grows more layers get added and the number of propositions as we

have observed grows monotonically.

The number of actions grows also monotonically, but the number of mutex first increases

from 0 and then it may decrease later essentially. So, clearly we saw that in the first layer we

had all in the 0th layer, all the propositions were non-mutex and the all the actions were

introduced were between them non-mutex, but then we identified or the actions that we

introduced were mutex essentially.

So, in the first proposition layer they were new mutex relationship, but in the first proposition

layer we saw that initially they were no mutex relations in P 0, but in P 1 they were many

essentially. So, mutex layers can appear and then increase and then maybe they will get

reduced later.



(Refer Slide Time: 17:16)

So, in general this is how our planning graph looks. We have ah set of proposition layers P 0

here, then A 1, then P 1, then A 2, then P 2, then we have the preconditioned the links which

are shown in black arrows from P 0 to A 1 and from P 1 to A 2 and so on.

And then we have the positive effect links which are also shown in black arrows or lines. So,

from A 1 to P 1 and from A 2 to P 2 and so on. We have negative effects which are shown as

red thick lines which are going from A 1 to P 1 and A 2 to P 2 and so on.

Then within each layer we have mutex links between actions and between proposition

essentially. So, the planning graph keeps growing and as we said it keeps growing

monotonically.



(Refer Slide Time: 18:12)

And there are two conditions under which we stop growing the planning graph. These are as

follows that one of the following two conditions is achieved.

The first condition is in the latest proposition layer that we have constructed, all the goal

propositions are present and there is no mutex relation between any of the goal propositions.

So, if all the goal propositions are present and there is no mutex layer mutex link, then it is

possible that there may be a plan of that length.

So, we stopped growing the planning graph and start searching for the plan in the backward

fashion. Now, I am saying that it is possible that there may be a plan. It is not necessary that

there would be a plan because even though the there are no mutex links in the goal

propositions remember that we have said that the mutex links are binary in nature.



So, supposing they are three goal propositions, it is possible that there is no mutex between

any two of them, but somehow between all three of them cannot happen to be true

simultaneously in that layer, but it is possible that they might be true. So, we have to start

searching backwards because one of the things that graph plan does is that it returns a shortest

ah make span or the shortest path plan of the or the smallest plan to the this thing.

The other condition is becomes true when there is no plan in fact and this has to be identified

in some way and we say that the other condition is that the planning graph has as we say

leveled off that there is no more changes that are going to happen in the planning graph and

we identify this by saying that if two consecutive proposition layers have the same

propositions and also if two consecutive layers have identical mutual exclusion links or

mutex links.

Then we say that the graph has leveled off and you can see that if this is the case, the two

consecutive levels have the same set of propositions with the same set of mutex relations

between them. It means that no new actions can be make an appearance in the following layer

essentially whatever happened in the previous layer P i minus 1 those actions will be

applicable, the same actions will be applicable in the layer P i and no new actions can be

added.

So, there is nothing new that you can do. Hence just the goal propositions are not present in

the level planning graph. They can never appear again because no new actions can be added

after this stage. The graph has leveled off. We have finished exhaust; we have exhausted

inserting all actions that were applicable at various stages.



(Refer Slide Time: 21:09)

But if the goal propositions are found and they are found to be non mutex, so in this example

I have kind of assumed that p 7 p 5 and p 4 are the three goal propositions. We have called

them g 1 g 2 g 3 and if they happen to be present in this kth proposition layer, then we start

the backward search possible.

So, this is the first of the two conditions. When we stop growing the planning graph and this

is when we are optimistic that we would have found a plan for achieving those three goal

conditions g 1, g 2, g 3 which have been identified as p 4 p 5 and p 7.

Now, observe that because this is the first time we found them to be non-mutex, if we find a

plan at this stage it has to be the shortest make span plan because otherwise we would have

found them in the previous stage essentially. So, in that sense graph plan guarantees your

shortest path plan or the shortest number of time incenses needed to execute the plan and the



and the actions may be more than the number of time incenses because there may be many

actions which could be done in parallel.

So, for example, in this case p 7 is achieved by this action, here p 5 is achieved by this action

and p 4 is achieved by this action. So, we have identified three actions which produce the goal

predicates that we are interested in. Now, we go back and see if the preconditions of these

actions which have been shown in this shaded nodes, we go back and check whether the

preconditions are mutex or non-mutex essentially.

So, obviously when we applied the first action, then its preconditions must have been

non-mutex because we have said that we can only include actions if their preconditions are

non-mutex, but we must also be sure that the preconditions of the other two actions which are

these three this thing they are also non-mutex between each other.

So, what is the meaning of this? The meaning of this is if all these five propositions can be

true in the layer p k minus 1, then in the layer p k minus 1 you could have applied those three

actions that we have circled here and also shaded them and produce the goal predicates and

achieved the goal essentially.

But now we have to make sure that this will be true that this can be that we can search

backwards for a sequence of actions which are in practice feasible ok. So, this is one set of ah

sub goal. So, we will call these as sub goals. So, these circle nodes are the sub goals and they

are p 1 p 2 p 3 p 4 and p 6 as you can see here.



(Refer Slide Time: 24:17)

Another possibility would be a different set of actions as seen here and they have a different

set of sub goals. So, maybe we can achieve this. So, it is possible that the plan can be

achieved either through the sub goals p 1 p 4 p 5 p 6 or the sub goals that was seen in the

previous case.

What graph plan does is that it explodes all these possibilities. It searches right to left looking

for non-mutex set of propositions, actions propositions actions and so on till it if it can reach

the p 0 layer essentially.

If you can find such a connection to the p 0 layer, that means the actions that are there in this

sub graph are applicable. You can apply them and produce the effects which will be

non-mutex and so on.



(Refer Slide Time: 25:03)

So, when the goals are found which are non-mutex, a planning graph with all goal

propositions is found a planning graph with all goal propositions is found, all goal

propositions in some layer is found and there should be non-mutex is mutex.

Then what the algorithm does is that it is possible, but not necessary that a valid plan might

exist. So, it now goes searching for that valid plan it does. So, by regressing to the sub goals

that we have found and we want to look for, a set of sub goals in the preceding layer which

are non-mutex and it continues doing that you know that first like fashion.

If at any point it can find that it cannot find a sub goal set in the preceding layer, then it

backtracks. So, here backtracking means moving right and then moving left again. Remember

that the algorithm is searching from right to left from the goal propositions to the sub goals to



their sub goals and so on and backtracking means that you could not achieve one path and

then you go and try something else again.

In this process, if it can reach the layer p 0, then we are done because p 0 is everything is

anyway non-mutex and the sub graph that is been identified represents the shortest make span

plan in this any act any two actions which are there in the same layer can be executed in

parallel in principle or they could be linearized in any order and the plan would be a valid

plan.

The other condition as we said is that in this process if it cannot find this, then it extends the

planning graph by one more level and again does this whole thing process. Now, clearly

because the goal propositions were mutex in this lets say kth layer, but it could not find a

plan, then it will extend the planning graph to k plus 1 layer.

The same goal propositions must be there non-mutex, but the question is there a valid plan

essentially because you know some mutex relations might have some more mutex relations

might have either increased or decreased or something like that.

So, it keeps extending the planning graph as we have said till it has leveled off and the

leveling off is identified when two layers in the proposition layers are identical and the mutex

layers also identical to each other in which case it returns some symbol which says that no

plan found. Now, when it says there is no plan, it is a complete algorithm. It means that there

is no plan.



(Refer Slide Time: 28:10)

So, this backward state space, this backwards search in the planning graph can be kind of

characterized like this that it has taken these three goals that we said p 7 p 5 and p 4 and it

regresses them.

So, given this goal set, it regresses to one goal set, then it from there it regresses to another

goal set and from there it regresses to another goal set and if this is a dead end, it backtracks

and try something again and in this fashion it does that first search.

And if it one of these paths leads to the p 0 state, it will return a plan otherwise it will go and

extend the planning graph to one more layer and it will keep doing that till it has leveled off.

So, this was a very very brief introduction to graph plan. It is a very interesting algorithm and



you must really look up. The sources for the planning graph and its variations have been

found, for example for temporal actions and so on.

(Refer Slide Time: 29:21)

Hm, but we will stop our study of planning with this thing because our courses are much

more basic and has a wider reach and we will take up another topic in the next session, ok.

So, see you then.


