Artificial Intelligence: Search Methods for Problem Solving
Prof. Deepak Khemani
Department of Computer Science & Engineering
Indian Institute of Technology, Madras

Chapter - 03
A First Course in Artificial Intelligence
Lecture — 23
Heuristic Search

(Refer Slide Time: 00:11)

Artificial Intelligence:
Search Methods for Problem Solving

?\
Q@% Heuristic Search «—

AFirst Course in Artificial Intelligence: Chapter 3

—_—

2

Deepak Khemani ‘
Department of Computer Science & Enginee N

IT Madras)

\ |

Artificial Intelligence: Search Methods for Problem Solving Deepak Khemani, 1T Mao.___ ‘ AR ER RNy |

So, welcome back, we are just finished looking at blind search algorithms; we looked at depth
first search, breadth first search and DFID. And we saw that, you know they always explore
the search space in a systematic fashion; always doing the same thing irrespective of where the

goal node is.

And the trouble with that these algorithms is that; because the search space is growing
exponentially, the time that they require to run also grows exponentially in on the average.
And therefore, we need to look for alternative methods to explore the space; and maybe with a
sense of direction which is what the heuristic function gives us, and hopefully at least for some

problems we able to arrive at the solution much faster.

So, this next set of videos that we will see, our lectures that we will see are on heuristic
search; the word heuristic comes from the Greek word or they have the same source the word
Eureka and there was a word called heurisca. You might remember the word eureka in the
context of Archimedes when he ran out of his bath, naked on the streets saying Eureka
Eureka; and that means, he had solved problem of how much is a loss of a body which is
floating under water, the loss in the weight or the decrease in the weight is equal to the weight

of the water that is displaced.
So, once he realized that he ran saying Eureka; and Eureka basically meant, I know, I know.
And the word heuristic also comes from the same source which means that, in some sense the

algorithm knows where it should go. If you are following my book, you will find all the

material on chapter 3 essentially.

(Refer Slide Time: 02:19)

The State Space

\'y‘o ‘y'\
\ \ \
%0 000009 \
0 0 AT
o\ \ 00 {TheGOALstate

\ \
@START State

ol
Atificial Intelligence: Search Methods for Problem Solving Deepek Khemani, IIT Mﬂﬂ@";b;:“_

So, let us just do a quick recap; we have a state space, in which we have a start node and a
goal node.

(Refer Slide Time: 02:27)

Depth First Search &
DFS adds new candidates
at the head of OPEN.
OPEN = STACK

000000000000
f\- OPEN
o Search picks

MoreG candidate from head
e of OPEN

0000

list of NEW nodes

Artificial Intelligence: Search Methods for Problem Solving

} |
Deepak Khemani, IIT Mar. !

And we have studied depth first search, where we take out the nodes from the head of the list
and then we add the new nodes back at the head of the list.

(Refer Slide Time: 02:39)

Depth First Search dives into the search space

L
|

Artificial Intelligence: Search Methods for Problem Solving Deepak Khemani, IIT MFL——%;‘_‘

Which results in this behavior of depth first search that we have seen that, it dives into the
search space; it has a very impetuous nature, just goes off without you know looking here and

there.

(Refer Slide Time: 02:52)

Breadth First Search

Breadth First Search adds
new candidates at the head of

OPEN.
OPEN % QUEUE

0000000000
OPEN

0. Search picks

candidate from head
MoveGe of OPEN

0000

list of NEW nodes

Artificial Intelligence: Search Methods for Problem Solving Deepak Khemani, IIT M“”’“L’

The other algorithm that we saw was that, we again take out nodes from the head of the open

list; but this time we add them to the tail of the list and therefore, we treat open as a queue.

(Refer Slide Time: 03:05)

Breadth First Search sticks close to the start state

NPTEL

Artificial Intelligence: Search Methods for Problem Solving Deepak Khemani, IIT Mz ,,‘

And as a consequence, the behavior of the search algorithm is startly different; it tries to stay
as close to the source node as possible and you can think of it as a conservative search

algorithm. And as a result of its conservative behavior, it also gives us the shortest path; which

means the least number of moves in the solution.

(Refer Slide Time: 03:26)

Blind / Uninformed Search

Both

Depth First Search and Breadth First Search
are oblivious of the goal.

Irrespective of where the goal is in the state
space both the algorithms set out on the Same
predetermined trajectories every time.

——— s

What is needed is a search algorithm with a sense g

of direction.. U

|
Artificial Intelligence: Search Methods for Problem Solving Deepak Khemani, IIT Madra, 7% :i__=_

Now, both of them are oblivious of the goal, they are just not aware of where the goal is;
ideally the goal, they should try to move towards the goal. So, irrespective of where the goal

is, they both the algorithms follow the same predetermined trajectories every time essentially.

Now obviously, that is not intelligent behavior, but it could still form the basis or a
foundational layer of a higher level algorithm which uses them; but even for this basis of
foundational algorithm, we can try and do better. So, what we need is a algorithm with a sense

of direction, and that is what we will start looking at in this sequence of lectures, ok.

(Refer Slide Time: 04:13)

Heuristic functions The heuristic function

estimates the distance td

the goal. L(.”‘%)

This estimate can be
used to decide WHICh node
to pick from OPEN

Artificial Intelligence: Search Methods for Problem Solving Deepak Khemani, IIT W,_;%L_

So, we have a notion of a heuristic function. The heuristic function which is a function of a
node n; in this case this is the node n, let me draw that again n. Traditionally we write it only
as a function of the node n, though in reality it is a function of the node n and node g or the
goal node; but since very often you may not specify a goal node as we saw in the water jug
example little bit earlier, you may specify the conditions for the goal to be true which may be

true in a set of nodes.

So, we do not tend to express that goal part here and it is kind of implicit that what the
heuristic function does is that; it estimates the distance to the goal essentially. For sake of
simplicity in this diagram we have drawn one goal, but if there were many goals; then for each

node that we are interested in, we would choose a distance to the nearest goal essentially.

So, as n varies over these different nodes, we can which are the successors of that start node s;
we can compute the heuristic value, and then based on the heuristic value we decide which
node to open. Unlike depth first search and breadth first search which always chose the nodes
in the predetermined fashion; heuristic search will choose the nodes based on the estimated

distance to the goal, and that is why it is called a heuristic search algorithm.

(Refer Slide Time: 06:01)

Best First Search Best First Search inser@é

s

a2 new candidates into OPEN::

sorted on h(n)

W OPEN 5 PRIORITY QUEU
00000000000
[7 OPEN
W

o Search picks

candidate from head
of OPEN

0000

list of NEW nodes “ %

Artificial Intelligence: Search Methods for Problem Solving Deepak Khemani, IIT Mﬂd!};);;k—

The algorithm that we are talking about will be called best first; in the sense that it always
chooses the best node first. Now essentially you can imagine that you have a set of candidates
which are stored in open list, and for every candidate we know what is the estimated distance
to the goal; and we want to choose the one which has the lowest estimated distance to the

goal.

The way to implement this which is consistent with what we have done earlier is that, we will
still extract the node from the head of the open if it is a list like this; but we will keep this open

sorted on the heuristic values. So, sometimes these are called as h values.

So, this open list will be shortest and the on the h values; so the lowest will be here, and the
highest will be here essentially. So, when we pick the node from head, it will always pick the
one with the lowest h value; and when we had done generating the new nodes, we will inserts

them at an appropriate place essentially.

In practice of course, we do not sort the list; in practice we would maintain open as a priority
queue, which is just an efficient way of making sure that you always extract the node with the

lowest heuristic value essentially.

(Refer Slide Time: 07:36)

&

Best First Search picks the node with lowest h(n) o :e{
= The nodePair is * .

@%p First Search
EN-((Start, Nil)) ; CLOSED ¢ ()
While not null (OPEN) Do
nodePair € head (OPEN) ; node € head(nodePair)

IF goalTest (node) = True THEN
return reconstructPath(nodePair, CLOSED)

NPTEL

ELSE
CLOSED ¢ cons (nodePair, CLOSED)
CHILDREN € moveGen (node)
NOLQOPS € remaveSeen (CHILDREN, OPEN, CLOSED)
NEW € makePairs(NQL Gl
endWhile
Return “No solution found”

End

N
OPEN @end (NEW, tail(OPEN)))
/

In practice OPEN is maintained as a priority queue |

Artificial Intelligence: Search Methods for Problem Solving Deepak Khemani, IIT =__}#_J_‘

So, here is a variation of our algorithm that we had written for depth first search. So, we are
not doing depth first search, but we are doing best first search. And the only difference that we
are making here or only difference that we are doing here is that; instead of saying that you are
going to append the new nodes to the tail of open, we are saying we will do that, but after that

we will sort the nodes on heuristic value.

Of course, a little bit of extra change that we also need to do is that; instead of the node pair,
we will have to make it a node triple and include the heuristic value as part of the this thing, as

part of the node representation.

So, in the node pair we have a current node and the parent node; in the node triple we will
have a current node, the parent node and the heuristic value for the current node essentially.
So, as I said little while ago, in practice actually open is maintained as a priority queue; but we
can conceptually think of it as being sorted essentially, which is doing the same thing that

always giving to us, so node with the lowest heuristic value.

(Refer Slide Time: 08:52)

Best First Search sorts OPEN on h(N)

BEST-FIRST-SEARCH|

1 OPEN @@1@]
2 CLOSED emptst

3 while OPEN is not empty
4 nodePair < head OPEN

5 (NJ =, =) ¢ nodePair

6 if GOALTEST(N)= TRUE

7 return RECONSTRUCTPATH(nodePair, CLOSED)

8 else CLOSED « nodePair : CLOSED

9 children < MOVEGEN(N)

10 newNodes - REMOVESEEN(children, OPEN, CLOSED)

11 newPairs < MAKEPAIRS(newNodes, N)

12 OPEN \sorty,(YiewPairs ++ tail OPEN) 4

13 return empty list

Avtificial Intelligence: Search Methods for Problem Solving Deepek Khemani, IIT Madia, 7 I]

If you were to do this, then we have our modified algorithm best first search here; and observe
that we have a triple here, where we have a start node, it has a parent which is null and the

heuristic value of the start node which is the estimated distance to the goal essentially.

And at every point we extract a trickle triple; and the first node n is what we are interested in,
we apply the goal test to that n. And again we have called this node, node pair here, this is
simply for the sake of reusing the earlier code; but you could have called it node triple, after all

there is nothing in the name essentially.

So, everything else remains the same; there except that we have changed the representation to

include the heuristic value and conceptually at least we are sorting this open list. We say I will

again repeat to say that, in practice you would want to do it as a priority queue which is

implemented as a heap.

(Refer Slide Time: 09:53)

The Eiqht-puzzl&\

", (23
) ()
« 65

@ o Goal

(Y4

TB3)E)

K4

% e

BE -

The Eight puzzle consists of eight tiles on a 3x3 grid. A
ile can slide into an adjacent location if it is empty. A
move is labeled R if a tile moves right, and likewise for up)/
(U), down (D) and left (L).

Artificial Intelligence: Search Methods for Problem Solving Deepak Khemani, IIT Mﬁ”'b_—ﬁ=’ul

Now let us look at this problem that we have seen earlier; the eight puzzle problem, in which
you have to move around tile. So, either you can move this tile here or you can move this tile
here or you can move this tile here; resulting in these three moves that we can see here. And
then once having made a move, you can choose; you have to choose again what is the next

move you want to make and so on.

So, the thing that you want to focus on is, how do we decide that for example, between the
three of these nodes; what is the node that we should pick? How do you estimate the distance

to the goal essentially?

(Refer Slide Time: 10:35)

The Eith'pUZZ|e hy(n) = number of tiles out of place

N
(n) = 2. manhattan distance to its destination
———

h
@]@1 . foreschtie
R [@‘ Ll
0T "~ |ag

ap LI

S - I

L /’

0E, -
’

) DEE %)
= ~

Which state is closest to the goal? .,

(=)
B

(=)(=]

Artificial Intelligence: Search Methods for Problem Solving Deepak Khemani, 1T Man.. 77%,@

So, we can think of a couple of heuristic functions; one function which simply says that, count
the number of tiles which are out of place. So, if you look at this for example, the first
successor here; we can see that 6 is out of place, because it should have been here, 2 is out of
place because it should have been here. 1 is out of place, 8 is out of place; but 4 is in place, 7

is in place and 3 is out of place.

So, you can see that five tiles are out of place, three tiles are in place. So, we can think of this
as a distance of 5, which says intuitively that you have to change the position of 5 this thing

essentially.

The other measure that we can use is the notion which is close to manhattan distance and what

you do there is; that you found the distance to every tiles destination for each tile essentially.

So, if I look at this third example here; then you can see that for 6 to go to it is destination, it

has to make one move here, a second move here and then the third move here.

So, the distance of 6 is 3, the distance of 2 is 0; because it is in place. Let us distance of 5 is 0,
4 1s 0 and if you look at 3; then the distance of 3 is also 3, because it has to come here, then it
has to go here, then it has to go here this 3. So, in this manner we compute the distances for

each tile and the sum of the distances will give us an estimate of distance to the goal.

Now, both of us in some sense try to tell us, both of the; both of the heuristic functions try to
tell us which node is closer to the goal; the first one is kind of more coarse, because it simply
says how many tiles you have to get into place. The second one is a little bit more refined,

because it tells you how much each tile will have to move to reach the goal node essentially.

(Refer Slide Time: 12:58)

8-puzzle: A local minimum s O
(-\/_\’;Hamming @
4]5)6)

hManhaﬂan

lon e
.
!E|ther move
gases distance to goal

L T—— @
hManhanan = 6/ @

hHamming ff)
hManhattan 7

|
Atificial Intelligence: Search Methods for Problem Solving Deepek Khemani, IIT Mad,._. —%ﬂ

The trouble with heuristic functions is that, it is very difficult to define heuristic functions
which are accurate. So, here is let us look at a another example, where this is the node n that
we are looking at; and you can see that the first heuristic function which is also called a
hamming heuristic function, because it tells you how many things are out of place. So, in this
case we can see that there are two things out of place; 1 is in place, 2 is in place, 7 is out of
place, 4, 5, 6 are in place, 8 is in place and 3 is out of place. So, that gives us this count of 2

essentially.

If you have counted the distances, then this distance would be 6 for this node. Now if you
look at the two successors that this node has; you can move 4 down that is what you have
done here and we get this thing. And now 4 was in place earlier and now it has gone out of
place; so all these values have gone up by 1 here essentially. Alternatively you could have
moved 8 here in the second move, and again 8 was in position and it is gone out of place, so

the heuristic values are gone up.

So, this kind of illustrates of act that heuristic functions are not always accurate. Now clearly
if you want to go from this node n to the goal node g, you will have to go through one of
these through children nodes. But the heuristic function is telling you that both these children
on both the heuristic functions are worse than the current node, and that is a phenomenon of

local minima in this case, we will explore this a little bit more.

That is a problem with heuristic functions that, you often end up with local minima or maxima,
where essentially what you want to reach is a value of 0 and you are starting with a value of 2
in the case of first heuristic function or 6 in the case of second heuristic function; but in both
the moves the heuristic value is going up essentially, now which does not look very

encouraging, but it has to go through one of those nodes.

Very often if you have played this puzzle as a child, you would have seen some pictures which
are trying to, which are placed instead of these numbers. And in from that perspective we can
think of this as similarity that, you try to move to that successor which is more similar to the

goal node, ok.

(Refer Slide Time: 15:42)

8-puzzle: Similarity is inverse of distance
\/'\/‘_\ /‘—?M—/’

hHamming =

hManhaﬂan =7

Either move decreases
similarity with goal

2

hHamm\ng N

hManhaltan = 6
hS =
Hamming
hManhattan =7]
https://murhafsousii.github.lo/8puzzle/#! Rubik's cubr | (
Artificial Intelligence: Search Methods for Problem Solving Deepak Khemani, [T =

So, in this example either move increases the distance to the goal; but if you are working with
a puzzle which had pictures on it, then you can see that the node n is more similar to the goal
node g, then either of the two successors. And you can think of similarity as the inverse of the
distance; because the closer you are the smaller is the distance, the more is the similarity. So,

that is another way of looking at it.

And this also illustrates the fact that, if you make either move; that if you move this tile here or
if you move this tile here, which is what we did in the same, the same because it is the same
puzzle actually with the figures of the with the picture of the dog shown in, the location is still
the same. If you were to kind of look at this slide carefully; you would see the numbers that

we were talking about 7 is here, 8 is here and so on.

It is a just that we have pictures and therefore, we can think of similarity essentially. We can
see a similar phenomenon for Rubik’s cube which some of you must have solved is that; very
often you have to move from a state which is fairly similar to the goal state, but where any

move makes you the little bit less similar. So, this problem we will look at again later.

(Refer Slide Time: 17:05)

Geographical route finding : h(n) = Euclidean distance
Euclidean: h(n) =/ (Xaos = Xo)2* (Vooa = Yol

— T

5

~

Artificial Intelligence: Search Methods for Problem Solving Deepek Khemani, IIT Ma

Here is another problem, supposing you want to do geographical route finding; for example,
Google maps does it for you nowadays. And the problem here is that, you are at the start
location here and from this start location, you can either go to this successor or this child or
this one or this one, and you have to choose which of those three is the right move to make, if
you want to reach this goal node here. So, this dash red line that you see, these are Euclidean

distances; because the map is on a grid and you can see that.

Let us say this is in kilometers; so we are 2, 3, 4, 5 kilometers away and likewise in this
direction 1, 2, 3 kilometers away. So, one way of estimating the distance to the goal is to
measure the Euclidean distance which is the distance as the crow flies, which you know is the
formula which you can compute by taking the differences adding and taking the squares of the

differences, adding them and taking the square root.

And this red lines that you see here, essentially are the distances as the crow flies; and the
numbers you see inside this are the actual computed values, so 8.42, 9.43 and 7.21. So, clearly
this is the best move to make for you, and you can see that this also gives you a sense of

direction.

The problem is, the heuristic function is only looking at difference in coordinates. So, it is not
aware for example, that there might be a river running across the path and the only bridges
which happened are here and here and here; but you know it will try and drive you closer in

the direction of the goal and we will see a real world example in a moment.

(Refer Slide Time: 19:06)

Geographical route finding : h(n) = Manhattan /city-block distanéf‘w

Manhattan: h(n) = |XGnd_ xnl v IyGoa\ - f‘ﬂ‘F:L
—

—_—
—_—

8 7 6 5 4 3 2 1

Artificial rntelligence: Search Methods for Problem Solving Deepek Khemani, [T Man, ?;‘—Lhzl

Another estimate of distance is the Manhattan distance, which as you can see simply the
modulus of the differences of the x coordinates and the y coordinates. So, this is called
Manhattan distance, because it is the kind of distance you would have seen in a well structured
town or city like Manhattan; where if you want to go from one point to another, you have to

walk along one road certain number of blocks and then walk along a perpendicular direction.

So, the distance that you walk along is what you count. So, for example, in this case the value
is 10; because you walk 6 units this side and then 4 units up, and that is a estimate of distance.
So, this is 10 and this is 12 and this is 13; and as you can see again this also tells you that, this

node is a better node to, better node to go to.

(Refer Slide Time: 20:05)

Best First Search has a sense of direction The order shows it}
oPEN |[CLOSED | progress it first e,
¢ hitsadeadend

(steps 2-4)

Q

|
0 | \
Atificial Intelligence: Search Methods for Problem Solving Deepek Khemani, 1T .. }L:,Ls_éx

Now if you want to learn best first search algorithm on this problem; then you would find that
this is the kind of exploration it would have done, it would have the 1st node or the Oth node
would they have been start. Then as we just saw, it would have gone to this node number 1;

then you would have gone to this node, because it appears to be closest to the goal.

And then it would be forced to go here and then to node number 4; till after which eventually
it finds a path through node numbers, nodes which is it sees in the 5th turn, 6th turn, 7th and
8th turn and this is the path where it is found to the goal.

So, this is the behavior of the best first search algorithm, it tries as far as possible to go
towards the goal; but if there is a obstacle on the way or in this case if there is a river, then you

cannot essentially.

(Refer Slide Time: 21:03)

IIT Madras to Anna Alumni Club

M 11 mi
49k

w* YMCA
COLLEGE OF ol i
PHYSICAL
EDUCATION

¥ 4y KARPAGAM
AVENUE

7} 1y Templo/ey o ndRe
; o 9 L
9 Gt 5
| Natonal Pak 5/ i Y
L Ganalo @ ity Union - TIRY | | [
Artificial Intelligence: Search Methods for Problem Solving Deepek Khemani, [T Yau... ji /)

So, here is a real world example, I was looking at a couple of days ago is that; if you are here
at IIT Madras and if you want to go to the Anna University Alumni Club, which was hosting,

which is in fact hosting a bridge tournament and how do you get there?

So, if you consult Google maps, then you can see that, that Google maps gives you this as the
best path and it gives you some alternate paths which you can go like this; but it has figured
out that there is a bridge here and there is a bridge here, so the path has to go through those

bridges.

And that is a thing that any search algorithm will do for you; as long as it is a global search
algorithm, it will investigate all possible paths and take you to the path which, it will find a

solution for you essentially.

(Refer Slide Time: 21:59)

. 8
Google Maps A heuristic functioh.
! | o™ g would drive the "™
Ly by i e search towards
0 " colltctor g e these nodes and
I 9
e then would have to
a F LS AN ey | move away
f e Gosnolo cub o na Univerfity _—= AVENUE
BLOCK C3 . sHusd
uermss C3 ’WF‘ ! Sl
o DAP!
0 - t Whae Island.
\ N T : = i
g { Besant :
& {rin o
1 o) 67kn| 3
I uray fr ol =
M . Gondls @ 7 A R
Artificial Intelligence: Search Methods for Problem Solving Deepak Khemani, [IT Madras

Now, if you were to superimpose a graph on this same problem that we saw with the start
node and the same goal node; you will see that the search algorithm will drive you towards
this set of nodes which appear to be closest to the goal node essentially. But because the
algorithm is complete; because it maintains the open list all other candidates that it has not yet

inspected, it will eventually find a path to the goal node essentially.

(Refer Slide Time: 22:31)

Search Frontiers

DFS frontier
grows linearly

Best First search
frontier depends upon
the heuristic function

Breadth First
frontier grows
exponentially

The Search Frontier is an indication of space requirenr T

Atificial Intelligence: Search Methods for Problem Solving Deepak Khemani, IIT Madms__ & ||

So, how does the search frontier look like? We have already seen earlier that the search
frontier for depth first search is the set of pink nodes that we have we are seeing here, which is
growing linearly; this search frontier for breadth first search was the set of yellow nodes that

we have seen here.

In practice because the performance of best first search depends on the heuristic function and
as we have seen that heuristic function can sometimes be misleading, it can take you towards
the riverfront when you have to go from there to somewhere else; so in practice so such

frontier tends to be quite erratic in nature.

But it has been a empirically observed that, it is often tends to be exponential in nature. If you
had a perfect heuristic function which is like an oracle which tells you what is the right choice

to make it every place, then the search frontier would simply be linear essentially.

(Refer Slide Time: 23:41)

Qua“tv of solution Best First Search may choose
a solution with five moves NPTEL

Artificial Intelligence: Search Methods for Problem Solving Deepak Khemani, 1T Madra._ 7%‘

If you just go, go off in some direction which takes you to the goal node essentially; but
unfortunately our heuristic functions are not perfect and hence the search frontier tends to be a

little bit larger than a linear function.

Whatever the quality of the solution found, so let us take this slightly contrived example; if
you are at the start node here and you want to go to the goal node, then the there are short

segments of roads which take you to a path which is heading towards a goal, but the number

of segments is five, whereas there is a longer way of reaching the goal which has only two

segments.

So, if you are interested in the number of hops only, then you can see that best first search
does not find the shortest path. You will see variations of best first search which will also give
you shortest paths later essentially; but at the moment we are focused more on finding the

solution quickly and that is what the heuristic function is trying to do for us.

(Refer Slide Time: 24:33)

Hill Climbing -a local search algorithm

S gudiee ove 16 the best neighbour if it is better, else terminate "™

Hill Climbing
ode
newNode € head(sort\moveGen (node)))

While h(newNode) < h(node) Do
node € newNode
newNode € head(sort;, (moveGen (node))))
endWhile In practice sorting is not needed, only the best node
return newNode
End

Algorithm Hill Climbing

Change of termination criterion

Local search — Hill Climbing has burnt its bridges by not storing OPEN
o [————
Atificial Intelligence: Search Methods for Problem Solving Deepak Khemani, IIT Man..

Now as I said the search frontier for this thing also tends to be exponential in nature, which is
a bit unfortunate. So, we have to look for other algorithms; because you know we do not as
computer scientists, we do not like things which are growing exponentially. So, will start

looking at variations which require less time and less space.

And we start with an algorithm called hill climbing, which is a local search algorithm. It is
local in the search, in the sense that it only looks as the local neighborhood of a current node;
as opposed to best first search which looks at a all the possible candidates that we have ever

generated which are kept and stored in the open list essentially.

Hill climbing algorithm just throws away all the earlier candidates, and the algorithm is can be
seen as following; that you are at some given node which is initially the start node and you go
to a neighbour which is the best of all its children. So, you do moveGen on that, sort it, pick
the head that is the best node; and if this new node is better than the old node, which is given
by the fact that it is heuristic value is less, you move to the new node which is shown here and
then look at the next node which is the one of the children of the, one of the neighbours of the

node essentially.

So, we just keep repeating this process of moving to the best neighbor, if it is better else you
just stop. So, while h of new node is less than h of node, you do this; otherwise you exit from
there. In practice we do not even need to sort the children of any given node, because sorting
is still quadratic in nature or at least n log n in nature; whereas you just want the best nodes,
s0 you can just scan it once and get the best node in linear time. But that is a matter of

implementation; we should not worry too much about, ok.

One thing to notice is that there is a change in the termination criteria; we simply said that if
you cannot find a better node you terminate, which is very different from. What we said earlier
is that if you found a goal node, you terminate or if there is no path to the goal node, then you

terminate.

Here it is neither, it simply says if you cannot find a better node, you terminate; and that we
will see results in certain change in behavior. The point to note is that, as a local search
algorithm it has burnt its bridges by not storing the open list. So, it can go and get stuck in the

local optima.

(Refer Slide Time: 27:53)

Hill Climbing - a constant space algorithm

HC only looks at local neighbours of a node. It's space requirement
is thus constant!
Avast improvement on the exponential space for BFS and DFS

HC only moves to a better node. It terminates if cannot. Consequently the
time complexity is linear.

It's termination criterion is different. It stops when no better neighbour
is available. It treats the problem as an optimization problem.

However, it is not complete, and may not find the global optimum which
corresponds to the solution!

Artificial Intelligence: Search Methods for Problem Solving Deepak Khemani, [IT Madras

The nice thing about hill climbing is that, it is a constant space algorithm, it only looks at the
neighbours of a node; it is space requirement is just constant, which is a vast improvement on
the exponential space for breadth first search and depth first search that we need it. Overall
space requirement, its behavior is it only moves to a better node; which means it will terminate

if it cannot move to a better node.

So, consequently it is time complexity is linear in the depths essentially; that it goes to a
certain distance and stops and you know, but it does not spend time looking here and there. Its
termination criteria as we just mentioned is different; it stops when no better neighbour is

available.

So, in some sense it reads the problem with an optimization problem; it says give me the best
value of h that you can find, instead of saying give me a path to the goal essentially. So, it is

like thinking of it as an optimization problem and it is not complete essentially, ok.

As we will see that it may not find the global optimum which corresponds to the solution. So,
if you remember the eight puzzle example and city map example that we considered a little
while ago; you would notice that hill climbing would have you know stopped much before

reaching the goal essentially.

(Refer Slide Time: 29:22)

Steepest gradient ascent
S 4

Hill Climbing (for a maximization problem) “’

Artificial Intelligence: Search Methods for Problem Solving Deepak Khemani, IIT Y. t%n

So, hill climbing is also known as a steepest gradient algorithm or gradient descent algorithm
or a gradient ascent algorithm as a case may be; it really depends on whether you want to

maximize the heuristic function or minimize the heuristic function.

And if you think about this maximization and minimization are just two sides of the same coin.
So, in the eighth puzzle for example, if you want to minimize the number of tiles which are out
of place; it is equivalent to saying that maximize the number of tiles which are in place

essentially.

So, if you are talking about the maximization example; then hill climbing is essentially saying
that you go in the direction of the steepest gradient, you just keep climbing. And you stop
timing when you have reached the point where no neighbour is better than another neighbor.
Now as you can imagine if you were doing this; if you were blindfolded and put on a hillside
and you would do something like this and not surprising with this algorithm is called hill

climbing.

(Refer Slide Time: 30:34)

May end on alocal maximum) *

LY

NPTEL

Atificial Intelligence: Search Methods for Problem Solving Deepak Khemani, [IT M_?'aﬁm

You would reach a place where you thought was the top; but if you were to open your eyes,
you would see that this spot is called as a local maximum. And you have not found a solution,

but the algorithm will terminate at this place essentially.

So, what do we do, how do we address the problem of not getting stuck in local maxima? This
is something that we will do in the next few classes; we will start off by looking at some
deterministic algorithms to avoid local maxima or we could look at some stochastic algorithms
as well. And we also need to get an insight into the fact that, the surface that we are talking

about is defined by the heuristic function.

That if you could somehow define a heuristic function where the surface is monotonic; in the
sense that there as only one maxima or only one minima is the case may be, then. For example,
if the surface was like this, then you can see that you would have reached the global
maximum. And we will see, we will get some insight into this as we go along; that the surface

is defined by the heuristic function.

So, if you were to choose a different heuristic functions, so we saw there are two possibilities

in the case of eight puzzle; there were two possibilities we considered in the city planning.

And in the next class we will take a more concrete example, where we will look at the blocks
world domain; and we will see that there are certain heuristic functions which define a
monotonic surface, which would take you to the the goal node. But jagged surface like the
one that we have started here with, you could end up on a local maximum, ok. So, we will do

this in the next few classes essentially.

