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So, welcome back, we are just finished looking at blind search algorithms; we looked at depth

first search, breadth first search and DFID. And we saw that, you know they always explore

the search space in a systematic fashion; always doing the same thing irrespective of where the

goal node is. 

And the trouble with that these algorithms is that; because the search space is growing

exponentially, the time that they require to run also grows exponentially in on the average.

And therefore, we need to look for alternative methods to explore the space; and maybe with a

sense of direction which is what the heuristic function gives us, and hopefully at least for some

problems we able to arrive at the solution much faster.



So, this next set of videos that we will see, our lectures that we will see are on heuristic

search; the word heuristic comes from the Greek word or they have the same source the word

Eureka and there was a word called heurisca. You might remember the word eureka in the

context of Archimedes when he ran out of his bath, naked on the streets saying Eureka

Eureka; and that means, he had solved problem of how much is a loss of a body which is

floating under water, the loss in the weight or the decrease in the weight is equal to the weight

of the water that is displaced.

So, once he realized that he ran saying Eureka; and Eureka basically meant, I know, I know.

And the word heuristic also comes from the same source which means that, in some sense the

algorithm knows where it should go. If you are following my book, you will find all the

material on chapter 3 essentially. 
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So, let us just do a quick recap; we have a state space, in which we have a start node and a

goal node.

(Refer Slide Time: 02:27)

And we have studied depth first search, where we take out the nodes from the head of the list

and then we add the new nodes back at the head of the list. 



(Refer Slide Time: 02:39)

Which results in this behavior of depth first search that we have seen that, it dives into the

search space; it has a very impetuous nature, just goes off without you know looking here and

there. 



(Refer Slide Time: 02:52)

The other algorithm that we saw was that, we again take out nodes from the head of the open

list; but this time we add them to the tail of the list and therefore, we treat open as a queue.
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And as a consequence, the behavior of the search algorithm is startly different; it tries to stay

as close to the source node as possible and you can think of it as a conservative search

algorithm. And as a result of its conservative behavior, it also gives us the shortest path; which

means the least number of moves in the solution.



(Refer Slide Time: 03:26)

Now, both of them are oblivious of the goal, they are just not aware of where the goal is;

ideally the goal, they should try to move towards the goal. So, irrespective of where the goal

is, they both the algorithms follow the same predetermined trajectories every time essentially. 

Now obviously, that is not intelligent behavior, but it could still form the basis or a

foundational layer of a higher level algorithm which uses them; but even for this basis of

foundational algorithm, we can try and do better. So, what we need is a algorithm with a sense

of direction, and that is what we will start looking at in this sequence of lectures, ok. 
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So, we have a notion of a heuristic function. The heuristic function which is a function of a

node n; in this case this is the node n, let me draw that again n. Traditionally we write it only

as a function of the node n, though in reality it is a function of the node n and node g or the

goal node; but since very often you may not specify a goal node as we saw in the water jug

example little bit earlier, you may specify the conditions for the goal to be true which may be

true in a set of nodes. 

So, we do not tend to express that goal part here and it is kind of implicit that what the

heuristic function does is that; it estimates the distance to the goal essentially. For sake of

simplicity in this diagram we have drawn one goal, but if there were many goals; then for each

node that we are interested in, we would choose a distance to the nearest goal essentially.



So, as n varies over these different nodes, we can which are the successors of that start node s;

we can compute the heuristic value, and then based on the heuristic value we decide which

node to open. Unlike depth first search and breadth first search which always chose the nodes

in the predetermined fashion; heuristic search will choose the nodes based on the estimated

distance to the goal, and that is why it is called a heuristic search algorithm.
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 The algorithm that we are talking about will be called best first; in the sense that it always

chooses the best node first. Now essentially you can imagine that you have a set of candidates

which are stored in open list, and for every candidate we know what is the estimated distance

to the goal; and we want to choose the one which has the lowest estimated distance to the

goal. 



The way to implement this which is consistent with what we have done earlier is that, we will

still extract the node from the head of the open if it is a list like this; but we will keep this open

sorted on the heuristic values. So, sometimes these are called as h values. 

So, this open list will be shortest and the on the h values; so the lowest will be here, and the

highest will be here essentially. So, when we pick the node from head, it will always pick the

one with the lowest h value; and when we had done generating the new nodes, we will inserts

them at an appropriate place essentially. 

In practice of course, we do not sort the list; in practice we would maintain open as a priority

queue, which is just an efficient way of making sure that you always extract the node with the

lowest heuristic value essentially.
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So, here is a variation of our algorithm that we had written for depth first search. So, we are

not doing depth first search, but we are doing best first search. And the only difference that we

are making here or only difference that we are doing here is that; instead of saying that you are

going to append the new nodes to the tail of open, we are saying we will do that, but after that

we will sort the nodes on heuristic value. 

Of course, a little bit of extra change that we also need to do is that; instead of the node pair,

we will have to make it a node triple and include the heuristic value as part of the this thing, as

part of the node representation.

So, in the node pair we have a current node and the parent node; in the node triple we will

have a current node, the parent node and the heuristic value for the current node essentially.

So, as I said little while ago, in practice actually open is maintained as a priority queue; but we

can conceptually think of it as being sorted essentially, which is doing the same thing that

always giving to us, so node with the lowest heuristic value.



(Refer Slide Time: 08:52)

If you were to do this, then we have our modified algorithm best first search here; and observe

that we have a triple here, where we have a start node, it has a parent which is null and the

heuristic value of the start node which is the estimated distance to the goal essentially.

And at every point we extract a trickle triple; and the first node n is what we are interested in,

we apply the goal test to that n. And again we have called this node, node pair here, this is

simply for the sake of reusing the earlier code; but you could have called it node triple, after all

there is nothing in the name essentially.

So, everything else remains the same; there except that we have changed the representation to

include the heuristic value and conceptually at least we are sorting this open list. We say I will



again repeat to say that, in practice you would want to do it as a priority queue which is

implemented as a heap.

(Refer Slide Time: 09:53)

Now let us look at this problem that we have seen earlier; the eight puzzle problem, in which

you have to move around tile. So, either you can move this tile here or you can move this tile

here or you can move this tile here; resulting in these three moves that we can see here. And

then once having made a move, you can choose; you have to choose again what is the next

move you want to make and so on.

So, the thing that you want to focus on is, how do we decide that for example, between the

three of these nodes; what is the node that we should pick? How do you estimate the distance

to the goal essentially? 
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So, we can think of a couple of heuristic functions; one function which simply says that, count

the number of tiles which are out of place. So, if you look at this for example, the first

successor here; we can see that 6 is out of place, because it should have been here, 2 is out of

place because it should have been here. 1 is out of place, 8 is out of place; but 4 is in place, 7

is in place and 3 is out of place.

So, you can see that five tiles are out of place, three tiles are in place. So, we can think of this

as a distance of 5, which says intuitively that you have to change the position of 5 this thing

essentially. 

The other measure that we can use is the notion which is close to manhattan distance and what

you do there is; that you found the distance to every tiles destination for each tile essentially.



So, if I look at this third example here; then you can see that for 6 to go to it is destination, it

has to make one move here, a second move here and then the third move here.

So, the distance of 6 is 3, the distance of 2 is 0; because it is in place. Let us distance of 5 is 0,

4 is 0 and if you look at 3; then the distance of 3 is also 3, because it has to come here, then it

has to go here, then it has to go here this 3. So, in this manner we compute the distances for

each tile and the sum of the distances will give us an estimate of distance to the goal.

Now, both of us in some sense try to tell us, both of the; both of the heuristic functions try to

tell us which node is closer to the goal; the first one is kind of more coarse, because it simply

says how many tiles you have to get into place. The second one is a little bit more refined;

because it tells you how much each tile will have to move to reach the goal node essentially.
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The trouble with heuristic functions is that, it is very difficult to define heuristic functions

which are accurate. So, here is let us look at a another example, where this is the node n that

we are looking at; and you can see that the first heuristic function which is also called a

hamming heuristic function, because it tells you how many things are out of place. So, in this

case we can see that there are two things out of place; 1 is in place, 2 is in place, 7 is out of

place, 4, 5, 6 are in place, 8 is in place and 3 is out of place. So, that gives us this count of 2

essentially.

If you have counted the distances, then this distance would be 6 for this node. Now if you

look at the two successors that this node has; you can move 4 down that is what you have

done here and we get this thing. And now 4 was in place earlier and now it has gone out of

place; so all these values have gone up by 1 here essentially. Alternatively you could have

moved 8 here in the second move, and again 8 was in position and it is gone out of place, so

the heuristic values are gone up.

So, this kind of illustrates of act that heuristic functions are not always accurate. Now clearly

if you want to go from this node n to the goal node g, you will have to go through one of

these through children nodes. But the heuristic function is telling you that both these children

on both the heuristic functions are worse than the current node, and that is a phenomenon of

local minima in this case, we will explore this a little bit more. 

That is a problem with heuristic functions that, you often end up with local minima or maxima,

where essentially what you want to reach is a value of 0 and you are starting with a value of 2

in the case of first heuristic function or 6 in the case of second heuristic function; but in both

the moves the heuristic value is going up essentially, now which does not look very

encouraging, but it has to go through one of those nodes.

Very often if you have played this puzzle as a child, you would have seen some pictures which

are trying to, which are placed instead of these numbers. And in from that perspective we can

think of this as similarity that, you try to move to that successor which is more similar to the

goal node, ok. 
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So, in this example either move increases the distance to the goal; but if you are working with

a puzzle which had pictures on it, then you can see that the node n is more similar to the goal

node g, then either of the two successors. And you can think of similarity as the inverse of the

distance; because the closer you are the smaller is the distance, the more is the similarity. So,

that is another way of looking at it.

And this also illustrates the fact that, if you make either move; that if you move this tile here or

if you move this tile here, which is what we did in the same, the same because it is the same

puzzle actually with the figures of the with the picture of the dog shown in, the location is still

the same. If you were to kind of look at this slide carefully; you would see the numbers that

we were talking about 7 is here, 8 is here and so on.



It is a just that we have pictures and therefore, we can think of similarity essentially. We can

see a similar phenomenon for Rubik’s cube which some of you must have solved is that; very

often you have to move from a state which is fairly similar to the goal state, but where any

move makes you the little bit less similar. So, this problem we will look at again later. 

(Refer Slide Time: 17:05)

Here is another problem, supposing you want to do geographical route finding; for example,

Google maps does it for you nowadays. And the problem here is that, you are at the start

location here and from this start location, you can either go to this successor or this child or

this one or this one, and you have to choose which of those three is the right move to make, if

you want to reach this goal node here. So, this dash red line that you see, these are Euclidean

distances; because the map is on a grid and you can see that. 



Let us say this is in kilometers; so we are 2, 3, 4, 5 kilometers away and likewise in this

direction 1, 2, 3 kilometers away. So, one way of estimating the distance to the goal is to

measure the Euclidean distance which is the distance as the crow flies, which you know is the

formula which you can compute by taking the differences adding and taking the squares of the

differences, adding them and taking the square root. 

And this red lines that you see here, essentially are the distances as the crow flies; and the

numbers you see inside this are the actual computed values, so 8.42, 9.43 and 7.21. So, clearly

this is the best move to make for you, and you can see that this also gives you a sense of

direction.

The problem is, the heuristic function is only looking at difference in coordinates. So, it is not

aware for example, that there might be a river running across the path and the only bridges

which happened are here and here and here; but you know it will try and drive you closer in

the direction of the goal and we will see a real world example in a moment.
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Another estimate of distance is the Manhattan distance, which as you can see simply the

modulus of the differences of the x coordinates and the y coordinates. So, this is called

Manhattan distance, because it is the kind of distance you would have seen in a well structured

town or city like Manhattan; where if you want to go from one point to another, you have to

walk along one road certain number of blocks and then walk along a perpendicular direction. 

So, the distance that you walk along is what you count. So, for example, in this case the value

is 10; because you walk 6 units this side and then 4 units up, and that is a estimate of distance.

So, this is 10 and this is 12 and this is 13; and as you can see again this also tells you that, this

node is a better node to, better node to go to. 
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Now if you want to learn best first search algorithm on this problem; then you would find that

this is the kind of exploration it would have done, it would have the 1st node or the 0th node

would they have been start. Then as we just saw, it would have gone to this node number 1;

then you would have gone to this node, because it appears to be closest to the goal. 

And then it would be forced to go here and then to node number 4; till after which eventually

it finds a path through node numbers, nodes which is it sees in the 5th turn, 6th turn, 7th and

8th turn and this is the path where it is found to the goal.

So, this is the behavior of the best first search algorithm, it tries as far as possible to go

towards the goal; but if there is a obstacle on the way or in this case if there is a river, then you

cannot essentially.



(Refer Slide Time: 21:03)

So, here is a real world example, I was looking at a couple of days ago is that; if you are here

at IIT Madras and if you want to go to the Anna University Alumni Club, which was hosting,

which is in fact hosting a bridge tournament and how do you get there? 

So, if you consult Google maps, then you can see that, that Google maps gives you this as the

best path and it gives you some alternate paths which you can go like this; but it has figured

out that there is a bridge here and there is a bridge here, so the path has to go through those

bridges. 

And that is a thing that any search algorithm will do for you; as long as it is a global search

algorithm, it will investigate all possible paths and take you to the path which, it will find a

solution for you essentially. 
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Now, if you were to superimpose a graph on this same problem that we saw with the start

node and the same goal node; you will see that the search algorithm will drive you towards

this set of nodes which appear to be closest to the goal node essentially. But because the

algorithm is complete; because it maintains the open list all other candidates that it has not yet

inspected, it will eventually find a path to the goal node essentially.
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So, how does the search frontier look like? We have already seen earlier that the search

frontier for depth first search is the set of pink nodes that we have we are seeing here, which is

growing linearly; this search frontier for breadth first search was the set of yellow nodes that

we have seen here. 

In practice because the performance of best first search depends on the heuristic function and

as we have seen that heuristic function can sometimes be misleading, it can take you towards

the riverfront when you have to go from there to somewhere else; so in practice so such

frontier tends to be quite erratic in nature. 



But it has been a empirically observed that, it is often tends to be exponential in nature. If you

had a perfect heuristic function which is like an oracle which tells you what is the right choice

to make it every place, then the search frontier would simply be linear essentially.
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If you just go, go off in some direction which takes you to the goal node essentially; but

unfortunately our heuristic functions are not perfect and hence the search frontier tends to be a

little bit larger than a linear function.

Whatever the quality of the solution found, so let us take this slightly contrived example; if

you are at the start node here and you want to go to the goal node, then the there are short

segments of roads which take you to a path which is heading towards a goal, but the number



of segments is five, whereas there is a longer way of reaching the goal which has only two

segments. 

So, if you are interested in the number of hops only, then you can see that best first search

does not find the shortest path. You will see variations of best first search which will also give

you shortest paths later essentially; but at the moment we are focused more on finding the

solution quickly and that is what the heuristic function is trying to do for us.
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 Now as I said the search frontier for this thing also tends to be exponential in nature, which is

a bit unfortunate. So, we have to look for other algorithms; because you know we do not as

computer scientists, we do not like things which are growing exponentially. So, will start

looking at variations which require less time and less space. 



And we start with an algorithm called hill climbing, which is a local search algorithm. It is

local in the search, in the sense that it only looks as the local neighborhood of a current node;

as opposed to best first search which looks at a all the possible candidates that we have ever

generated which are kept and stored in the open list essentially.

Hill climbing algorithm just throws away all the earlier candidates, and the algorithm is can be

seen as following; that you are at some given node which is initially the start node and you go

to a neighbour which is the best of all its children. So, you do moveGen on that, sort it, pick

the head that is the best node; and if this new node is better than the old node, which is given

by the fact that it is heuristic value is less, you move to the new node which is shown here and

then look at the next node which is the one of the children of the, one of the neighbours of the

node essentially.

So, we just keep repeating this process of moving to the best neighbor, if it is better else you

just stop. So, while h of new node is less than h of node, you do this; otherwise you exit from

there. In practice we do not even need to sort the children of any given node, because sorting

is still quadratic in nature or at least n log n in nature; whereas you just want the best nodes,

so you can just scan it once and get the best node in linear time. But that is a matter of

implementation; we should not worry too much about, ok.

One thing to notice is that there is a change in the termination criteria; we simply said that if

you cannot find a better node you terminate, which is very different from. What we said earlier

is that if you found a goal node, you terminate or if there is no path to the goal node, then you

terminate. 

Here it is neither, it simply says if you cannot find a better node, you terminate; and that we

will see results in certain change in behavior. The point to note is that, as a local search

algorithm it has burnt its bridges by not storing the open list. So, it can go and get stuck in the

local optima.
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The nice thing about hill climbing is that, it is a constant space algorithm, it only looks at the

neighbours of a node; it is space requirement is just constant, which is a vast improvement on

the exponential space for breadth first search and depth first search that we need it. Overall

space requirement, its behavior is it only moves to a better node; which means it will terminate

if it cannot move to a better node. 

So, consequently it is time complexity is linear in the depths essentially; that it goes to a

certain distance and stops and you know, but it does not spend time looking here and there. Its

termination criteria as we just mentioned is different; it stops when no better neighbour is

available.



So, in some sense it reads the problem with an optimization problem; it says give me the best

value of h that you can find, instead of saying give me a path to the goal essentially. So, it is

like thinking of it as an optimization problem and it is not complete essentially, ok.

As we will see that it may not find the global optimum which corresponds to the solution. So,

if you remember the eight puzzle example and city map example that we considered a little

while ago; you would notice that hill climbing would have you know stopped much before

reaching the goal essentially. 
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So, hill climbing is also known as a steepest gradient algorithm or gradient descent algorithm

or a gradient ascent algorithm as a case may be; it really depends on whether you want to

maximize the heuristic function or minimize the heuristic function.



And if you think about this maximization and minimization are just two sides of the same coin.

So, in the eighth puzzle for example, if you want to minimize the number of tiles which are out

of place; it is equivalent to saying that maximize the number of tiles which are in place

essentially.

So, if you are talking about the maximization example; then hill climbing is essentially saying

that you go in the direction of the steepest gradient, you just keep climbing. And you stop

timing when you have reached the point where no neighbour is better than another neighbor.

Now as you can imagine if you were doing this; if you were blindfolded and put on a hillside

and you would do something like this and not surprising with this algorithm is called hill

climbing. 
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You would reach a place where you thought was the top; but if you were to open your eyes,

you would see that this spot is called as a local maximum. And you have not found a solution,

but the algorithm will terminate at this place essentially.

So, what do we do, how do we address the problem of not getting stuck in local maxima? This

is something that we will do in the next few classes; we will start off by looking at some

deterministic algorithms to avoid local maxima or we could look at some stochastic algorithms

as well. And we also need to get an insight into the fact that, the surface that we are talking

about is defined by the heuristic function.

That if you could somehow define a heuristic function where the surface is monotonic; in the

sense that there as only one maxima or only one minima is the case may be, then. For example,

if the surface was like this, then you can see that you would have reached the global

maximum. And we will see, we will get some insight into this as we go along; that the surface

is defined by the heuristic function. 

So, if you were to choose a different heuristic functions, so we saw there are two possibilities

in the case of eight puzzle; there were two possibilities we considered in the city planning. 

And in the next class we will take a more concrete example, where we will look at the blocks

world domain; and we will see that there are certain heuristic functions which define a

monotonic surface, which would take you to the the goal node. But jagged surface like the

one that we have started here with, you could end up on a local maximum, ok. So, we will do

this in the next few classes essentially. 


