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From Edges to Blobs and Corners

Last class, we spoke about edge detection and went into details of the canny edge detector

and this lecture, we will move a little forward and talk about other kinds of artefacts from

images that are practically useful, specifically blobs and corners.

(Refer Slide Time: 0:40)

Before we go there, we did leave one question for you at the end of the last lecture, hope you

spend some time working out the solution yourself, if not, we will briefly discuss the outline

right now and wait for you to work out the details yourself. So, we talked about trying to use

canny edges to get straight lines in images. How do you do this? You first compute canny

edges in your image, which means you would compute your gradients in the X direction and

the Y direction and you could also compute your thetas, which are your angles of each of

your edges, which is given by .𝑡𝑎𝑛 −1 󠁧𝜵𝑦
𝑓

𝜵
𝑥
𝑓

Now as the next step, what we do is assign each edge to one of 8 directions, 8 is just a

number you could choose anything else, but you assign each edge to one of 8 directions. So,

you probably combine several inches into a single bin. And for each of these 8 directions, let

us call one of those directions to be d, we obtain what are known as edgelets and what are

edgelets? Edgelets are connected components for edge pixels with directions in (d-1, d, d+1).
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So for a given, so you have 8 possible directions that you have bin all your edge orientations

into and you take one of them and connect them with edges, with orientation d-1 and d+1. So,

you will get a set of what are known as edgelets.

(Refer Slide Time: 2:28)

Once you compute your edgelets, we then compute two quantities, straightness and

orientation of the edgelets. And the way we go about doing this is using the eigenvectors and

eigenvalues of the second moment matrix of the edge pixels. So what we do here is you have

your edge pixels that belong to a particular edgelets, so you take all of those pixels and

compute such a matrix. So if you look at the first entry here, the first entry here corresponds

to (X - ), is the mean X dimension of all of those pixels in the edgelets and each Xμ
𝑥

μ
𝑥

corresponds to one of those X-coordinates of one of those edgelet pixels, so you are simply

computing in some sense, a sense of variance with respect to the main edge pixel along the X

direction. Similarly, you have a variance along the Y direction of those edge pixels with

respect to their means and you also find the covariance with respect to X and Y directions.

So once you have this very similar to how principle component analysis happens, we take the

eigenvectors and eigenvalues of this second moment matrix and remember, the eigenvector

corresponding to the largest eigenvalue will give you the direction of the maximum variance

among these pixels and that is what we are looking for at this time.
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So we finally decide that the orientation of the edgelet is going to be given by ,𝑡𝑎𝑛−1
𝑣
1

𝑣
0

where is the larger eigenvector. By larger we mean the eigenvector corresponding to the𝑣
1

larger eigenvalue. Remember here, that M is a two cross to matrix, which means you will

only have two eigenvalues at maximum, and you are going to take the eigenvector

corresponding to the larger eigenvalue and we call that to be and is the other𝑣
1

𝑣
0

eigenvector.

So if you take a tan inverse of these two vectors, that theta will give you the direction of that

overall edgelet. So in case, you are finding this difficult to understand, please go back and

read principle component analysis and you will be able to connect that to this particular idea.

And we define straightness to be , where is the second largest eigenvalue and is the
λ
2

λ
1

λ
2

λ
1

largest eigenvalue. So the straightness here is going to be the highest value when both the sλ
2

and s are close to equal. And once you get this quantity, you just threshold the straightnessλ
1

appropriately and store your line segments.

So it really does not matter whether you measure straightness as or , you just have to
λ
2

λ
1

λ
1

λ
2

ensure that you construct your threshold appropriately. If you inward the straightness ratio,

you just have to ensure that you threshold it at an appropriate value and then obtain your line

segments.

(Refer Slide Time: 6:02)
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So here is a visual example. So you can see that after applying canny, you get all these edges

on the left. So you do get lots of edges, which are fairly well connected, not too noisy, but not

all of them correspond to straight lines, many of them correspond to edges that represent that

say the texture of the floor and so on and so forth. But we really do not want that when the

model, let us say, there is an application where we really do not want it. So then you use this

kind of an approach to obtain which is the straight lines from your canny edges. Think more

about this and you can, I think knowing more about PCA could help you understand this a bit

better.

(Refer Slide Time: 6:44)

Moving forward. As we said, the focus is going to be going from edges to newer artifacts

such as blobs and corners. So remember, last lecture, we talked about taking the Laplacian of

Gaussian and we said that taking the zero crossings of the Laplacian of Gaussian could give

you a measure of edges in an image. That was another way you could obtain edges in an

image. We are going to talk about it slightly differently now. So once again, just to recap,

remember this is your Gaussian, this is your derivative of the Gaussian and this is your

Laplacian of Gaussian where the Laplacian we define as is equal to + .∇2𝑓 ∂2𝑓

∂𝑥2
∂2𝑓

∂𝑦2
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(Refer Slide Time: 7:35)

Now, let us say an example of a three cross three Laplacian of Gaussian filter is going to look

somewhat like this, where you have a minus four in the center and one, one, one, one in its

nearest neighbors and 0, 0, 0, 0 in its next level of nearest neighbors. But can you try to guess

why this is a relevant Laplacian of Gaussian filter? One point to notice here is an equivalent

Laplacian of Gaussian filter could also have been 0, 0, 0, 0, -1, -1, -1, -1 and 4.

So if you actually visualize this filter, you would see that at the center, there is a peak at its

immediate nearest neighbors, there is a -1, there is a value that goes below underneath your 0

and then there are 0s in other places. So if you try to visualize this filter would be very, very

similar to the shape of the Laplacian of Gaussian that we just saw on the earlier slide, but that

is from a geometric or a conceptual perspective.

Why did we say 4? Why not 8, why not any other number? Once again it goes back to

approximating the gradients in some manner and we can work this out to show you how this

works out.
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(Refer Slide Time: 8:59)

So remember we are competing second derivatives here. So can be written as∂2𝑓

∂𝑥2

approximating using first principles, you can say f(x + 1, y) + f(x - 1, y) - 2f(x, y). Similarly,

you can write it out for . Now, if you try to put both of these into your Laplacian of∂2𝑓

∂𝑦2

Gaussian equation or your Laplacian equation in this particular case, you would then have

is equal to f(x+1, y) + f(x-1, y) + f(x, y+1) + f(x, y-1) - 4f(x, y). This should straight∇2𝑓

away ring a bell for you as to why you have got this kind of a filter.

Remember, at f(x, y) the coefficient is -4 at its neighbors x + 1, x - 1 and similarly y + 1, y -

1, the coefficient is 1. So this simply came from taking an approximation of the gradient.

Remember, you could have other kinds of approximations of the gradient with respect to the

local neighborhood. You could consider larger windows one and so forth. If you do that,

obviously the definition of the Laplacian of Gaussian filter would have to be appropriately

modified.
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(Refer Slide Time: 10:26)

Here is another visual illustration. Here is the original image, here is simply taking the

Laplacian and here is the result if you take the Laplacian of Gaussian. Remember again, that

Laplacian of Gaussian gives you the smoothing effect, which smoothens out the noise and

then takes the Laplacian of your original image. Once again, remember that we are just taking

a filter and convolving the filter by moving it around at every point of the image and getting

your output.

(Refer Slide Time: 10:56)

Now let us ask the question. So this is something that you partially saw the last thing. So

what else can Laplacian of Gaussian do? Do you have ideas?
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(Refer Slide Time: 11:12)

The other thing Laplacian of Gaussian can do is detect blobs. Why? Remember that a

Laplacian of Gaussian filter looks somewhat like this. Remember, you could write the

Laplacian this way or the other way, it really does not matter. So at the end of the day for

edge detection and similar detection of other artifacts, they only take the absolute value,

whether the output is negative or positive, we just take the absolute value.

So that would change if you had a white circle with a black hole or a black circle with the

white hole. We ideally do not care, both of them are blobs to us and we ideally want to

recognize blobs in both these cases. So you could write your Laplacian of Gaussian this way

or another way where your central peak goes up on top and the other part comes below. This

is similar to writing the Laplacian of Gaussian with a -4 in the center, and 1, 1, 1 around or a

four in the center and -1, -1, -1 around.

So now if you try to visualize this as an image, so if you took a Laplacian of Gaussian filter, 3

by 3 maybe too small, let us say you expand it, take a larger neighborhood. Let us say you

take a 7 by 7 Laplacian of Gaussian filter or 11 by 11 Laplacian of Gaussian filter, you would

find that the Laplacian of Gaussian filter, just the filter itself remember that is also a matrix

that also can be visualized as an image would look something like this, a black blob in the

middle or white ring, which is where you have a peak and gray all the way in other places.

You could also have an invert of this, where you have white in the middle, a black ring, and

then gray all over. Both of these are similar. And by looking at the filter, you can say that it is

likely to detect blobs. In some sense, convolution of the filter can be viewed as comparing a
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little picture of what you want to find against all local regions in the image. So there is a

slight nuance which is different. This does look a bit similar to template matching for which

you use cross correlation, but in convolution, you would double flip the filter and search for

that across the image.But when your filter is symmetric, it really does not matter, both cross

correlation and convolution will be looking for the same filter in the image.

So once you have aLaplacian of Gaussian like this, you can probably count sunflowers in a

field or you can probably detect red blood cells in your blood test, any structure with blobs

across an image. Clearly in this image with sunflowers, there are blobs of different sizes. So

you would have to run a Laplacian of Gaussian with different blob sizes to be able to capture

all of those blobs in the image.

(Refer Slide Time: 14:06)

Let us now move forward to the next artifact, which is very useful to extract from images.

For a large part extracting corners from an image was a very very important area of research

in computer vision in the late 90s and early 2000s, a lot probably entire 90s and early 2000s.

So we will try to describe one popular method today and let us start by asking the question.

Suppose we had an image such as this, what would be interesting features that set apart this

image from any other image? Remember that if you want to do any processing, we want to be

able to extract some unique elements of the image. So what are those unique elements in this

image?
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(Refer Slide Time: 14:53)

And you are going to say that those are going to be your corners, but let us try to go there. We

ideally want to look for images, image regions that are unusual, something that sets apart that

image, that region in the image from other images. If you have a region that is textureless, for

example, the blue sky, then that could be common across several images and it may not really

be unique to that particular image, you may not be able to localize that region in any other

image with the similar content.

You are ideally looking for patches with large contrast changes, large gradients. Edges are a

good example, but we will talk about why edges may not be the right artifact in a moment.

But we are ideally looking for some patches or some regions in the image which have large

contrast changes, such as gradients. But the problem with edges is edges suffer from what is

known as the aperture problem. By aperture problem we will just see a visual illustration on

the next slide, but while edges are good, unique aspects of a particular image, they do suffer

from a problem, which we will talk about in the next slide.

So what we ideally are looking for are regions of the image or what we are going to call

corners, where gradients in at least two different directions are significant. So remember an

edge is an artifact where you have a significant gradient in one direction, which is going to be

normal to that edge, it could be whatever direction the edge maybe, the normal direction to

that edge is going to be the orientation of that edge. But we are saying, we want those points

where there could be significant gradient in two directions. What does that mean? We will try

to answer.
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(Refer Slide Time: 16:50)

Let us take a tangible example. Let us assume that there is an artifact such as this, this looks

like some inverted V let us say. And we have such an artifact and we want to find out, which

part of this image, let us assume this is the full image or ignore the blue box, the blue box is

for explaining it to you. Just consider the image with just this inverted V. We want to find out

now which aspect of the image is unique to it, which can help us recognize it, say other times,

or if you view the image from other angles.

So if you consider this blue box placed here, you see that that is a flat textureless region.

There is no change in intensity in that region. So it is not going to be very useful. It is like the

blue sky with absolutely no change. It is not going to be very useful when you try to compare

this image with other images.

So if you now place the blue box on the edge part of the image, this is good. There is some

artifact that is useful, but the problem is if you move this patch here or here, it would all have

the same response. You would never know whether you placed your box here or here or here,

because all of them would have exactly the same response. And there is no difference in the

local characteristics in all of these places.

So which means while edges are useful, there is something that they are lacking. So which

means if you try to match or let us say you take a panoramic photo in your phone and you try

to align two images, you may not know which part of the edge to align at. We are ideally

looking for placing the box at that kind of a point where there is change in two directions and
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that point could be unique to this particular image. And ideally, we are looking for many such

points in an image, but such points are the kind of points that we want to detect in an image.

(Refer Slide Time: 18:59)

How do we find such points in an image? We know how to do edges now, but let us try to go

one level further to try to see how do you find such corners in an image. To do that, we are

going to define a quantity called auto correlation. As the name states it is autocorrelation, it is

correlation with itself. So you are not going to use any external filter, we are going to take a

patching image and see how it correlates with itself. What does that mean? Let us try to

quantify that.

So we are going to define the auto correlation function as: you take a patch in the image and

you compute the sum of squared differences between pixel intensities with small variations in

the image patch position. So if you had a point in the image, let us say you place it at the𝑝
𝑖

center, that is what is going to be pi. And if you now have a small δu, which is going to be the

difference, you are going to move that patch by a certain δu, remember and δu are both 2D𝑝
𝑖

coordinate, so even Δu will probably have a δu and δv, for instance, they are going to be two

dimensions there, it is a vector, which is going to be, so you take I( , which is the image𝑝
𝑖
)

intensity at that point , then you move that point, + Δu, you move it a little bit and you𝑝
𝑖

𝑝
𝑖

see what is the image intensity at that new location and you take the sum of squared

differences for all points in that particular patch.
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So if you take a square patch, take every point, move it a bit, so move that entire box a bit and

then you compute pairwise distances between the same locations in the original patch and the

new patch and sum them all up. This is what we define as autocorrelation.

About this function w( ). w( ) is a function that tells you how much you want to give𝑝
𝑖

𝑝
𝑖

weight for each particular point in that patch. Maybe for the central pixel, you want to give

more weight. For a pixel at the periphery of that square of that blue square that you have, you

may want to weight it a little lesser. So you could have a fixed weight for all points in that

square or you could have a Gaussian which defines w( ), where you weight the center pixel𝑝
𝑖

more and the pixels at the periphery a little less. We define this as auto correlation.

(Refer Slide Time: 21:39)

Now let us try to see how do you compute autocorrelation and then come back to how do you

compute corners using this autocorrelation. So let us look at this more deeply. Let us consider

the Taylor Series expansion of your I( + Δu), remember + Δu) is about taking the patch𝑝
𝑖

(𝑝
𝑖

which was centered at and moving it by a Δu and placing it at a slightly offset location in𝑝
𝑖

the same image. From Taylor Series expansion, you can write this as I( ) +∇I( )Δu, where𝑝
𝑖

𝑝
𝑖

∇I( ) is the image gradient at that particular location. ( , ). We know how to𝑝
𝑖

δ𝐼(𝑝
𝑖
)

δ𝑥

δ𝐼(𝑝
𝑖
)

δ𝑦

compute the gradient, we have already seen that so far.
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(Refer Slide Time: 22:35)

Now let us write out autocorrelation. Remember the definition of autocorrelation that we

wrote on the previous slide is this one, where we said, autocorrelation is w( )[I( +δu)-I(𝑝
𝑖

𝑝
𝑖

𝑝
𝑖

)]2. Now we are going to replace I( +δu) with this Taylor Series expansion. So plugging that𝑝
𝑖

in here, you are going to have w( ), this first term here gets written as I( )+δI( δu-I( ).𝑝
𝑖

𝑝
𝑖

𝑝
𝑖
) 𝑝

𝑖

So just to explain the notations here. By δ(u,v) mean a vector, δu and say δv, because of this,

we have taken out a summation here, we are simply writing it as one of those δu's inside. So

anyway, there is going to be a summation for δv, which will take care of the other competent

of δu.

Once you have this, you can see that I( ) and I( ) gets canceled and you are left with𝑝
𝑖

𝑝
𝑖

summation over x, y, w( )[δI( )δu]2 . And we are going to write that as a quantity, ΔuTAΔu.𝑝
𝑖

𝑝
𝑖

So remember that you have this [δu]2, you just split it into two parts where you have one part

that comes here and one part that goes here and the rest of what you have w( )δI( ). You𝑝
𝑖

𝑝
𝑖

combine that into a matrix called A.

How would A look?
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(Refer Slide Time: 24:23)

How would A look? A would look like something like this. Remember A is going to be a

combination of w into your δys, δIs, so it means A is going to look something like this,

w(u,v), you are going to have remember two components of the summation. , , , ,𝐼
𝑥
2 𝐼

𝑥
𝐼
𝑦
𝐼
𝑥
𝐼
𝑦
𝐼
𝑦
2

those are going to be your gradients and that is going to be your A matrix.

So we took the definition. So we defined autocorrelation in a particular manner where we

said, we will take a patch, move it a bit and see how the image properties change in that local

region. So we then took the definition of autocorrelation, played with it a little bit and then

came up with an expansion which looks somewhat like this and we are not focusing on this

matrix A.

So this matrix A, so δu is simply the change that you imposed in the patch location, that is

what you imposed. A is what is giving you how the gradients changed between those two

patches and a w weighting factor that tells you how much you should weight the central part

of that patch versus the peripheral parts.

So since A is what defines the intensity change, we are going to consider an eigen

decomposition of A, which is given by uλuT, where λ is going to be a diagonal matrix with λ1

and λ2. Two eigenvalues, remember A is a two dimensional matrix, which means the

maximum number of eigenvalues you can have is two, where Aui=λui, your standard eigen

decomposition, which is wonderful.
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So once again started with autocorrelation, wrote it in a slightly different manner and then

now we are done in eigen decomposition of A. Where do we go from here? How do we go

from here to finding a column?

(Refer Slide Time: 26:29)

That is the question we are asking. Think about it for a moment. How do you think you can

go from the eigenvalues of A to a position of a column?

Very similar to the discussion that we had at the early part of the lecture, when both λ1 and λ2

are large. You know that the intensity changes in both directions at those points, when either

λ2 is much greater than λ1 or λ1 is much greater than λ2, it is going to be an edge because there

is going to be change only along one direction. And if both λ1 and λ2 are small, you are going

to say it is a flat or textureless region. So which means we know that from the eigen

decomposition of A, all what we are looking for is both the eigenvalues to be height and we

know we have probably hit a corner.

(Refer Slide Time: 27:35)
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So let us see how you actually do this inference. So it is another way of looking at it is, so

wherever there is a vertical edge or a horizontal edge, you are going to have either λ1 greater

than λ2 or λ2 greater than λ1. At a corner, we are going to have both λ1 and λ2 to be large and

in a flat region, you are going to have both λ1 and λ2 to be very small.

(Refer Slide Time: 28:02)

So what do we do with this? So the way we are going to compute your corner, this was a

method given by a person called Harris and that is why it is known as the Harris Corner

Detector, it is a very popular detector. It was used for several years. Of course, there have

been lots of improvements and better methods that people have developed but this was one of

the earliest corner detectors that was developed and was used for many years. So the entire

procedure follows something like this.
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You compute gradients at each point in the image. Using that, you compute your A matrix.

You can use a weighting function, or if you do not use a weighting function, you just assume

that you are going to consider all of them to be equal, all of the patch position, positions of

that patch to be equal. Then we ideally want to compute your eigenvalues and decide your

cornerness based to the eigenvalue, but because eigen decomposition by itself can be a costly

process, we try to do a slight deviation to be able to compute our cornerness measure.

So we are going to define a cornerness measure as: λ1λ2 - κ(λ1+λ2)2. I will let you work this

out to show that when this entire quantity is high , you will know that both those λ1s and λ2s

are high. Work this out for yourself. Try out different λ1s and λ2s and you will see what I am

saying. But what is interesting here is, λ1λ2 is nothing but the determinant of A and (λ1 + λ2) is

nothing but the trace of A, which means we can define our cornerness measure as

det(A)-κ.trace2(A). κ is just a constant that you have to define to get what you want to get.

For different images, you may have to set kappa differently.

Why is this useful? You no more need to compute the eigen decomposition of A matrix, you

only need to compute your determinant and trace, which is a bit easier than computing your

eigen decomposition.

Finally, you then take all points in the image whose cornerness measure is greater than the

threshold. So you can take lots of different points, probably all points, compute their

cornerness using autocorrelation, and then whichever is greater than a particular threshold

you actually call them corners. You can finally also perform non-maximum suppression,

where if you find that there are many corners in a very small local neighborhood, you pick

the one with the highest cornerness measure. That is your non-maximum suppression that we

also talked about in the canny edge detector. So this non-maximum suppression will keep

coming back to us at various stages in this course in various use cases.

(Refer Slide Time: 31:05)
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So, here is a visual illustration of the Harris corner detector. So, let us consider 2 images of

the same object taken from different angles. The objects are at different poses and the

illumination is also different. Let us try to run the Harris corner detector. Ideally what we

want is that in both these images the same parts or the same corners in the doll get picked.

Why is that relevant? Once again if I take the example of say stitching different images in

your cell phone a panoramic mode or something like that, we want the same points in both

those objects to be located, so that they can be matched and probably stitched together to get

a panoramic image. Just as an example of an application.

(Refer Slide Time: 31:53)

Let us see it now. So here is the step of computing the cornerness where you do auto

correlation, get your cornerness values.
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(Refer Slide Time: 32:02)

And then you take all the high responses while using the threshold.
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(Refer Slide Time: 32:06)

You do non-maximum suppression, that is why you see many of those points in regions you

just take the highest cornerness value, you do a non max suppression and you get a bunch of

different points.

(Refer Slide Time: 32:21)

And you let us try to visualize them on the image and you can actually see that if you look at

say these highlighted examples, you can see that, although those are fairly differently tilted,

you can get similar corners in both of these regions. You can see many other regions too.

Obviously, you get a few more corners which are not there in the second image but those can

be overcome at the matching face as you see a bit later on this course. The focus of this
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particular lecture is on cornerness, just detecting the cornerness. How do you do the matching

between the two images will come back to that a bit later.

(Refer Slide Time: 33:03)

While we saw one variant of the Harris corner detector here, which was developed by Harris

and Stephens in 88 where we use the determinant minus κ or α times your trace that is what

we used here, there have been other improvisations of the same method where a researcher,

Triggs, suggested that you can use λ0 - αλ1 where λ0 is the first eigen value of the larger eigen

value and λ1 is the second eigen value. A researcher, Brown and a team, proposed 𝑑𝑒𝑡(𝐴)
𝑡𝑟𝑎𝑐𝑒(𝐴)

instead of doing the det(A) - trace2(A).

We said κ on two slides ago, that just does not matter just a constant. So you have all𝑑𝑒𝑡(𝐴)
𝑡𝑟𝑎𝑐𝑒(𝐴)

of these could be different base of playing around with the same quantities to get what you

want. All of them effectively try to measure the cornerness using the eigen values of your A

matrix which comes from autocorrelation.
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(Refer Slide Time: 34:14)

Let us ask a few questions about properties of the Harris corner detector before concluding

this lecture. The first question we are going to ask is, Is the Harris corner detector scale

invariant? What do we mean by scale? Remember, scale is complementary to resolution. So

if you have an object as which is very small in image, we call that smaller scale or if it is

large, we call that larger scale. So, you could have an artifact such as this curved line here in

a particular image or you could also have this curved line on a larger canvas, maybe you just

took one image from close up and another image further out. But it is the same image, it is

the same object that is being taken.

So, in this particular case if you observe, in the second image this point would be considered

a corner by the Harris corner detector. In the first image if you took the same size patch to do

the autocorrelation, you would find that all of these would get categorized as edges and none

of them would get categorized as corners, which means the Harris corner detector need not

necessarily be scale invariant. How do you make it scale invariant will talk about that later.
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(Refer Slide Time: 35:36)

What about rotation invariant? Is the Harris corner detector rotation invariant? It happens that

it would be rotational invariant. So, weather you have this particular inverted V like this or

weather you rotate it and have the inverted V like this in an image, this particular corner will

have high change in both directions in both cases and you would detect this corner both in

this image as well as this image, as long as there is no change in scale, you would detect the

same corner on both images and Harris corner detector in this particular case would be

rotation invariant.

(Refer Slide Time: 36:19)

What about other kinds of invariances? What about photometric change, what does a

photometric change mean? A photometric change is an affine intensity change. An affine
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intensity change means that you take your intensity at every pixel of the image, scale the

intensity by value a and may be translated by a value b. Remember that intensity of value

lying between 0 on to 255 or if you normalized it, it comes to between 0 and 1 . You just

multiply all of those values by a scalar say a, it could be less than 1 if you like, and also add a

quantity b if you like. We call that as a photometric change or an affine intensity change.

So, in this particular case if you notice, for only the translation, it really does not matter, you

would find the corner wheather you increase the intensity in all places by an amount or

otherwise it would still find the corner. But about the scaling part of the intensity change, by

multiplying it by an a, it depends on the threshold that you choose. If you had a particular

curve, any function for that matter, and you had a certain threshold, all these points which

have a certain value, remember that the points closer to that would get suppressed due to non

max suppression you will only have the peak in all of these points.

So, those peaks would get detected. But if you scale the curve, there could be newer points

that get added. If you scale it up in a different way, there could be newer points that get

added. So, which means it perhaps invariant to translation but not necessarily invariant to

scaling the intensity. A couple of slide back we spoke about invariant to scale with respect to

size of the artefacts itself, now we are talking about scaling with respect to the intensity

value. Hope you see that these are two different things. In this case, you could still have a

curve which is small but now you brighten it or darken it in a different way, and that is what

we mean as an photometric change in this particular context.

(Refer Slide Time: 38:32)
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So, the homework that you are going to have is to go ahead and continue to read your chapter

2 of the Szeliski’s book and since a lot of the concepts that we used in this lecture were based

on Eigen values, Eigen vectors, just go ahead and rush up your linear algebra, try to show that

the trace of a matrix is the sum of its eigen values and the determinant of a matrix is a product

of its eigen values.
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