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Neural Architecture Search
As the last advanced topic for this week, we will talk about Neural Architecture Search, another
contemporary topic that deals with searching for the right Neural Network architecture for a

given problem. It is, it should straightaway appeal to you that this is a very important problem

considering the various hyper parameters that one has in designing Neural Networks.
(Refer Slide Time: 00:44)

() Neural Architecture Search: Why?

NPTEL

o Most popular and successful model
architectures designed by human experts
o Requires hundreds of hours of arbitrary

training and testing and hyperparameter
tuning

Canziani etal (2017)

o However, it doesn't mean we explored the
entire network architecture space or that
we found an optimal solution

o Can we adopt a systematic and automatic
way of learning high-pexformance model
architectures? Solution: Neural

Complex hand-engineered layers from H
Inception-V4 (Szegedy et al., 2017) Archltecture Search
edit: Nikhil Naik, Neural Architecture Search: A Tutorial, 2019
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To get a better understanding of why we need this, we have seen over the duration of this course
that accuracy and performance has improved with better design of architectures. And this often
requires human experts to spend hundreds of hours on arbitrary training and testing and hyper
parameter tuning. This, in fact, does not even mean that the entire space of possible architectures

has been searched exhaustively, to find the right architecture.

Often, researchers use architectures that were proposed earlier, and adapt a few elements to
arrive at an architecture for a given problem. That brings the question, can we adopt the
systematic and automatic way of learning high performance model architectures? The solution

that we are going to talk about is Neural Architecture Search.

1667



(Refer Slide Time: 01:54)

(%) Neural Architecture Search (NAS): Brief History
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o
D Early Work

o Neuroevolution: Evolutionary algorithms (e.g., Miller et al., 89; Schaffer et al., 92;
Stanley & Miikkulainen, 02; Verbancsics & Harguess, 13)

o Random search (e.g., Pinto et al., 09; Bergstra & Bengio, 12)

o Bayesian optimization for architecture and hyperparameter tuning (e.g., Snoek et al., 12;
Bergstra et al., 13; Domhan et al., 15)

Renewed Interest (2017-)
o Zoph and Le, Neural Network erchitecture Search with Reinforcement Learning, ICLR'17.

o Baker et al., Designing Neural Network Architectures using Reinforcement Learning,
ICLR'17.
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Neural Architecture Search, perhaps not in the same name has been around for some time. In
very early phases, one would use Evolutionary algorithms such as, say genetic algorithms, to be
able to design neural network architectures. This led to exploration of random search for
architectures or even Bayesian optimization for architectures and hyper parameter tuning over

the last decade.

Over the last 2 to 3 years, Neural Architecture Search has emerged as an independent important
problem. It primarily started with searching for these architectures using principles from

reinforcement learning.
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§’1§ NAS: General Problem Setup
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o Search Space: Defines which architectures can be represented in principle

o Search Strategy: Details how to explore search space (which is often exponentially large
or even unbounded)

o Performance Estimation Strategy: Estimating an architecture's performance -
standard training and validation of architecture on data may be computationally
expensive and limits number of architectures that can be explored

Credit: Elksen et al., Neural Architecture Search: A Survey, 2018
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The general problems set up in NAS or Neural Architecture Search is given by, you have a
search space, which defines the space of all possible architectures that you want to look for, for a
given problem. You have a search strategy to look for an architecture within the search space,
often the search space can be extremely large. And we need a performance estimation strategy to
try to estimate an architecture’s performance. Using standard training and validation performance

could be computationally expensive to be able to try various kinds of architectures.

So, this also needs to be chosen carefully. So, you have a search space, a search strategy, which
results in an architecture whose performance is estimated based on the performance estimate, the
search strategy looks further for a newer architecture and this loop continues until a desired

performance is met on a consistent basis.
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%) Neural Architecture Search Space
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0
|'I| o Neural networks represent a function that transforms input variables x to output variables
¥ through a series of operations

o Recall computational graphs (W8P1); each node ez represents a tensor and is
associated with an operation o¥) € O on its parent nodes I*

o Computation at a node k:
k) — o) 7(h)

where operations includes unary operations such as convolutions, pooling, activation
functions or n-ary operations such as concatenation or addition

o NAS space: Subspace of this general de?im’tion of neural architectures

Vineeth N B (IT-H) §12.5 Neural Architecture Search 5/19

™

As we just mentioned, the search space of NAS methods are extremely important. So, how is the
search space defined? One can view Neural Networks as a function that transforms input
variables to output variables through a series of operations. So, if you look at Neural Networks as
computational graphs, recall the lecture we had earlier, each neural network node represents a

tensor and this is associated with an operation on its parent nodes I.

. . k) . . :
So, you can say that the computation at a node k is given by x® is the operation at k of its parent

k . . . . o
nodes 1. What are the operations? The operations could be convolutions, pooling, activation
functions, or even n-ary operations like concatenation or element wise addition or simple
addition, so on and so forth. NAS space is generally a subspace of this general definition of

neural architectures. So, what kind of search spaces do NAS methods use?
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(%) NAS Space: Global vs Cell-based"
||.|| Global Search Space

0 Large degrees of freedom regarding
arrangement of operations

o Allowed operations examples

o convolutions, pooling, dense layers
(FCs) with activation, global average
pooling

o Constraints examples

o pooling as first operation; dense layers
(FCs) before convolution operations

0 Rigid, impractical to scale and transfer

Cell-based Search Space

o Many effective handcrafted architectures
designed with repetitions of fixed structures

o Network constructed by repeating a cell
structure, a small directed acyclic graph
representing a feature transformation

0 E.g. NASNet search space: Learns two
types of cells:

o Normal Cell: Input and output
feature maps have same dimension

o Reduction Cell: Output feature map
has width and height redbced by half

1Zoph et al, Learning Transferable Architectures for Scalable Image Recognition, CVPR 2018
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Broadly speaking, one could divide this into two kinds, a Global Space versus a Cell based
search space. In a Global Search Space, the method allows any kind of an architecture. So, you
have a large degree of freedom in arranging the operations. You have a set of allowed operations,
such as convolutions, pooling, dense layers, global average pooling, with different hyper

parameter settings like number of filters, filter width, filter height, so on and so forth.

But there are also a few constraints that are specified. For example, you may not want to start the
neural network with pooling as the first operation, you may not want to have dense layers, before
the first set of convolution operations, so on and so forth. In Global search, the issue is that the
search space is a bit rigid, and it could be impractical to scale and transfer considering the

extensiveness of this search space.

On the other hand, Cell based Search Space, which was first introduced in this work in CVPR of
2018. They introduced a method called NASNet. The idea here is that a lot of handcrafted
architectures are actually designed with repetitions of specific structures. We have seen residual
blocks in ResNets. This idea is taken forward here, by defining a cell structure and constructing a

network architecture by repeating the cell structure.

What is a cell? You could look at it as a small directed acyclic graph that represents a

transformation or a series of transformations. In NASNet, which was the method introduced in
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CVPR of 2018, the method learns two kinds of cells, a Normal cell where the dimension of the
input and the output of that transformation is retained, example would be Convolution. And then
a Reduction cell where the output feature map has width and height reduced for instance, like

pooling operations.
(Refer Slide Time: 07:44)

(%) Global Search Space
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ll'll Simplest example: a chain-structured search space as shown below
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(Skip Connections)

dit: Wistuba et al, A Survey on Neural Architecture Search, 2019
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Here is an example of a Global Search Space where you could have a chain-structured search
space as given below, where given an input you have a series of operations and the operations
have to be searched for from your search space from your universe of operations. And another

variant is where you have a skip connection in your chain-structured search space.
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(%) Cell-Based Search Space
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Architecture template Reduction cell of the NASNet-A architecture (Zoph et al., 2018)

NASNet: While cell topology is maintained across network, its hyperparameters are often
varied; merging operation is concatenation

Image Source: Wistuba et al., A Survey on Neural Architecture Search, 2019
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On the other hand, in a Cell based Search Space, an architecture template is defined. For
example, here you see an input, which first goes through a normal cell, then a reduction cell, then
a normal cell, reduction cell, and a normal cell and softmax. In very simple terms, you could
assume that this normal cell was convolutional plus batch norm and reduction cell could have

been pooling in a standard AlexNet context.

But now in NASnet, each of these cells is searched for within within a universe of operations.
So, here is the reduction cell of one of the architectures of NASNet called NASNet-A, where you
see 5 blocks with different kinds of operations that have been mentioned on each block, which is

obtained after the architecture search.
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(%) NAS with Reinforcement Learning (RL)?
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0
|||| o A controller, which proposes child architecture, is
implemented as a RNN; outputs a sequence of
tokens that configure network architecture

o Controller trained as a RL task using REINFORCE Samue;ﬂ:ﬁ;:”“"
(Monte-Carlo policy gradient)
o Action space: List of tokens T' (ay,r) for defining
a child network predicted by controller
o Reward: Accuracy of a child network, R.

o Loss: NAS optimizes controller parameters 6 with
a RE'NFORCE |055 Compute gradient of p and scale

it by R o update the controller

>
& Trang a child nebrork
The controller (RNN) with architecture 4 to

getreward R

VpJ(60) = ) E[Vs log Pasfaye-1); )R]

t=

Zoph and Le, Neural Network Architecture Search with Reinforcement Learning, ICLR 2017.
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As we just mentioned, some time ago, the space of Neural Architecture Search became popular
in 2017 with the introduction of NAS through Reinforcement Learning. While we have not
covered reinforcement, reinforcement learning as a topic in this course. We will speak at a very
high level to explain how this NAS method works. So, this method proposes the use of a
controller, which proposes a child architecture, and the controller is implemented as a Recurrent
Neural Network or an RNN which outputs a sequence of tokens that configure the network

architecture.

The controller RNN is trained, similar to a reinforcement learning task using a popular algorithm
called reinforce, which uses Monte-Carlo policy gradients. The action space in this case is the
list of tokens for defining a child network. The reward is the accuracy of the child network. And
the loss is the reinforce loss given by this term. Since we have not covered reinforcement
learning in this course, we would not go further deeper than this. But if you are interested, you

can read this paper for more details.

Here is the schematic you have the controller which samples in architecture with probability b, p.
You train a child network with that architecture to get an accuracy, which is here a reward in the
context of reinforcement learning. And then the policy gradient is computed to update the

controller RNN.
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{JQ Training with REINFORCE

NPTEL
|l.l| U357 (357 [123] [123] [24364864]

Softmax

Hidden State

Embedding

“Layer N1 Tayer N Layer N+1

3;7:1,2;36

o NN

Filter He|ghl F\Iler Width ~ Stride He\ghl Stnde Width Number of Pilters

Credit: Nikhil Naik, Neural Architecture Search: A Tutorial, 2019
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Here is an example of how the controller RNN works, which is trained using reinforce. So, you
can see that at each step of the RNN across different layers, multiple hyper parameters, such as
number of filters, filter height, filter width, stride height and stride width are predicted for that
layer, which is then passed on to the next layer, whose number of filters, filter height and other

hyper parameters are predicted.

So, the prediction could be something like 3, 7, 1, 2, 36, where the first parameter says the filter
height. The next one gives the filter width, the stride height, the stride width, the number of

filters, so on and so forth.
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5@ How To Make NAS More Efficient?
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|I'|| PathA - Path B _
z \ / 14’? ’ ;
\\* %3

0 Models defined by path A and path B are trained independently
o Instead, can we treat all model trajectories as sub-graphs of a single directed acyclic
graph? A
o Efficient NAS (ENAS)3: aggressively shares parameters among child models
Credit: Nikhil Naik, Neural Architecture Search: A Tutorial, 2019

3Pham et al., Efficient Neural Architecture Search via Parameters Sharing, ICML 2018
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One of the limitations of NAS based methods is that when you view your entire search space as a
graph, with each path as a certain sequence of operations, which could be an architecture, each of
these paths are looked at, and trained independently to be able to find which architecture suits a
particular task. So, given the overall search space, the path 123 which could be say a convolution
followed by a pooling, and a path 124, which could be convolution followed by a batch norm for
instance each of these are trained independently, and their performances are assessed to see

which of those operations or sequence of operations suits for a given task.

A recent method called Efficient NAS proposed in ICML of 2018 asks the question, can we treat
all models trajectories as sub graphs of a single directed acyclic graph? And the answer is, yes.

An Efficient NAS shows a way to do this by sharing parent parameters across the child models.
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{:_f) Efficient NAS with Weight Sharing
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o All sampled architecture graphs viewed as subgraphs of a larger
supergraph

o Graph represents entire search space while red arrows define a
model in the search space, decided by an RNN controller (trained
with REINFORCE)

o Weights of controller and a part of over-parameterized network
are alternately updated

o ENAS achieved 2.89% test error on CIFAR-10, took less than 16
hours to search (significantly lesser than other N{\S models)

Credit: Pham et al., Efficient Neural Architecture Search via Parameters Sharing. ICML 2018.

»
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So, in this case, if what you see here is a supergraph of all possible sequences of operations, each
architecture becomes a subgraph or a trajectory in this graph. So, you could look at these red
arrows here as one sequence of operations corresponding to one architecture. And that sequence

of operations is decided by an RNN controller, which is trained using reinforcement learning.

How is this trained? The weights of the controller and that the weights corresponding to the
chosen paths are trained in an alternate manner and this leads to the final training. And they show
that this approach gives about 2.89 percent test error on the CIFAR-10 dataset, which is close to
state of the art and took less than 16 hours to search for a right architecture, which is

significantly lesser than other NAS based models.

Especially NAS based models, based on reinforcement learning can take many days to search for
the right architecture. One other observation to point out here is a lot of the state of the art
models today in classification in detection are all based on architectures obtained through Neural

Architecture Search.
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{@ Differentiable Architecture Search: Gradient-based NAS*
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W Introduced binary variables in {a;;} to make search space continuous. This simplifies
definition to:

Z(k> = Z Z (li_j.}‘»'O(j)(Z:l)) with Qi jk € {U. 1}

i€l jelo|

o So far, the assumption: every operatiop is either part of the network or not

o This method relaxes categorical choice of a particular operation as a softmax over all
operations
explad)
Loeo (o]

o0 Lao'e0 XD

o) (g) =

o(x)

o This reduces search to learning a set of mixing probabilities «

4Liu et al, DARTS: Differentiable Architecture Search, ICLR 2019
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A more recent development called DARTS, a Differentiable Architecture Search was proposed in

ICLR, of 2019. And the key idea here was to define the search space using a set of binary
variables on the operations. So, your output of layer Z(k) is now an operation O multiplied by a

binary variable into in terms of the input variables 2 from the previous layer. The key insight in
this approach is that, until this method in all methods, you could either have an operation or not

have an operation.

But this method says, why do not we relax this and make a something that is learnable. And
hence, it relaxes this categorical choice of choosing an operation as a softmax, over all possible
operations. So, the operation is not just binary in terms of its existence, it is now a softmax that
you have over the space of all possible operations. This allows us to back propagate through the

choice of the operation itself.
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%@ Differentiable Architecture Search: Gradient-based NAS®
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0
||l| o Uses an alternating (bilevel) optimization method:
B o learn model parameters w by minimizing loss on training set
o learn structural parameters o by minimizing loss on validation set
3

min Evalidate(w*(a)va)
4]
st w(a) = argmin Lyain(w, @)
w
o Final architecture chosen based on:

0l9) = argmax n(ﬂ" )
00

o Elegant solution that makes all parameters differentiable!

SLiu et al, DARTS: Differentiable Architecture Search, ICLR 2019
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What does this mean? How do you train? So, in DARTS, an alternating bilevel optimization
method is proposed similar to Efficient NAS, where in the first iteration, the model parameters w
of a specific architecture is trained by minimizing loss on a training set. And in the second step,

the structural parameters o, which weight each of your operations are learned using by

minimizing another loss on a validation set, which is defined this way, where w () is the

minimum loss of w on the training set.

So, you use those weights to be able to get a validation loss, which is then used to minimize the
value of a. So, the final architecture is chosen based on the sequence of operations that
maximizes o or the operation at that step that gives you the maximum a. This is an elegant
solution that makes all parameters differentiable and entire, and thus the entire architecture

search as a differentiable procedure.
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{% Architecture Transferability of NAS Networks
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';‘:\‘::“““: v i‘m :«Z;: ::ﬁ ! ::”: Dataset A, Nework A, Bestnetvark
Inception ResNet V2 5S8M  132B 804/953 Food-101 900 Deep layer aggregation [40] 901 NASNet-A Large, fine-tuned v/
ResNeXt-101 (64x4d) 836M 315B  809/956 CIFAR-10 979  AmocbaNet [41] 984" NASNet-A Large, fine-tuned
PolyNet 920M  MTB 8137958 CIFAR-100 818 ShakeDrop [42] 8.2 NASNelA Large, fine-tuned ¥
Dual-Path-Net-131 795M 208 815/958 Birdsnap 8.2 Mask-CNN [43] 785 NASNet-A Large,fine-tuned
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Bk QNNB (NS - C 1570926 FGVC Aircraft 929" Deep layer aggregation [40] 894 Inception v3, ine-tuned
Hierurchical (2, 64)° oM - 197/98 VOC2007Cls. 897 VGG (9] 884 NASNet-A Large, fine-tuned
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AmoehaNet-A (6,204)°  99.6M  26.2B  828/962
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CIFAR-10 to ImageNet Other Datasets and Tasks

NASNet-A: SOTA on 8/13 commonly used classification benchmarks

Credit: Nikhil Naik, Neural Architecture Search A Tutorial, 2019
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Other considerations that have been looked at in the NAS community is Architecture
Transferability. If we learn an architecture, through a NAS method on CIFAR-10, how well does
it transfer to ImageNet. And the search is shown that a lot of a contemporary NAS methods
deliver fairly well on this count, where an architecture trained on CIFAR-10 also does well

reasonably on ImageNet, as well as on other datasets and tasks.

(Refer Slide Time: 18:23)

i’:@ Future Directions®"®
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o Search efficiency

o Moving towards less constrained search spaces

o Designing efficient architectures: automated scaling, pruning and quantization

o Joint optimization of all components in deep learning pipeline (data augmentation ,
architectures, activation functions, training algorithms)

\

N Pre-
Il g Pre Neural Network 2} Ouputs
Image || Processing | 4 |

| |

Data Augmentation Activation Function (Ramachandran et al., 2018)
(AutoAugment, Optimizer (Bello et al., 2017)

Cubuk et al., 2018)

o Designing architedtures for multimodal problems, e.g., vision and language

6Cubuk et al., AutoAugment: Learning Augmentation Policies from Data, CVPR 2019
"Ramachandran et al., Swish: A Self-Gated Activation Function, NEC Journal 2017
8Bello et al., Neural Optimizer Search with Reinforcement Learning, ICML 2017
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While this discussion on NAS was intended to be brief, keeping in view the scope of this course.
Let us discuss a few future directions and open problems in NAS. One of the first issues is search
efficiency. As I just mentioned, trying to perform NAS using Reinforcement Learning can create
a training overhead of many days on standard GPU architecture. How do you improve the search
becomes an important problem. A different perspective is to also move towards less constrained
search spaces. One way you could improve your search efficiency is to constrain your search

Spacec more.

But now, we also do not want to constrain the search space more to be able to explore better
architectures. Designing efficient architectures, such as those we get after pruning or after
quantization, or probably finding the lottery ticket using NAS could also be an interesting
direction of the space. Another important direction is a joint optimization of all components of a
deep learning pipeline, not just architecture. We could also talk about what data augmentation to

use, what activation functions to use, what optimizers to use, and so on and so forth.

So, including all of that in the NAS search pipeline would be an interesting future task in the
space. Finally, designing architectures for multimodal tasks, such as vision and language tasks,

could also be a very important and useful direction.
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fﬂ The Curious Case of Random Search?
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9Real et al, Regularized Evolution for Image Classifier Architecture Search, AAAI 2019
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Before we conclude this lecture, there is also an interesting observation by a few researchers
about the Curious Case of Random search. In this work, in AAAI 2019, researchers observed
that when one randomly searched for a Neural Network Architecture, the difference in accuracy
was not too much between using random search, reinforcement learning or evolutionary
algorithms. And this leads to an important conversation as to whether we really need Neural

Architecture Search.

(Refer Slide Time: 21:02)
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Architecture Source Best Average (M)
R NA 26 33
[43) NA 255:005 28

|l.l| Test Error Params
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Li and Talwalker (2019) Xie etal. (2019)
CIFAR-10 ImageNet

Credit: Nikhil Naik, Neural Architecture Search A Tutorial, 2019

10j and Talwalker, Random Search and Reproducibility for Neural Architecture Search, UAI 2019
!Xie et al., Exploring Randomly Wired Neural Networks for Image Recognition, ICCV 2019
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This observation was also seconded by a couple of other papers, which showed that random
search and a random wiring of Neural Networks can perform to a reasonable extent in contrast to
what was observed earlier in terms of searching Neural Network Architectures. This leaves an

interesting an open question for the community.
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{;) Homework
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Readings
o Neural Architecture Search article by Lilian Weng

o Survey Papers:

o Witsuba et al., A Survey on Neural Architecture Search, 2019.
o Elksen et al., Neural Architecture Search: A Survey, 2018,
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The recommended readings for this lecture are once again, a very nice blog article by Lilian
Weng on Neural Architecture Search and these two survey papers on Neural Architecture Search

if you need more information.
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