Deep Learning for Computer Vision
Professor. Vineeth N Balasubramanian
Department of Computer Science and Engineering
Indian Institute of Technology, Hyderabad
Lecture No. 77
Pruning and Model Compression

Moving on from adversarial robustness, we will now talk about Pruning and Model
Compression. Another important component in taking Deep Learning models to in the wild real

world applications.

(Refer Slide Time: 00:32)

if*) Motivation

NPTEL

)
,I"I F-NN

o Deep Neural Networks (DNNs) generally optimized
for performance in terms of predictive accuracy

o As a result, DNNs are huge and have parameters in
the order of millions

o The popular AlexNet has around 61M parameters!
A trained AlexNet takes around 200MB of space

Credit: Xu et al, 2019

Vineeth N B (IIT-H) §12.4 Pruning and Model Compression 2/2

Neural Networks in general are optimized to improve predictive accuracy. Be it accuracy for
classification models, mean average precision for detection models or pixel wise classification
accuracy for segmentation. Trying to chase accuracy alone makes neural networks very large. As
a result, the models that are state of the art today have very large number of parameters, often of

the order of millions.

Recall that we said that AlexNet has over 61 million parameters, occupying about 200 MB of
space in the memory. VGG occupies up to 500 MB of space, just to store the weights in the

model in your memory.

1649

(Refer Slide Time: 01:26)

51} Motivation

NI;TEL

° o While it's acceptable for DNNs to

|Il| utilize high-end GPUs for training,

requiring such powerful processors for
inference, is highly limiting

o Applications to various new and
battery constrained technologies
necessitate low-compute
environments:

o Mobile Phones
o Unmanned Aerial Vehicles (UAVs)
o loT devices

e P
d

Phones Drones Robots

.

Battery
Constrained!

Glasses Self Driving Cars

Credit: Song Han, 2016

Vineeth N B (1IT-H) §12.4 Pruning and Model Compression 32

Is this really a problem? When you train your models, it is alright to have very high storage
footprint, memory footprint, and one can use powerful GPUs to train these models. However,
expecting the availability of heavy compute at test time or inference may be limiting. If one
considers the deployment of Deep Learning models in low compute applications, such as mobile
phones, drones, or unmanned aerial vehicles, or IoT devices, which could be deployed in any
edge at the corner of the world, even in harsh conditions, having bulky Neural Network models

becomes a limiting factor in taking their success to these kinds of compute platforms.

(Refer Slide Time: 02:22)

1650

s L
§§ Motivation
N;’TCL

o On mobile devices, crucial to reduce memory consumption for apps, as well as reduce

0 ;

|I|| energy consumption

T Operation Energy [pJ] Relative Cost
32 bitint ADD 0.1 1
32 bit float ADD 09 9
32 bit Register File 1 10
32 bit int MULT 3l 3l
32 bit float MULT 37 37
32 bit SRAM Cache 5 50
32 bit DRAM Memory 640 6400

o DRAM accesses cost more energy, which drains battery

o If deep models were compact enough to fit on SRAM, that would reduce energy
consumption drastically

Credit: Song Han, 2016
Vineeth N B (IIT-H) §12.4 Pruning and Model Compression 42

>

Another way of viewing this, is from the viewpoint of the energy expended for carrying out such
operations in memory. An interesting analysis was done by Song Han, who came up with one of

the most popular papers for deep model compression. And the analysis here shows on this table

that a 32 bit integer addition consumes about 0.1 Pico joules. Pico joules 10 of energy. A 32
bit float addition operation consumes 0.9 Pico joules. And if you keep going further and further,
a 32 bit SRAM cache access operation consumes 5 Pico joules. And when you go to the DRAM,

you significantly go up in orders of magnitude. And now things go up to 640 Pico joules.

Accessing DRAM or dynamic RAM is significantly more costly than accessing your SRAM.
Why are we talking about this, which means when we talk about low compute devices, we
ideally would like these Deep Learning models to be housed in the SRAM and not have to go to
the DRAM, because accessing them could cause a lot of energy requirements, especially in
environments like drones, or edge devices, [oT devices, where battery also becomes a concern to

deploy these models.

So, one key requirement that emerges now is the need to be able to prune these bulky neural
network models into smaller memory footprints that can be deployed in low compute
environments. This category of methods are broadly called model compression methods, where a
trained model is compressed into a smaller memory footprint for deployment in low compute

devices.

1651

(Refer Slide Time: 04:34)

@9 Categorization of Methods for Model Compression

NPTEL

Category Name Description
U Parameter pruning and quantization | Reducing redundant parameters which
|Il| are not sensitive to the performance

Low-rank factorization Using matrix/tensor decomposition to
estimate the informative parameters

Transferred/compact convolutional | Designing special structural convolutional
filters filters to save parameters

Knowledge distillation Training a compact neural network with
distilled knowledge of a large model

We'll see a few sample methods: Pruning-based, Knowledge Distllation-based, and the
“Lottery Ticket Hypothesis”

Credit: Cheng et al, A Survey of Model Compression and Acceleration for Deep Neural Networks, 2017
Vineeth N B (IIT-H) §124 Pruning and Model Compression 5/n

Over the last few years, several efforts have been taken have been taken by different researchers.
And a broad categorization of these methods can be given as parameter pruning and
quantization. That is one family of methods, which focuses on reducing redundant parameters
that do not affect performance. A second family of methods is based on Low-rank factorization,
where matrix and tensor decomposition methods are used to estimate only the informative

parameters and discard the rest.

Transferred or compact convolution filters are a family of methods where special structural
convolution filters are designed to save parameters. And finally, an interesting family of methods
called Knowledge distillation methods that use an idea of distilling knowledge from a large
neural network model into a small student neural network model. We would not see all of them
in this lecture, but see a few ones briefly and point to other resources for more reading.
Specifically, we will see a very popular pruning based approach, a knowledge distillation

approach and a more recent approach called lottery ticket hypothesis.

1652

(Refer Slide Time: 06:05)

{%) Deep Compression®
NPTEL

. o One of the most popular, game-changing methods in this space
|I|| o A three-stage pipeline to reduce the storage requirement of neural nets

Quantization: less bits per weight
Pruning: less number of weights e e e 5, Huffman Encoding
/

original |
network |
I
|
original |
size |

o Showed a 35x decrease in size of AlexNet from 240MB to 6.9MB!

Han et al, Deep Compression: Compressing Deep Neural Network with Pruning, Trained Quantization and Huffman
Coding, ICLR 2016
Vineeth N B (IIT-H) §12.4 Pruning and Modzl Compression 6/22

One of the most popular and reasonably early methods for model compression is called Deep
Compression, developed by Song Han in ICLR of 2016. It was a game-changing method, which
also took the method forward to hardware design. And this uses a 3-stage pipeline to reduce
storage requirement of neural nets. The first step being pruning of a trained model, then,
quantization of the weights and finally, an Huffman encoding step, which provides a model that

reduces the size by 35 to 50 X with very minimal loss in accuracy.

(Refer Slide Time: 06:54)

{% Deep Compression: Pruning

NPTEL

]
s A three-step procedure:
Train Connectivity
@ Train Connectivity: Model weights are learned using
) standard neural network training I
Prune Connections

@ Prune Connections: Weights (connections) below a certain

threshold are removed from network g E

@ Train Weights: Remaining sparse network is retrained Train Weights
-

Vineeth N B (IIT-H) §12.4 Pruning and Model Compression 712

1653

Let us see each of these steps. The first step was to prune the model. What does pruning mean
here? Once you train the full model, which is the first step, weights with values below a certain
threshold are removed from the network. So, if any weight is lower than say 10 power minus 5,
that weight is removed from the network and the remaining sparse network with only the other
connections is retrained to get a better network. Once again, this is an iterative process. Once
again, in that new retrained sparse network, if any weights are below a certain threshold, they are
removed. And once again the remaining sparse network is retrained and this step is done

iteratively.

(Refer Slide Time: 07:45)

§}) Deep Compression: Pruning?

NPTEL

U
_]Il| Network Top-1 Error Top-5 Error | Parameters E;l)[nclprcmvn
LeNet-300-100 Ref 1.64% - 267K Train Connectivity
LeNet-300-100 Pruned | 1.59% - 22K 12x L
LeNet-5 Ref 0.80% - 41K
LeNet-5 Pruned 0.77% - 36K 12x
AlexNet Ref 2.78% 19.73% 6IM Prune Connections
AlexNet Pruned 42.771% 19.67% 6.7M 9x
VGG-16 Ref 31.50% 11.32% 138M
VGG-16 Pruned 31.34% 10.88% 103M 13x
Train Weights

As seen in table, pruning shown to compress networks by 9-13x

2Han et al, Deep Compression: Compressing Deep Neural Network with Pruning, Trained Quantization and Huffman
Coding, ICLR 2016
Vireeth N B (IIT-H) §12.4 Pruning and Model Compression 8/2

And just with this simple step alone, the authors showed that many of the popular networks
could be reduced in size significantly. For example, you see here, AlexNet, while the original
size is 61 million, using the simple pruning step, the size comes down to 6.7 million, which is a
9x compression. And when one looks at the top-1 error or top-5 error on ImageNet, you notice
that there is no significant drop in performance, because of this reduction in parameters. In case
of VGG, pruning alone, reduced number of parameters by 13x. This was also observed for

smaller networks, such as LeNet.

1654

(Refer Slide Time: 08:39)

Deep Compression: Weight Sharing

o In each layer, weights are partitioned into k clusters using simple K-means clustering

weights cluster index
(32 bit float) (2 bit uint) centroids

30|21 |3

o Weights (and gradients) with same color (cluster) are grouped together; all weights of
same color are represented by corresponding centroid

Vineeth N B (IIT-H) §12.4 Pruning and Model Compression 9/2

The second step after pruning is, a step known as weight sharing, where in each layer, the
weights in that layer are partitioned into k clusters using simple K-means clustering and each
weight is replaced by the centroid of the cluster that it belongs to. So, here you see an example of
a 4 by 4 matrix of weights and the cluster assignment in the subsequent matrix here and the

cluster centroid value, which is shown for each of these clusters.

At the end, each of these blue weights are replaced by the cluster centroid of the blue color here,
and so on and so forth for each of the colors. How does it help? We need to store fewer values to
represent this layer’s weights. A subsequent question is if the weights changed and are clustered

like this, what happens to the gradients?

1655

(Refer Slide Time: 09:45)

@ Deep Model Compression: Weight Sharing

U weights dluster index fine-tuned
||l'|| (32 bitfloat) (2 bituini) centroids centroids

Gradients of same color are added, sum is used to update corresponding centroid

Vineeth N B (IIT-H) §124 Pruning and Model Compression 10/2

The gradients also follow a similar process. So, if you have a certain values of gradients for each
of these locations in that particular layer. The gradients are also clustered and the cluster centroid
value for the gradient is then used to subtract from the original weight to get the new weight. So,

in the even the gradients participate in this weight sharing exercise in the same way.

(Refer Slide Time: 10:18)

@ Deep Model Compression: Quantization and Huffman Coding?

i o Instead of using 32-bit floating point values for weights, experiments showed no loss of

J accuracy when weights were quantized upto 8 bits
”I'” o Pruned and quantized network encoded using Huffman coding; frequently observed
values stored with less number of bits, and rare values stored with more bits
o Deep compression method compressed various networks from 35x to 49x less than
original size with minimal loss of accuracy!

Network Top-1Emor Top-5 Error | Parameters E:$ press
LeNet-300-100 Ref 1.64% - 1070 KB
LeNet-300-100 Compressed | 1.58% - 27KB 40x
LeNet-5 Ref 0.80% - 1720 KB

LeNet-5 Compressed 0.74% - 4 KB 39x
AlexNet Ref 4278% 19.73% 240 MB

AlexNet Compressed 2.718% 19.70% 69MB | 35x
VGG-16 Ref 31.50% 11.32% 552 MB

VGG-16 Compressed 3L17% 10.91% 1L3IMB | 49x

Han et al, Deep Compression: Compressing Deep Neural Network with Pruning, Trained Quantization and Huffman
Coding, ICLR 2016
Vineeth N B (IIT-H) §12.4 Pruning and Model Compression 1/22

Having done pruning and weight sharing, the next step that the authors used was Quantization.

This was based on an empirical observation that instead of using 32-bit float values, if we used

1656

just 8 bits, the performance really did not reduce much. So, this is the quantization step that was
then used to still further reduce the storage footprint. And the final step was to use Huffman
coding. Huffman coding is a popular coding compression method in computer science, where a
frequently occurring pattern is stored with lesser number of bits and a rarely occurring pattern is

stored with more number of bits to capture it is additional information.

Huffman coding is a long standing compression method, which is used here to once again reduce
the storage footprint. With these methods sequentially, one after the other. The overall approach
showed a 35 to 49 x reduction in parameters with minimal loss of accuracy. As you can see here,
AlexNet went from being 240 MB to 6.9 MB in this particular case, and VGG went from 552

MB to 11.3 MB, which was a 49x reduction in storage parameters.

With if you see the error rates here, there is no significant loss in error because of this
compression, which is the main objective. So, once you get to 6.9 MB, or 10 MB, these models

now become amenable to deploy on low compute devices.

(Refer Slide Time: 12:17)

ii} Knowledge Distillation

NPTEL
]

Key Idea

Transfer “knowledge” from a cumbersome large model (teacher) to a small model (student),
whose size is more optimized for deployment; but how? What is “knowledge” in a DNN
model?

Vineeth N B (IIT-H) §124 Pruning and Model Compression 12/2

« &‘

A second method that we will talk about is that of Knowledge Distillation. The key intuition of
this family of methods is to transfer knowledge from a cumbersome, large model to a small
model, which we call a student model, whose size is more optimized for deployment. The

question obviously here is, what do we mean by knowledge in a Deep Neural Network.

1657

(Refer Slide Time: 12:51)

{%) Knowledge Distillation*

NPTEL
o In the case of image classification, knowledge can be seen as the mapping between

|I'l| input (images) and output (softmax probabilities)
o Instead of training a student network with hard labels, they can be trained to mimic the
softmax outputs of the teacher model, for each image

matching soft targets
|
/ \

input
the cumbersome model the distilled model

Distillation

Credit:Yang 2014
*Hinton et al, Distilling the Knowledge in a Neural Network, NeurlPS-W 2015
Vineeth N B (1IT-H) §12.4 Pruning and Model Compression B/2

And the first idea that was used here was that knowledge can be viewed as the mapping between
inputs and the softmax probabilities. Instead of while you are looking, if a cat, if there was an
image of a cat, and you would like the class, for the cat to be 1 and everything else to be 0, a
neural network may not necessarily give you that output, it may say, the probability for a cat is

0.8, and the probability for other class labels could be 0.01, 0.05, so on and so forth.

Now, these outputs represent the knowledge that the Neural Network has gained over the process
of training. So, in knowledge distillation, the idea now is to take a small shallow student network
and instead of training this network with hard labels, or one hot labels, we ask the student to

target and predict the softmax probabilities or even the logits of the teacher network.

You can see here you have the cumbersome model, and through distillation, the distilled model’s
objective is to match the soft outputs or targets of the teacher model. In this sense, the knowledge
gained by the teacher model is distilled into the student model, which performs as well with a

smaller storage footprint.

1658

(Refer Slide Time: 14:25)

i%} Knowledge Distillation: A Simple Example on MNIST

NPTEL
o
|I|| Models
o Cumbersome model: 2 layers, 1200 ReLU nodes, dropout regularization

o Small model: 2 layers, 800 ReLU nodes, no regularization

Number of errors on MNIST
o Cumbersome Model:*67

o Small model with standard training: 146

o Small model with distillation: 74

Vineeth N B (IIT-H) §124 Pruning and Model Compression /2

5 Y

Here is a simple experimental example. So given a cumbersome model, this is on MNIST of 2
layers, with 1200 ReLU, nodes and dropout. And a small model of 2 layers and 800 ReLU nodes
smaller model at least with no regularization. It is simple to observe that the number of errors on
MNIST with the Cumbersome model is 67. If you train the small model using standard training,
it makes 146 errors on the test set of MNIST and the small model with distillation makes only 74

errors, which is close to the bulky model.

Over the years, knowledge distillation has resulted in several variants, where instead of matching
only the logits or only this outputs, probabilistic outputs of the teacher model, you can also
match intermediate representations of hidden layers, you can add some noise, and try to
ensemble, multiple teachers, so on and so forth, which are provided in the references for further

reading.

1659

(Refer Slide Time: 15:35)

{1} Lottery Ticket Hypothesis: Motivation®

NPTEL
o Observation: A very sparse subnetwork obtained after pruning a fully trained network

|I'l| produces accuracy close to the full model
Random Pruning Sparse)
Init Weights and Full Network
£ L5 et Sub Network
90% Accuracy 90% Accuracy
Random Sparse
Init Weights and
Train Sub Network
\ J

60% Accuracy
SFrankle and Carbin, The Lottery Ticket Hypothesis: Finding Sparse, Trainable NeuralNetworks, ICLR 2019
Vineeth N B (1IT-H) §12.4 Pruning and Model Compression 15/2

A third approach that we will talk about here is a recent one published in ICLR 2019, called
Lottery Ticket Hypothesis. As the name says, this was based on an observation that when you
train a full bulky Deep Neural Network, often a very sparse sub network, obtained after pruning
produces accuracy, close to the full model. So, you randomly initialize weights and train a full
network, you get 90 percent accuracy and you prune, you get a sparse sub network with 90

percent accuracy.

But you took the same kind of a Sub network, randomly initialized it and trained, you get only 60
percent accuracy. So, there seems to be something about training the full network, and then

pruning.

1660

(Refer Slide Time: 16:32)

§§9 Lottery Ticket Hypothesis

NPTEL

0
|I|| The Hypothesis
s A randomly-initialized, dense neural network contains a subnetwork that is initialized such that
—- when trained in isolation — it can match the test accuracy of the original network after
training for at most the same number of iterations

" How to find the network? One shot pruning;
o Train a neural network with random initialization
o Prune p% of smallest weights
o Reset remaining weights to their previous initialization, to create the winning ticket

Alternatively, repeatedly pruning the network over n rounds (iterative pruning) has shown
much better results, although more computationally expensive

Vineeth N B (IIT-H) §12.4 Pruning and Madel Compression 16/22

So, this work made a hypothesis that a randomly initialized Dense Neural Network contains a
sub network that is initialized such that when it is trained in isolation, it can match the test
accuracy of the original network, after training for at most the same number of iterations. The
obvious question now for us is, how do you find the sub network? To do this, this approach,
proposed a simple idea, which is called One Shot pruning where you first train a full network
with random initialization. You prune a certain p percentage of the smallest weights of the full
network. You reset the remaining weights to their previous initialization to create the winning

ticket.

They showed that following this procedure helps us find the lottery ticket, which is that one
random sparse sub network which seems to match the accuracy of the complete network. One
could also repeatedly prune the network over multiple rounds, similar to the iterative pruning
that we spoke about for deep compression. This does get better results, but of course, requires

more computation.

1661

(Refer Slide Time: 18:06)

{%} Lottery Ticket Hypothesis: Results
NI"T[L
Percent of weights remaining vs early stop Percent of weights remaining vs accuracy

0
|"| iterations (MNIST and CIFAR-10 datasets) (MNIST and CIFAR-10 datasets)

=+ Lenet }+ random = Conv6 f+ random Conv4 random += Conv-2 random

_ 0K m ol

100 412 170 11 30 12

Percent of Weights Remaining

Dotted lines show randomly sampled sparse networks while solid lines represent winning tickets
(which attain more accuracy than randomly sampled sparse nets)

Vineeth N B (IIT-H) §124 Pruning and Model Compression /2

)

Here are some results that were shown in this work. On the left, what you see are percentage of
weights remaining versus early stop iterations for MNIST and CIFAR-10. You see here, that for
if you look at these two curves, one of them the dotted lines, is a randomly sampled sparse
network and the bold line is the one obtained by Lottery Ticket Hypothesis. You see that even
when the number of early stop iterations is very low, the percentage of weights remaining for the

Lottery Ticket Hypothesis remains high using this kind of an approach.

A similar pattern is also observed for CIFAR-10. On the other hand, more importantly, a plot of
the percentage of weights remaining versus accuracy is again favorable, favorable for the Lottery
Ticket Hypothesis, you can see that the dotted line here and the bold line, here dotted line is a
randomly sampled sparse sub network and the Bold Line is the one obtained using Lottery Ticket

Hypothesis.

You see that as the percentage of weights remaining decreases, you can see here it goes from 100
to 0.2. The dotted network sub network random one has a quicker fall in accuracy, while the
Lottery Ticket Hypothesis maintains a higher accuracy for a longer period of time. A similar
result is also seen on CIFAR-10 with different kinds of layers, shown for the percentage of

weights remaining.

1662

(Refer Slide Time: 19:57)

§¥) Lottery Ticket Hypothesis: Limitations and Further Work

NPTEL

0
|Il| Limitations
o o While iterative pruning produces better results, it requires training the network 15 times
per round of pruning (5 trials, training each winning ticket 3 times and taking the average)

o Harder to study large datasets like ImageNet

Further Studies
o Can we find winning tickets early on in training? (You et al, 2020)
o Do winning tickets generalize across datasets and optimizers? (Morcos et al, 2019)

o Can this hypothesis hold in other domains like text processing/NLP? (Yu et al, 2019)

Vineeth N B (1IT-H) §12.4 Pruning and Model Compression 18/22

So, is that always a good strategy? Not really. While iterative pruning produces better results, it
requires training the network perhaps about 15 times per round of pruning. On the other hand,
finding Lottery Ticket Hypothesis, while can be done sometimes may not give you as good a
performance as the original network. If you did iterative pruning it is going to be harder to study

large data sets such as ImageNet.

So, over the last few years, there have been improvements over the Vanilla Lottery Ticket
Hypothesis work, where researchers have studied if these winning lottery tickets can be found
early on in training, rather than wait for too many iterations. Can such winning tickets generalize
to newer datasets and optimizers and does this hypothesis hold in other domains such as text

processing, or NLP.

1663

(Refer Slide Time: 21:01)

{i{) Extensions and Other Methods

NPTEL

Pruning and Quantization

° Architectures
|"| ° XNOR'NE.V U.smg binary vyelghts. o MobileNets: Depth-wise separable
e and approximating convolutions with convolutions
XNOR operations

) .) o ShuffleNet: Group Convolutions and
o Thi-Net: Compressing CNNs with GhannellShutte

. .
filistprining o SqueezeNet: Replacing 3x3 with

1x1 convolutions

Distillation

o Noisy Teachers: Perturbing teacher
logits to regularize the student

o SqueezeDet: Fully convolutional
network for fast object detection

o SEP-NET: Transforming k x k
convolutions into binary patterns for
reducing model size

o Relational Knowledge Distillation:
Adapting metric learning for
distillation

Vineeth N B (IIT-H) §12.4 Pruning and Model Compression 19/2

S

These methods have also been extended in several different ways. XNOR-Net is a popular
compression method where binary weights are used. The understanding here is you do not need
the precision of representing each weight using too many bits just using binary weights and
replacing convolution with XNOR operations can make Neural Networks attain a reasonable
amount of accuracy with a very small memory footprint. Thi-Net compressor compresses CNNs

with filter pruning.

Knowledge Distillation methods have used noisy teachers where the teacher logits are perturbed
to get the effect of multiple teachers to train a student. Relational Knowledge Distillation adapts
metric learning in distillation, in distillation, and there have also been specific architectures. We
discussed a few of them when we discussed CNNs, Mobile Nets, Shuffle Net, SqueezeNet,
SqueezeDet for detection and SEP-NET so on and so forth, which have been used for model

compression.

1664

(Refer Slide Time: 22:18)

@ Recall: Categorization of Methods for Model Compression

NPTEL

Category Name Description
U = — - -
|Il| Parameter pruning and quantization | Reducing redundant parameters which
are not sensitive to the performance

Low-rank factorization Using matrix/tensor decomposition to
estimate the informative parameters

Transferred/compact convolutional | Designing special structural convolutional
filters filters to save parameters

Knowledge distillation Training a compact neural network with
distilled knowledge of a large model

Many more methods!

Credit: Cheng et al, A Survey of Model Compression and Acceleration for Deep Neural Networks, 2017
Vineeth N B (IIT-H) §12.4 Pruning and Model Compression 2/2

As we said earlier, the space is fairly large. There are also Low rank factorization methods. There
are also methods that design convolutional filters in a particular way to save parameters, so on

and so forth, which we leave it for reading in this lecture.

(Refer Slide Time: 22:34)

{%) Homework

Readings |
o Robert T. Lange, Lottery Ticket Hypothesis: A Survey, 2020

o Cheng et al., A Survey of Model Compression and Acceleration for Deep Neural
Networks, 2017.

Vineeth N B (IIT-H) §12.4 Pruning and Model Compression 6/n

So, the homework for you is to read a very nice survey of the Lottery Ticket Hypothesis and this
Comprehensive survey of different Model Compression and Acceleration Methods for Deep

Neural Networks.

1665

(Refer Slide Time: 22:50)

@ References

NPTEL D
L

Here are some references.

Song Han et al. “Learning both Weights and Connections for Efficient Neural Networks". In: CoRR
abs/1506.02626 (2015). arXiv: 1506.02626.

Geoffrey Hinton, Oriol Vinyals, and Jeffrey Dean. “Distilling the Knowledge in a Neural Network”. n:
NIPS Deep Learning and Representation Learning Workshop. 2015.

Song Han, Huizi Mao, and W. Dally. “Deep Compression: Compressing Deep Neural Network with
Pruning, Trained Quantization and Huffman Coding". In: CoRR abs/1510.00149 (2016).

Jonathan Frankle and Michael Carbin. “The Lottery Ticket Hypothesis: Finding Sparse, Trainable Neural
Networks". In: International Conference on Learning Representations. 2019.

Ari Morcos et al. “One ticket to win them all: generalizing lottery ticket initializations across datasets and
optimizers”. In: Advances in Neural Information Processing Systems. Ed. by H. Wallach et al. Vol. 32.
Curran Associates, Inc., 2019, pp. 4932-4942.

T. Xu and |. Darwazeh. “Design and Prototyping of Neural Network Compression for Non-Orthogonal loT
Signals". In: 2019 IEEE Wireless Communications and Networking Conference (WCNC). 2019, pp. 1-6.

Haoran You et al. “Drawing Early-Bird Tickets: Toward More Efficient Training of Deep Networks”. In:
International Conference on Learning Representations. 2020.
§124 Pruning and Madel Compression 2/2

1666

