Deep Learning for Computer Vision
Professor. Vineeth N Balasubramanian
Department of Computer Science and Engineering
Indian Institute of Technology, Hyderabad
Lecture No. 76
Adversarial Robustness

The next topic that we will discuss, again, a contemporary one is Adversarial Robustness.
(Refer Slide Time: 00:24)

i% Limitation of Supervised Machine Learning

NPTEL
0 o In reality, the distributions we use ML on are often NOT the ones we train it on
Illl o Whenever there is a distribution shift, Deep Neural Networks tend to perform poorly

E)
—m —

Credit: https://adversarial-ml-tutorial.org/

Vineeth N B (IIT-H) §12.3 Adversarial Robustness 2/9

In Supervised Machine Learning, often the distributions that we deploy machine learning models
on that is the Test distribution are often not the distributions that you train the models on,
unfortunately. Whenever there is such a distribution shift, then Machine Learning models,

especially Deep Learning models suffer and tend to perform poorly.

1621

(Refer Slide Time: 00:53)

iq:@r) Adversarial Examples

NPTEL

0
||l| o Examples indistinguishable from original input which leads to wrong predictions
o o ¢" = arginf; ||0[|, such that f(z +4) # f(2)

“pig” (91%) noise (NOT random) “airliner” (99%)

+0.005 x

Vineeth N B (IIT-H) §12.3 Adversaral Robustness 3/29

One such scenario where this distinction becomes even more prominent are what are known as
Adversarial Examples. Adversarial Examples, this is different from the adversarial word in
GANSs, this has a different notion here. Adversarial examples are data points, which are
indistinguishable from your dataset, but lead to wrong predictions. Here you see an example
where an image of a pig, which a Deep Learning model said was a pig with 91 percent
confidence. If you add a little bit of random noise, just 0.005 of random noise to this pig, the

same Deep Learning model now calls this an airliner with 99 percent confidence.

This is a serious problem, especially considering that humans do not seem to suffer from this
problem. And for few humans, the output image is still a pig, quite clearly. So, why do Deep
Neural Networks suffer from this problem? Unfortunately, it is still not well known. But this
question has led to a body of work over the last few years on what are known as adversarial
attacks, which try to hack the model and disturb the model and adversarial defenses, which try to
protect the model against adversarial attacks. Let us see both these kinds over the rest of this

lecture.

1622

(Refer Slide Time: 02:36)

{:*) Supervised Frameworks are Vulnerable to Adversarial Attacks*

NPTEL

Original nput Connoisseurs of Chinese film will be pleased todiscover | Prediction:
that Tian's meticulous talent has not ithered during his | Positive (77%)
enforced hiatus.

L

A f Chinese fim Prediction:
that Tian's meticulous talent has not ithered during hi ive
enforced hiatus.

Adversarial example Connoisseurs of Chinese footage will be pleased to Prediction:
[semantically similar] discover that Tiar's twithered
during his enforced hiatus.

lXi: et al, Adversarial Examples for Semantic Segmentation and Object Detection, ICCY 2017

Vineeth N B (IIT-H) §12.3 Adversarial Robustness 4/29

In general, it has been studied and understood now that supervised frameworks are vulnerable to
adversarial attacks in any domain. Here is an example where you see a detection and
segmentation task, given an image. The first detection image that you see here calls these dogs,
and you also get a segmentation mask around them as dogs. But when a small adversarial
perturbation is added to it to this image, now, this pink box or magenta box that you see here, is
now a train with a fair good amount of confidence. And the masks too now reveal a different

label for the same image.

Similarly, for text, if there was an original input, which has a certain sentence, and the prediction
is that the tone is positive, with a 77 percent confidence. If an adversarial example is a small
change is made to the sentence, as you can see, the change here is very, very small. But now, the
prediction is that the tone is negative with the 52 percent confidence. And if the word film is
changed to footage, which is perhaps semantically similar, even then the prediction becomes
negative with 54 percent. This is worrisome, again, considering that humans do not suffer from

such problems.

1623

(Refer Slide Time: 04:17)

{% Supervised Frameworks are Vulnerable to Adversarial Attacks

NPTEL

L] %

"it was the
, best of times,
" itwasthe
worst of times

X 0.001

"it is a truth
. ::, universally
acknowledged
that a single"

%Carlin et al, Audio Adversarial Examples: Targeted Attacks on Speech-to-Text, 2018
Vineeth N B (IIT-H) §12.3 Adversarial Robustness 5/

Similarly, here is an example for an audio based network. Where given an audio signal, the
neural network translates this as it was the best of times, it was the worst of times. And when a
noisy signal multiplied by a small scalar constant is added to the signal, the same neural network
now classifies this as it is a truth universally acknowledged that a single, the meaning completely

changes.

(Refer Slide Time: 04:49)

{7%9 Taxonomy of Adversarial Attacks
]I'l| On basis of Threat Model

0 White Box Attacks: attacker has access to model's parameters.
0 Black Box Attacks: attacker has no access to model's ‘parameters, i.e., it a different model or no model
at all to generate adversarial images

< On basis of Objective 5

O Untargeted Attacks: aim is to enforce the model to misclassify adversarial image
0 Targeted Attacks: aim is to get the image classified as a specific target class, different from the true class

On basis of Distance Metrics

0 Ly: total number of pixels that differ between clean and adversarial images
0 Ly: squared difference between pixel values of clean and adversarial images

0 L maximum pixel difference between clean and adversarial images

Vineeth N B (IIT-H) §12.3 Adversarial Robustness 6/29

1624

So, now coming to what are adversarial attacks. Over the years, there have been methods that
have been developed of the different kinds. And there are a few different ways of categorizing
these methods. If one looked at the threat model, these attacks can be called White Box or Black
Box Attacks. In White Box attacks, the attacker assumes access to the models parameters.
Whereas, in Black Box attacks, the attacker does not have access to the models parameters. So, it
is perhaps coming from a different model, or no model at all, to generate these Adversarial

images.

Remember, adversarial attacks are intended to cause problems with the model. So you could look
at that as equivalent to ethical hacking. Similarly, on the basis of objective, adversarial attacks
are differentiated as Targeted Attacks, or Untargeted Attacks. In untargeted attacks, the aim of
the attacker is to enforce the model to misclassify. Whereas, in a Targeted attack, the aim is to
ensure that the model classifies it as a particular target label. So, in an Untargeted attack, if you
had an image of a cat, or generally called a cat, you want to add a perturbation that ensures that

the model no longer calls it a cat.

In a targeted attack, the attacker now wants to add a perturbation to ensure that the cat is now
called a dog, for instance, could be any other target label, but you want a specific target label.
Targeted attack could be a big problem in biometrics, where one person may want to add some
noise to an image to impersonate as somebody else to a Deep Learning model trained for face

recognition.

A third categorization is based on distance metrics used. So in all of these Adversarial
perturbations, the constraint is that the perturbation should not have a very high norm, because
you do not want the perturbation to be too large, because it is then always easy to add a very
large number and change the outcome of a model. The challenge here is to ensure that the
perturbation is as minimal as possible. And when you say as minimal, you have to measure a

distance and that is done using different kinds of Lp norms, such as L , horm, L , horm, or Loo

norm.

So, in L , horm, the total number of pixels that differ between clean and adversarial images is

used, in L2 norm it is the squared difference between the clean image and the adversarial,

1625

adversarially perturbed image. And an L_ norm it is the maximum pixel difference between the

clean and adversarial images. An infinity norm is often used in many of the methods.

(Refer Slide Time: 08:10)

g@ White-box Adversarial Attacks®
Fast Gradient Sign Method (FGSM)

o Computes an adversarial image by adding a pixel-wise perturbation of magnitude in the
direction of gradient

e

o Single step method: very efficient in terms of computation time:
Tady = T+ € 5igN(VoL(2, Yirue)

o In case of targeted attack, direction is negative gradient with respect to target class:
Tody = & — € - SIgN(Vo L(Z, Ytarget)

where z is clean input image, &4, is corresponding adversarial image, L is classification
058, 1irue is actual label, iarge is target label and € is Ly, budget

3Goodfellow et al, Explaining and Harnessing Adversarial Examples, ICLR 2015
t Vineeth N B (IIT-H) §12.3 Adversarial Robustness 79
' ey)

Let us now see a few methods that do what is known as White Box Adversarial Attacks, which
means they assume that they have access to the models parameters to be able to attack the model.
One of the prominent methods in this context is known as FGSM, or Fast Gradient Sign Method
where the model computes an adversarial image by adding a pixel wise perturbation of
magnitude in the direction of the gradient. So, in this single step method, you add a perturbation
x is the original image, you take the gradient of the loss with respect to x, find the sign and add

an epsilon in the direction of that sign.

Remember that the gradient would actually be a vector with respect to each input dimension. So,
for each of them, you would have a sign. So, for each dimension, you add an epsilon times its
corresponding sign. What are you doing, you are now trying to add a perturbation, which would
increase the loss and hence resulting in an adversarial perturbation. So, this is known as a single
step method, just one update to get an Adversarial perturbation, and hence very efficient in terms

of computation time to implement.

If this had to be done for a targeted attack, it is the same method. The only difference now is you

now go in the direction of the negative of the gradient of x assuming that the gradient is

1626

computed with respect to the target label, remember that when you do a negative, you are trying

to reduce the loss with respect to the target label. So, you are now trying to make the model think

that that sample is a different label.

So, x here is the image X . is the adversarially perturbed sample, L is the classification loss,

y

tru

. is the actual label, Y arget is the target label for a Targeted attack and € is the budget or L__

budget or any norm budget that you have, which you allow for the perturbation.

(Refer Slide Time: 10:47)

{z%) White-box Adversarial Attacks*

o Projected Gradient Descent (PGD)

Wb 0 “Complete” method as it does not consider
constraints on amount of time and effort

7,(]

Tody =T

Ll
Loy

= Pfoj{-l'f.m- te Sign‘(vzﬂ(f:,dv- U!ru()}

where Proj{.} projects the updated adversarial sample
into the ¢ neighborhood and a valid range

w0 Incaseof Ly, update is as follows:

loss

VoLt Yirve)
1+ ol e Logy: Yirue
zot = Proj{zg, + € ot ——
e o ||V,(-.C((l'f”“,. ;Ulr'w] ”Z

Credit: Oscar Knagg, TowardsDataScience
*Towards Deep Learning Models Resistant To Adversarial Attack — Madry et al 2017
Vineeth N B (IIT-H) §123 Adversarial Robustness

8/29

A more popular and a complete method is known as Projected Gradient Descent. This was

introduced in 2017. This is considered one of the most popular methods today widely used. And

it is considered a complete method, because it does not impose any constraints on amount of

time or effort. So, you it is an iterative process, unlike FGSM, which is a single step method.

PGD is an iterative method, which keeps improving the adversarial perturbation, unless until it

succeeds.

How do you do this? You start your first iteration’s adversarial sample with x, which is your

given sample, then in each iteration, you add a gradient corresponding to that iteration’s

adversarial sample. And corresponding to the true label, remember, you are trying to increase the

loss for the true label. And you know project the sample back into the € neighborhood. So, you

try to find out what is that sample that takes me to a higher loss.

1627

Project it back to the eball that you are allowed your perturbation in remember that € imposes a
certain constraint on the size or the norm of the perturbation. This gives you a new adversarial
perturbation. Now, you repeat this over multiple iterations, until the sign or the classification

output changes. In case of LGorm, the update becomes € times you have the gradient of the loss

divided by the two norm of the gradient of the loss. The sign simply becomes the gradient by the

two norm of the gradient which is in other words, the sign.

The visualization here shows a loss surface. The loss surface here is that the sample is initially in
a region of a very low loss. And by taking a series of iterative steps, the sample is now moved to
a position where the loss is very high, remember, yellow here is high loss. And in two different

runs, you now take the sample to two different locations, where the loss is very high.

(Refer Slide Time: 13:21)

*\ﬁ White-box Adversarial Attacks ° X
NPTEL

0 DeepFool

IIII o For affine classifier, f(z) = w”z + b, minimum perturbation to

change the class of example z is distance from the decision
boundary hyperplane F = {z: w"z +b=0}, ie, - (o)

[wl3

Sw

o For a general differentiable classifier, assuming f is linear around
1}, iteratively compute perturbation d;:

arg min |6, subject to f(x}) + V. f(z}) "6, =0
I

>< Runs until f(24) # (xo)
o Multi-class classifiers: Compute distance from z; to surface of a
¢ convex polyhedron formed by decision boundaries between all
classes

5Seyed-Mohsen et al, DeepFool: A Simple and Accurate Method to Fool Deep Neural Networks, CVPR 2016
Vineeth NB (IT-H) §12.3 Adversarial Robustness 9/2

P

Another popular method, which was developed in CVPR of 2016, is known as DeepFool. In

Deep Fool, the idea is considering the decision boundary, while coming up with the Adversarial

perturbation. Given any affine classifier, a linear classifier, which is given by f(x) = wx + b.

The minimum perturbation to change the class of an example X, is the distance to the hyperplane

to the decision boundary, which is given by wx+b=0.

1628

—f(x)
And this distance between a point and the hyperplane is given by ”—”02, where x 0 is the point.
w

2
This is a known quantity and this takes us from any point to the decision boundary when the
class label changes, when that point goes beyond that decision boundary. In general, for a more
general differentiable classifier, this method assumes that f, or the decision boundary is linear

around that particular point.

And hence, it tries to compute a perturbation which minimizes the 2 norm of the perturbation
subject to assuming that the perturbation is on a linear neighborhood local neighborhood of that

point X, with respect to the decision boundary. But now, you keep running this iteratively until
the decision on xt' changes from X, So, you find a delta such that it lies on a linear

approximation of the decision boundary around that point in such a way that the 2 norm of that
perturbation is as low as possible remember, you want your perturbation to be a very small

quantity and you run this iteratively until the decision boundary or the class label changes.

What happens if you have a multi class classifier then, the distance is computed to the surface of
a convex polyhedron formed by the decision boundaries between all classes. So, the distance

from X, to any direction which is on the surface of a convex polyhedron is the minimum distance
that you need to add or the minimum perturbation that you need to add to x o to change the class

label into something else.

(Refer Slide Time: 16:07)

1629

0 . .

5\?‘9 White-box Adversarial Attacks®

|I.I| Carlini and Wagner (C&W) attack

a o Optimization-based adversarial attack that can generate adversarial samples using:

mé_in D(z,z +0) such that f(z+48) =t

subject to 2+ 8 € (0,1]; D(.,.) is Ly ,Lo and Ly, distance measures
o To ensure z + 0 yields a valid image (i.e., z +d € [0,1]), it introduces a new variable, ,
to substitute as follows: :
§= i[tanh(hi) +1-z

such that 2 40 = %[tanh(n) + 1] which always resides in the range of the optimization
process %

5Carlini and Wagner, Towards Evaluating the Robustness of Neural Networks, arXiv 2016
Vineeth N B (IT-H) §12.3 Adversarial Robustness 10/29

g

Another white box adversarial attack, which is also been used over the years is known as the CW
attack or the Carlini and Wagner attack, which is an optimization based Adversarial attack again,

but the problem now is formulated as main D(x,x + 0) such that f(x + 0) is a particular

target label or a label different from the true label. Subject to the constraint that x + & also lies

between 0 and 1. The D here can be Lo’ L2 or LQo distance measures.

To ensure that x + § yields a valid image that is x + 0 should lie between 0 and 1. This method

introduces a new variable k which is used within this formulation for 6. 8§ is written as

% [tanh(x) + 1] — x. Why is this done? Because if we write 6 this way, we get that x + &

will be %[tanh(K) + 1]. We know that tanh has a range minus 1 to plus 1. So, hence

tanh + 1 has a range 0 to 2 and dividing by half ensures that this value always lies between 0
and 1.

(Refer Slide Time: 17:47)

1630

iig White-box Adversarial Attacks’

NPTEL

Jacobian-based Saliency Map Attack

0
|II| o Fool DNNs with small Ly perturbations; compute Jacobian matrix of logits f(z) before softmax
—_— layer:
) df (¢ dfi(x
Vr((l) -).01," _ f(l)}
O 0w 1€{1,2. Mout i €{1.2..Min)

where M, is input dimension and M,,, is output dimension
o Jacobian matrix - how input pixels affect logits; adversarial saliency map S(x, i) - to select
pixels that should be perturbed to obtain desired changes in logits

v 0fypre (@) 4
0 if = ;jJ, <Oor Zt,ﬂ/vvm oy >0

S(.II‘.‘I rue) |l = 9§ & . Ox;
iUt)H {f)fv,‘,,,,tr)Zl#y”u‘(lj,(.:] otherwise

0. 0z,

Zj
o Finally, perturb element with highest value of S(z, y.)[7] to increase/decrease logit outputs of

target/other class significantly

"Papernot et al, The Limitations of Deep Learning in Adversarial Settings, EuroS&P 2016
Vineeth N B (IIT-H) §12.3 Adversarial Robustness 1/29

[

One more White Box Adversarial Attack is a Jacobian-based Saliency Map Attack. In this case,

to fool the DNN with small L0 perturbations, the method computes the Jacobian matrix of the

logits before the softmax layer, remember, logits are the outputs of the neural network before the
softmax layer. And Jacobian is computed between every output in that layer in the logits with

respect to every input that gives you a matrix of different gradients.

Once you get the Jacobian matrix, you get an understanding of which input pixels affect which of
the logits in particular, using this, the methods suggests the creation of an adversarial saliency
map, which is given by this adversarial saliency map is given by 0 if the true gradient that is f

with respect to that x; that you want to consider that input dimension. If that is less than or equal

to 0, or the gradient with respect to non true labels, non ground truth labels is greater than 0.

What does this mean?

This means that if the gradient becomes less than 0, which means we are further improving the
output on the true label, this also means that we are going further away from the non true labels.
We do not want that direction. So, in those directions, the saliency map is set to 0. In every other

case, where the gradient of the true label with respect to X; is greater than 0, or the gradient of the

other labels, the logits corresponding to the other labels with respect to the input is less than 0,

we would like to encourage those directions to change the label.

1631

So, this method proposes the Adversarial Saliency Map to be the gradient of the true label into
the absolute value of the sum of the gradients for the other classes. Why absolute value, because
in the second case, we know that the other gradients will all be less than 0. So, we would like to
use the absolute value. Once you get these adversarial saliency maps, we then perturb the
element with the highest value of the adversarial saliency map to increase or decrease the logit

outputs based on what you like, of the target, or the other class significantly.

(Refer Slide Time: 20:33)

(§) White-box Adversarial Attacks’

NPTEL

0
|Il Universal Adversarial Attack
.) ‘
= ! 0 One perturbation for all examples

i, Sl R .

ol =
5B
™ . -

BMoosavi-Dezfooli et al, Universal Adversarial Perturbations, CVPR 2017
Vineeth N B (IIT-H) §12.3 Adversarial Robustness 12/

»

The last White Box Adversarial Attack we will see is known as the Universal Adversarial
Attack. The goal here is to find one perturbation for all your examples, if you observe carefully,
so far, all the methods for adversarial attack, try to find a perturbation for a given sample that
will fool the deep neural network model. But that can be laborious. So, the aim here is to see if

we can find one perturbation that will fool them all.

1632

(Refer Slide Time: 21:13)

‘{%} White-box Adversarial Attacks®

NPTEL

0
|||| Universal Adversarial Attack
o One perturbation for all examples
o For each z;, compute minimal perturbation that sends
2; + v to decision boundary

Initialize v = 0

Av; = argmin [|rl|z st f(zi+v+7)# flz)
v="Pp(v+Av;)

7 Ppe(v) = argnlpl [[v—v'||2 subject to [[o/, <€

SMaosavi-Dezfooli et al, Universal Adversarial Perturbations, CVPR 2017
Vineeth N B (IIT-H) §12.3 Adversarial Robustness 12/29

Iig!
How do you do this? This is now done by if you consider this illustration here, XX, and X, are

juxtaposed, they are not located, they do not have the same vector value. This is just for

convenience. ‘Rl here denotes the boundary corresponding to x L rather, that is the minimal

perturbation, that is the ball or the set of values with the minimal perturbation, after which the

class label for X, will change.

Similarly, you see an ERZ for X, and an 5R3 for X, which are the regions where the label stays the

same beyond which the label changes. With this knowledge, how do you learn the universal

perturbation? The method initializes, the perturbation v to 0. And for every sample X, finds a
\Avi that adds an r such that the decision changes. And then now projects v on to some ball, you
try to ensure that if you found a Avi, then you try to ensure that the final perturbation for this

sample is a v, which satisfies the € constraint on the LP norm.

So, if you started with X, you would get this particular point as the point at which the label
changes. Now when the next point comes, you realize that at that point, x 5 label does not change.

So, you further add a A for X, then a A for the next point, so on and so forth. And v now is the

1633

sum of all of these AVi’s, which is the total perturbation that you need to add for any of these

points to change the class label.

1634

(Refer Slide Time: 23:16)

%?9 Non-L, White-box Adversarial Attacks *

NPTEL

Functional Adversarial Attacks

ll'll Spatially Transformed Adversarial Attacks
.
v vl vk
¢
. . i . . .
<f:WmeM*ﬂ+%MMLﬂ OAmmmmmmMMwmgmmmm
f features to produce an adversarial example
Lagy encourages generated examples to be mis- o Eg. attack applied on colors of an image
classified; L1, ensures that spatial transforma- can change all red pixels simultaneously to
tion distance is minimized light red
9)('\30 et al, Spatially Transformed Adversarial Examples, ICLR 2018
10 Laidlaw et al, Functionsl Adversarial Attacks, NeurlPS 2019
Vineeth NB (IIT-H) §12.3 Adversarial Robustness 13/29

[

Now let us look at a couple of Non-Lp based White Box Adversarial Attacks, where you do not
necessarily use the norms to create the attack, but use other kinds of methods. One of them is
called the spatially transformed adversarial attack. In this method, given a benign input image, a
clean image, the goal is to find a flow that means all pixels are moved by a certain quantity in
such a way when that flow is added, and you perform a bilinear interpolation to ensure that you

do not get positions that lie between two pixel locations, you get a final adversarial image.
Now, to learn this flow, the final objective function is given by arg mfin L, dv(x, f). Here, L.

encourages the generated samples to be misclassified and L y tries to ensure that the flow

flo
perturbation is as minimal as possible. Another method in this category are known as functional
adversarial attacks. So far, we looked at all attacks for perturbations, which are additive in
nature, where you add a perturbation to a sample in this case, we now try to transform the sample

using a function. Those are known as functional adversarial attacks.

And then you can combine the additive and the functional attack to get a combined attack. An
example here is, you could now apply an attack to change all red pixels in an image to light red
pixels. Remember, this is not additive, but an intensity scaling operation, which would be

considered a functional attack.

1635

(Refer Slide Time: 25:33)

{%} Black-box Adversarial Attacks: Gradient Estimation-based ™!

NPTEL

D Zeroth-Order Optimization (Z00) Opt-Attack
|ll| o Need to estimate gradients of target DNN in order @ Target model can only be queried
to produce an adversarial image to obtain true label (hard-label

) ing): 7
0 But now, target model can only be queried to setting); now, how’

obtain probability scores of all classes; how?

_ [
(0) =min A st fa+h—) # Yiru
L(z,y) = max{ max log [fi(z)]-log [fy,,.. (x)] -k} 7 el .)\MH) i
1FYtrue

o A coarse-grained search to initially
find a decision boundary and then
0f(x) Jlx+hei) = flz - hei) finetune the solution using Binary

0 To estimate gradient:

Ox 2h Search

LChen et al, Z0O: Zeroth Order Optimization Based Black-Box Attacks to Deep Neural Networks without Training Substitute Models, AlSecW 2017, Cheng
g 2. Query-efficient Hard-label Black-box Attack: An Optimization-based Approzch, 2018

Vineeth N B (IIT-H) §12.3 Adversarial Robustness 14/29

Moving on from white-box attacks, we will now talk about a few Black-box attacks for
adversarial perturbations. One of such examples, remember, in a Black-box attack, you do not
have access to the model’s parameters. But remember, from what we have seen so far, we need to
be able to estimate the gradients of the target neural network to produce an adversarial image
because that tells you a sense of the direction in which the loss or the output of the neural

network will change.

But in this case, in Black-box, we do not have access to the model’s parameters, we only have
access to the outputs of the model. We assume that we have an the access to the logits of the
target model, we still have to come up with an adversarial perturbation, which changes the output
of the true label to some other class label by at least a certain distance K. So, this method called
700 Zeroth Order Optimization, suggests that you can now approximate the gradient by doing

multiple forward passes on the model.

f(x+he)—f(x—he) . .
> where eis a small perturbation. We know from first

You do a forward pass of

principles, that this is an approximation of the gradient. And I could now use this as an estimate
of the gradient and then do any other any method similar to one of the White-box attacks.

Another approach in this direction is called an Opt-Attack, where the target model here can only

1636

be queried to get the hard label, not even the logits. Remember, in this approach, in the ZOO

approach, we said you could get the probability scores for the logits of the model.

Now we say even that is not available, you can only get the winning label. So, the perturbation

that we need here, g(0) is the minimum A such that f(x + A - ﬁ Y, But how do we do

this when we do not have access to the gradients, and we only have access to the final prediction
of the model? So, one has to rely on a brute force kind of an approach, where a coarse grained
search is finally performed is initially performed to find a decision boundary and then this is

fine-tuned using binary search.

So you try to see how much do I add to cross the decision boundary. And if you crossed it by a
lot, now within that perturbation, do a binary search to find the exact perturbation that makes you
cross the decision boundary. And you do have the output of the target model to check whether

you crossed the decision boundary or not.
(Refer Slide Time: 28:51)

3{:9 Black-box Adversarial Attacks: Gradient-Free!?

NPTEL

0
llli Greedy Local-Search

o Create a neighborhood consisting of all images that are different from previous round's image by
one pixel only

o Initially, a pixel location is randomly selected, and perturbation is added to it

A
o Calculate importance of pixel by observe change in classification accuracy after adding noise
o The next pixel location is chosen among pixels lying within a square whose side length is 2p

o Use these importance to approximate the loss function's gradient

Nina Narodytska et al, Simple Black-box Adversarial Perturbations for Deep Networks, 2016
Vineeth N B (IIT-H) §12.3 Adversarial Robustness 15/20

Another Black-box Adversarial Attack, which is a gradient free attack, where there is absolutely
no gradients is you create a neighborhood consisting of all images that are different from the
previous round’s image by just 1 pixel. You initially pick a random pixel and add a perturbation,
you can now calculate the importance of that pixel by observing the change in classification

accuracy after adding noise.

1637

Now, you choose the next pixel location among pixels lying within a square whose side length is
2p, you stay in that neighborhood. You again find the importance of each of those pixels in that
neighborhood. And this can give you an approximation of the loss functions gradient, which you

then use to attack the model.

(Refer Slide Time: 29:53)

5?9 Need for Adversarial Defenses: Adversarial Examples in Physical World 3

NPTEL

o Poses a serious security threat to services using modern day Deep Learning models

o E.g. TensorFlow Camera Demo app to classify clean and adversarial generated images

o A clean image (b) recognized correctly as a “washer” when perceived through camera, while
adversarial images (c) and (d) are misclassified

(iii 7
l
8

(o) Image from daaset () Cleanimage () Adv.image,c =4 () Adv. image,

13A\exey Kurakin et al, Adversarial Examples in the Physical World, ICLRW 2017
Vineeth N B (IIT-H) §12.3 Adversarial Robustness 16/29

We now come to the other side of the story. So far, we have seen several methods that perform
adversarial attacks. Now we will talk about a few methods that try to defend Deep Neural
Networks against adversarial attacks. Why do we need this adversarial attacks pose a serious
security threat to services that use modern Deep Learning models. Here is an example, which

was performed using a TensorFlow Camera Demo app to classify clean and Adversarial Images.

Given an image from the data set, initially, the model calls this a washer. And when an
adversarial attack, or a perturbation is added to the image, now the model thinks this is a safe,

which it is clearly not.

1638

(Refer Slide Time: 30:52)

F : L
iﬁ Adversarial Defenses: Randomization * 3
NPTEL
z Random Input Transformation Random Noising
IIII o Two random transformations—random o Adds 2 noise layer before each convolution
S resizing and padding—to mitigate layer in both training and testing phases

adversarial effects at inference time

o Ensembles prediction results over random
bputimege Resasd inage Padied mage noises to stabilize DNN's outputs

1o et al, Mitigating Adversarial Effects through Randomization, 2017
15 et al, Towards Robust Neural Networks via Random Self-Ensemble, ECCV 2018
Vineeth N B (IIT-H) §12.3 Adversaral Robustness 17/2

So in the physical world, like applications in Autonomous Navigation, an Adversarial attack can
cause lives, and it becomes important to defend against them. One method to perform an
adversarial defense is called as Random Input Transformation. So in this case, given an input
image at test time, the approach is to firstly, randomly resize the layer and then randomly pad the
image in different ways. And pick one of these outputs to give to the CNN model and classify.
Why are we doing this?

We expect that irrespective of where the object is an, is in an image, the CNN will be able to
classify it, that is the first part. The second part is we are hoping that by choosing this image
randomly, the model or the adversarial attack may not pick a pixel in this part of the image,
where the image is actually located in this part of the canvas, where the actual image is actually

located.

Another approach is called Random Noising, where a noise layer is added before each
convolutional layer in both training and testing phases. You can see here that the convolutional
layer block, which has a convolutional layer, a batch norm layer and an activation layer. Now,
you also have a noise layer added to each of your convolutional blocks. What is the purpose?
Both at training and testing, you add multiple random noises, and ensemble your prediction
results across all of these randomly perturb inputs. And this gives you robustness against

adversarial attacks, at least to an extent.

1639

(Refer Slide Time: 32:56)

o . i .

%ﬁﬁ Adversarial Defenses: Input Cleansing/Reconstruction *®

° Defense-GAN

]
Seed L 7 K=6(z)

Randorm number Minimize)
generator 16(2) - xil; Generator Classifier —

h 4

<
Input image x T

o Trains a generator to model distribution of benign images

0 In the testing stage, cleanses an adversarial input by searching for a close image, and feeds this
benign image into the classifier

o Qther similar methods: PixelDefend, MagNet, APE-GAN, etc

18Samangouei et al, Defense-GAN: Protecting Classifiers AgainstAdversarial Attacks Using Generative Models, ICLR
18
Vineeth N B (IIT-H) §12.3 Adversarial Robustness 18/20

Another defense method is known as Defense GAN, where a generator is trained first, to model
the distribution of clean images. So, you have your training dataset, you do not consider any
adversarial perturbations, you only train a GAN, to generate more images, such as your training
dataset. At test time, you now cleanse an adversarial input by finding the nearest generated
image. How do you do that? You then you have a random number generator, you then try to find

out different images obtained through different random noise vectors to the generator.

You try to see which of them of which of those generated images is closest to the current input,
which could be adversarial. And now use that as a classifier to finally use that as input to your
classifier to get the output. Why do we do this? We hope now that any adversarial perturbation
may now get hidden by considering the closest image and that pixel value that have been that
may have been added to a specific pixel is now offset by considering a different image. There are
other methods in the same space that operate with a similar principle called Pixel Defend,

Magnet, APE-GAN, so on and so forth.

1640

(Refer Slide Time: 34:33)

(#) Adversarial Defenses: Network Distillation "

NPTEL

U
| ! | '
SR : % Probability Vector Predictions F{) ! | [Probabilty Vector Predictions /(X } :
H '
|] |

i

| ; |
H ’ DNNF trained af temperature T | H * DNN F71X) trained al temperature T ‘ 1
! | H i

o Probability of classes produced by first DNN used as inputs to train second DNN
0 Using high-temperature softmax reduces model sensitivity to small perturbations
k

17Papernot et al, Distillation as a Defense to Adversarial Perturbations against Deep Neural Networks, arXiv 2016
Vineeth N B (IIT-H) §12.3 Adversarial Robustness 19/29

Another defense is based on an approach called Network Distillation. We will see the idea of
distillation more closely in the next lecture. But we will give a high level idea here. The high
level idea here is you have an initial neural network, which is trained given training data and
training labels. And this network outputs a set of a vector of logits or a softmax probability

distribution as its output.

Now, the distilled network learns using these probability vector predictions instead of the
original one hot training labels. So, if your initial network had a distribution over, say 10 labels,
instead of recognizing a digit as 3, it would have a probability distribution over all labels. The
second network is asked to predict that probability distribution, rather than predict the digit 3.
How does this help?

Using a very high temperature softmax remember, if you use a high temperature softmax, you
get a more smoother distribution in your softmax of values, the probability values, that reduces
the model sensitivity to small perturbations. So, you do not easily assign another label because

you have smoothened out your probability distribution across all labels.

1641

(Refer Slide Time: 36:11)

’{% Adversarial Defenses: Adversarial Training 8

NPTEL

||.|| PGD/FGSM Adversarial Training
o Simply add PGD/FGSM attack inside your training loop
o “Ultimate data augmentation”
o Create specific perturbations that best fool our model and classify them correctly

o Most popular and widely opted; currentNSOTA

Regular Training Adversarial Training

' 9) | minmaxL(z+4, 0
1110111[,<$,y.9) R (y;0)

18Goodfellow et al, Explaining and Harnessing Adversarial Examples, ICLR 2015, Madry et al, Towards Deep Learning
Models Resistant To Adversarial Attack, 2017
Vineeth N B (IIT-H) §12.3 Adversarial Robustness 20/29

But the most important and most widely used adversarial defense is known as Adversarial
Training. In adversarial training, which is a computationally intensive process. You simply add a
PGD or an FGSM attack as part of your original training loop. This is considered the ultimate
data augmentation step. So, in each step of your training of the original Deep Neural Network
model you add an inner maximization step, which tries to find the 6 that maximizes the loss, and

then you find the 0 that minimizes the loss for this adversarial perturbation.

So, within each loop or iteration of training, you have to solve for each data point, a
maximization problem, which says, given an input sample in one mini-batch iteration of SGD.
How much should I perturb this to cause maximum damage? You find that perturbation, call that
0, now you add 6 to that input, and then minimize the loss over the overall network. This is
obviously the most powerful adversarial defense, it is widely opted, and the current state of the

art for adversarial training.

1642

(Refer Slide Time: 37:48)

F o . . "
iﬁ Adversarial Defenses: Adversarial Training 1, 2
NPTEL
0 Adversarial Logit Pairing TRADES
I | o Encourages similarity between logits of clean z @ Decompose prediction error for adversarial
e and adversarial z,g, exawmples examples as sum of natural error and

A N boundary erro
Lap = Leet 5+ 3 DU, k) ey efer

i=1

D encourages logits to be similar; e.g. Lo loss

. o Llf(e), fle+6)))
“!}“E {C(j('l/"]/hm') T 1(}16‘2(\

o While ALP uses PGD adversarial examples,
TRADES computes 4, as
maxsea L(f(2), f(z+9)

o ALP enforces Ly loss while TRADES uses
classification-calibrated loss

%annan et al, Adversarial Logit Pairing, 201§
207hang et al, Theoretically Principled Trade-off between Robustness and Accuracy”, ICML 2019
Vineeth N B (IIT-H) §12.3 Adversarial Robustness 21/29

There have been a few variations of adversarial training based on similar ideas. One of them is
known as Adversarial Logit Pairing, where you have a clean sample, which is given by this green
vector. You perturb it and you get this red vector. You pass both of them through the Neural
Network, you try to ensure that the logits of the clean sample and the adversarial sample are

close to each other using something like L 5 loss. This also helps as a form of adversarial training.

A more recent method called TRADES, which was published in ICML of 2019. Uses a similar
idea, but a different method. It decomposes the prediction error as the sum of natural error and
boundary error. So, you have a natural error here, which is the error that you typically deal with
when you train any Neural Network model. And then you have a boundary error here, which is
trying to find the delta that will push the decision function to give a different label. That is the
second part here, which has another maximization here, which is why it is an adversarial training

step.

While ALP which is Adversarial Logit Pairing, uses PGD Adversarial samples. TRADES
computes adversarial samples as maximum of delta where the decision between f(x) and
f(x + &) is maximized. So, you want that loss to be as high as possible, not necessarily a PGD

attack. So, you can look at ALP as enforcing L2 loss, while TRADES uses a classification

calibrated loss.

1643

(Refer Slide Time: 39:57)

5?9 Tradeoff between Robust and Clean Accuracy®

NPTEL

8- £=1/255
—— £=2/255

]

o

o Adversarial robustness comes at a cost of decreased

B £=3255
5 "<‘k\\’/‘\+ £=4/255 clean/standard accuracy
R N
'\-\ o Gap decreases with increase in training set size;
b

tradeoff should disappear with infinite data

b

Std Err(AT) - Std Err(Std) (%)
-
-
|

\\'/.\“ﬂ\\. o Recent methods like IAT, AVMixup reduce this

] tradeoff by increasing train set size
Number of labeled samples

Tsipras et al, Robustness May Be at Odds with Accuracy, ICLR 2019, Lamb et al, Interpolated Adversarial Training:
Achieving Robust Neural Networks Without Sacrificing Too Much Accuracy, AlSec 2019, Lee et al, Adversarial Vertex
Mixup: Toward Better Adversarially Robust Generalization, CVPR 2020
Vineeth N B (IIT-H) §12.3 Adversarial Robustness 2/29

An important take away from the entire studies around adversarial robustness is that one has to
deal with a tradeoff between robust and clean accuracy. Unfortunately, adversarial robustness
comes at a cost of decreased clean or standard accuracy. Here is an example where, as you see
here, that on the y axis, you see the difference between adversarial error and the standard error,
you can see that when the attack increases 4 by 255, is a very powerful attack, because you are

allowing the perturbation to be larger than 3 by 255, or 2 by 255, or 1 by 255.

You can see here that when the attack is higher, the difference between adversarial error and
standard error goes up. However, this graph also gives us some consolation that as the number of
labeled samples increases, these differences seem to get reduced over time. So as you keep
increasing the number of training samples, it looks like even if you had a stronger Adversarial

attack, the adversarial error and the standard error, the difference is not too much.

So more recent methods, such as Interpolated Adversarial Training, or Adversarial Vertex
Mixup, try to reduce this tradeoff by increasing the training set size using interpolations between
your standard data and an adversarial sample. You could consider now taking using adversarial
training to find take a data point and input data point find its adversarial perturbation in the inner

maximization loop of adversarial training.

1644

Now take interpolations of all the points that lie on the line between the clean point and the
adversarial perturbation. All of these, when added to training, help improve the train set size, and

thus mitigate this trade off problem between adversarial error and standard error.
(Refer Slide Time: 42:21)

{% Other Notions of Robustness?

NPTEL

Il'll o Unseen Natural Corruptions:
ey Robustness to common occurring
o Attributional Robustness: Robustness of ~ distribution shifts like fog, blur, snow, etc.
attributions (explanations/ saliency maps) il

% Integrated Gradients (1G) GradCAM+ GradSHAP
. N o

B

o |

<M -
B EREN:

Hendrycks et al, Benchmarking Neural Network Robustness to Common Corruptions and Perturbations, 2019, Singh et al, Atcributicnal Robustness Training
using Input-Gradient Spatial Alignment, ECCV 2020

Vineeth N B (IIT-H) §12.3 Adversarial Robustness /9

Over the last year, there have also been other notions of robustness that have surfaced, such as
attributional robustness, where methods attack explanations and saliency maps instead of
attacking predictions. So, you have an image, you perturb it in such a way that the class label
output is the same, but the explanation significantly changes. There is also the notion of

robustness to natural corruptions, such as say fog, a blur, or snow, so on and so forth.

Which again, an example could be autonomous navigation, where when you train a model to
drive on a normal road, you should be able to drive in the same scene, even if there is rain or
snow in the same setting. Robustness against natural corruptions, also becomes important in such

scenarios.

1645

(Refer Slide Time: 43:26)

{% Homework

NPTEL

Readings
o Adversarial Machine Learning Tutorials: Tutorial 1, Tutorial 2 and Tutorial 3

o Opportunities and Challenges in Deep Learning Adversarial Robustness: A Survey >
o Adversarial Machine Learning Reading List from beginner to advanced.

o PyTorch and TensorFlow Libraries/Implementations: MadryLab, Cleverhans and
Advertorch

Vinesth N B (IIT-H) §123 Adversarial Robustness %4/9

Your homework for this lecture is to go through these excellent tutorials on Adversarial Machine
Learning, Tutorial 1, to, Part 1, Part 2 and Part 3. And if you are interested, you can read further
on these links here. The space of Adversarial Robustness is quite vast today, but these links give
you a fair picture of an understanding and the links to a few codebases to try to understand how

these work in practice are also provided here for your experimentation.
(Refer Slide Time: 44:01)

{% References |

NPTEL

J B lan Goodfellow, Jonathon Shlens, and Christian Szegedy. “Explaining and Harnessing Adversarial
Illl Examples”. In: International Conference on Learning Representations. 2015.

B Nicholas Carlini and David A. Wagner. “Towards Evaluating the Robustness of Neural Networks". In:
CoRR abs/1608.04644 (2016). arXiv: 1608.04644.

D Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, and Pascal Frossard. “DeepFool: A Simple and
< Accurate Method to Fool Deep Neural Networks”. In: Proceedings of the IEEE Conference on Computer »
Vision and Pattern Recognition (CVPR). 2016.

B Nicolas Papernot et al. “The Limitations of Deep Learning in Adversarial Settings”. In: 2016 IEEE
European Symposium on Security and Privacy (EuroSP) (2016), pp. 372-387

B Pin-Yu Chen et al. “Z00: Zeroth Order Optimization Based Black-Box Attacks to Deep Neural
Networks without Training Substitute Models". In: Proceedings of the 10th ACM Workshop on Artificial
Intelligence and Security. AlSec '17. Dallas, Texas, USA: Association for Computing Machinery, 2017,
15-26.

Vineeth N B (IIT-H) §123 Adversarial Robustness 2%/

1646

@ References ||

NPTEL

Alexey Kurakin, lan Goodfellow, and Samy Bengio. “Adversarial examples in the physical world”. In:
ICLR Workshop (2017).

Seyed-Mohsen Moosavi-Dezfooli et al. “Universal Adversarial Perturbations’. In: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2017.

Harini Kannan, Alexey Kurakin, and lan J. Goodfellow. “Adversarial Logit Pairing”. In: CoRR
abs/1803.06373 (2018). arXiv: 1803.06373.

Pouya Samangouei, Maya Kabkab, and Rama Chellappa. “Defense-GAN: Protecting Classifiers Against
Adversarial Attacks Using Generative Models”. In: International Conference on Learning Representations.
2018.

Chaowei Xiao et al. “Spatially Transformed Adversarial Examples”. In: International Conference on
Learning Representations, 2018.

Dan Hendrycks and Thomas G. Dietterich. “Benchmarking Neural Network Robustness to Common
Corruptions and Perturbations”. In: CoRR abs/1903.12261 (2019). arXiv: 1903.12261

§123 Adversarial Robustness 2%/29

@ References Il

NPTEL

B

Andrew llyas et al. “Adversarial Examples Are Not Bugs, They Are Features”. In: Advances in Neural
Information Processing Systems 32. Ed. by H. Wallach et al. Curran Associates, Inc., 2019, pp. 125-136.

Cassidy Laidlaw and Soheil Feizi. “Functional Adversarial Attacks". In: Advances in Neural Information
Processing Systems 32. Ed. by H. Wallach et al. Curran Associates, Inc., 2019, pp. 10408-10418

Alex Lamb et al. “Interpolated Adversarial Training: Achieving Robust Neural Networks Without
Sacrificing Too Much Accuracy”. In: Proceedings of the 12th ACM Workshop on Artificial Intelligence
and Security. AlSec'19. London, United Kingdom: Association for Computing Machinery, 2019, 95-103.

Seyed-Mohsen Moosavi-Dezfooli et al. “Robustness via Curvature Regularization, and Vice Versa". In:
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2019.

Chongli Qin et al. “Adversarial Robustness through Local Linearization". In: Advances in Neural
Information Processing Systems 32. Ed. by H. Wallach et al. Curran Associates, Inc., 2019,
pp. 13847-13856

§12.3 Adversarial Robustness 27/9

1647

@ References [V

NPTEL

o @ Shibani Santurkar et al. “Image Synthesis with a Single (Robust) Classifier”. In: Advances in Neural
||II|| Information Processing Systems 32. Ed. by H. Wallach et al. Curran Associates, Inc., 2019,
e pp. 1262-1273.

a Lukas Schott et al. “Towards the first adversarially robust neural network model on MNIST". In:
International Conference on Learning Representations. 2019

< B Dimitris Tsipras et al. “Robustness May Be at Odds with Accuracy”. In: International Conference on
Learning Representations. 2019.

B Hongyang Zhang et al. “Theoretically Principled Trade-off between Robustness and Accuracy”. In:
ed. by Kamalika Chaudhuri and Ruslan Salakhutdinov. Vol 97. Proceedings of Machine Learning
Research. Long Beach, California, USA: PMLR, 2019, pp. 7472-7482.

@ Tianyuan Zhang and Zhanxing Zhu. “Interpreting Adversarially Trained Convolutional Neural Networks".
In: CoRR abs/1905.09797 (2019). arXiv: 1905.09797.

§12.3 Adversarial Robustness 28/29

@ References V

NPTEL

U @ Saehyung Lee, Hyungyu Lee, and Sungroh Yoon. “Adversarial Vertex Mixup: Toward Better
||Il|| Adversarially Robust Generalization". In: Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR). 2020.

B Hadi Salman et al. Do Adversarially Robust ImageNet Models Transfer Better? 2020. arXiv: 2007 .08489
[es.CV].

¢ B Mayank Singh et al. Attributional Robustness Training using Input-Gradient Spatial Alignment. 2020.
arXiv: 1911.13073 [cs.CV].

§12.3 Adversarial Robustness 20/9

Here are a very comprehensive set of references if you would like to follow through further.

1648

