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(Refer Slide Time: 00:14)

The first kind of methods that we will talk about are Embedding Learning methods or Model

Based methods, as we just said. The key intuition of these methods is to address the few-shot

learning problem by learning to compare. If a model can determine similarity between two

images, or the similarity between the semantics of the class labels, which is required for

zero-shot learning.

One can classify unseen input in comparison, or relation to labeled instances seen during

training. What is the overall idea? One learns separate embedding functions, embedding

functions are the output representations of a neural network in this context. For training samples,

and test samples . And these comparison models are trained end to end using an𝐷
𝑡𝑟𝑎𝑖𝑛

𝐷
𝑡𝑒𝑠𝑡

approach known as meta learning which will describe soon.

At test time the prediction is based on is made based on comparing distances between the x test

feature and the training set features from each class. So, here is the overall schematic. So, you

have a Few shot training set , and a test sample , you have an embedding for the train𝐷
𝑡𝑟𝑎𝑖𝑛

𝐷
𝑡𝑒𝑠𝑡
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set g, and embedding for the test sample f. The similarity is computed to make the final

prediction on the class label of interest. What is Meta Learning here? Meta Learning is known as

learning to learn. And we will describe that in more detail.

(Refer Slide Time: 02:14)

If we considered the N-way-K-shot setting of Few shot learning, where N of the total number of

classes have only K examples. In meta learning, in each episode, you have a different set of

training classes, and a set of test examples. And these set of training classes may not be

exhaustive, and complete the full training dataset. These are loosely sampled as some of the

classes from your dataset. And the goal in this episode is to train a learner, which can make a

prediction on this test set based on this train set. That would complete one episode of meta

learning in which you get one learner as the output.

Now, in the second episode of meta learning, a different set of classes is again sampled to form

your training dataset, you have a test set, and once again, the meta learner refines the learner to

be able to solve the problem in this episode. This is repeated over multiple episodes, where in

each episode, a different set of training classes may be sampled. And at meta test, you finally

have your setting of your training classes, and your test samples where you would like to deploy

your final model.
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The goal here is and which are these episodes have disjoint classes. Which𝐷
𝑚𝑒𝑡𝑎−𝑡𝑟𝑎𝑖𝑛

𝐷
𝑚𝑒𝑡𝑎−𝑡𝑒𝑠𝑡

means the 5 classes here that you have in meta train may be different from the 5 classes here. But

in meta test, but the goal is you have learned to learn a model.

(Refer Slide Time: 04:12)

So, another way of differentiating in a classical machine learning algorithm setting, you have a

training set, you learn a model with certain number of parameters with an objective to get a good

performance on a test set. In meta learning, you have a meta training set, which has its own train

and test split, which corresponds to one episode of meta learning. You learn a set of meta

parameters theta, which is used to train learners on a new meta test set.
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(Refer Slide Time: 04:49)

Here is another way of understanding this. You have your training set in each episode of meta

learning that is used to learn a meta learner which teaches a learner to learn a model, and there is

a loss induced because of learning across these episodes in each round of meta learning. If you

see here, between the meta train and the meta test settings, the problem set up matches, so that

once you have trained a Meta-learner, the Meta-learner knows how to provide a model for the

new set of classes that may come in the training part of the Meta test episode.

Remember that in Meta learning, each episode can have a training and test. So in the Meta test,

you have a set of training classes. The learnt Meta-learner knows how to produce a model for the

set of classes to be able to solve these test samples.
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(Refer Slide Time: 05:55)

Let us see a concrete example of this idea of meta learning. This is known as Matching

Networks, a method that was developed and published in NeurIPS of 2016. A matching networks

is premised on bringing together Parametric models and Non-parametric models. Recall that

parametric models learn model parameters from training samples slowly, you ideally require

large datasets to avoid over fitting.

Unfortunately, in this setting, we are talking about few-shot and zero-shot, you may not have

large datasets. On the other hand non-parametric models like K Nearest Neighbors, allow novel

examples to be assimilated quickly. And they are robust to a phenomenon called Catastrophic

Forgetting. Catastrophic Forgetting refers to a phenomenon where if you have a set of classes for

which a model is trained, if you took MNIST, and you trained a model on the classes 0 to 6.

Let us assume that the classes 7 and 8 occur a bit later. And when you train your model, or refine

your model, on the classes 7 and 8, the model forgets what a 0 or a 1 look like. This is known as

catastrophic forgetting. And neural network models are known to be prone to this phenomenon.

If you do not retrain on the complete dataset, which may not be possible in all settings.

Non-parametric models automatically are robust to such a phenomenon. As an example, as I

said, could be K Nearest Neighbors.
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So, in this method called matching networks, the proposers proposed to combine the best of both

worlds. So you have a training phase, where you learn cosine similarity based Embedding

models. So, you see here that you have a set of samples S and a query sample Q. So, S is like

your train set in a Meta learning episode and Q is like your test set in that Meta learning episode.

You learn Embedding function F, which gives you corresponding embeddings for the train set

and the test set and then the test and then you use cosine distance to measure the similarity. That

is what happens in the train face to learn the F's. And a test time once you get these embeddings

a Nearest Neighbors approach based on the cosine distance is used to classify the test sample.

(Refer Slide Time: 08:43)

Here is the architecture that was used in Matching Networks. So, you can see here that you have

this is one meta learning episode, you have a set of samples from a given set of training classes,

you have a test sample in that meta learning episode, remember that you repeat these meta

learning episodes with a different set of training classes and test sample in each Meta learning

episode.

These training samples as are given as a sequential set of inputs to an LSTM. And the LSTM

outputs a representation for each of these input training samples. And you also get a

representation of the test sample. And then, there is a comparison module that looks at the

similarity between the test sample and each of these training samples. And that comparison is
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given in the equation here as . Where ’s are the different training samples. How do you𝑎(𝑥, 𝑥
𝑖
)

^
𝑥

𝑖

measure how do you compute this a function?

In this approach, it is a very simple computation. It gets a softmax over the cosine distances

between and . So, you take a cosine similarity between the test image and each of theℎ(𝑥)
^

𝑔(𝑥
𝑖
)

training images, and then do a softmax over these cosine similarities, to show to get a

distribution over which of these training samples, this test sample is closest to. And multiplying

that with the class label gives us the final class label prediction for this test sample.

One detail here is if you notice, the LSTM here is a Bi-directional LSTM. Why is that so? We do

not want this LSTM to actually depend on the sequence of these training samples that are given

as input. And by going Bi-directional, by doing a forward and reverse direction in the LSTM.

You are trying to counter that dependence on the sequence.

(Refer Slide Time: 11:01)

An improved idea was called Relation Networks, which was published in CVPR of 2018. In this

approach, the author's question the use of a cosine embedding, instead, the method proposes to

train and learn a data-driven nonlinear metric, instead of using the cosine distance metric. This

enables the model to extract complex nonlinear relationships among the data samples, and thus

generalize better to novel classes.
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And in fact, relation networks are also extensible easily to the more challenging zero-shot

setting, where you have no samples for the unseen classes. So, here is the overall schematic. So,

if you see here, you still have S and Q, your train samples and your query sample. They go

through a learned embedding, which is given by , the parameters of that network. And now𝑓
θ

θ

you take the class mean for a set of samples belonging to a class, and you compare the queryµ

sample to that mean representation of a class.

How do you compare? That comparison is also learned by the model, instead of using the cosine

distance. So, in the training phase, you Meta-learn both the Embedding module which is f, and

the relation module, which is the one that learns the relationship, or the distance metric between

the representations. And at test phase given a query sample, you use the relation scores in the

embedding space to the mean of each of your training classes to finally predict the class for the

query sample.

(Refer Slide Time: 13:00)

Here is the overall architecture, you have your set of training set in a given meta learning

episode, you have a query sample here, that comes in as a separate test sample. All of these go

through the same Embedding module . You get feature maps corresponding to this , and all𝑓
φ

𝑥
𝑗

the ’s from S. And now different from matching networks, relation networks concatenate these𝑥
𝑖

feature maps. The yellow bar here corresponds to the features of .𝑥
𝑗

1586



And each of these other colored bars are features from each of the other ’s in your train set of𝑥
𝑖

that Meta learning episode. What happens after you concatenate? This is then fed to a relation

module g, whose parameters are again learned, which finally produces a scalar score for the

similarity between the and each of the ’s which is given as a vector of relation scores. And𝑥
𝑗

𝑥
𝑖

finally, by doing a softmax, or an arg max over the relation scores a final one hot vector can be

predicted.

How is this network trained? The relation scores are critical for training the network. The loss𝑟
𝑖𝑗

function is given by . Rather this says that whenever is𝑎𝑟𝑔 𝑚𝑖𝑛
φ,ϕ

𝑖=1

𝑚

∑
𝑖=1

𝑛

∑ (𝐶(𝑓
φ

(𝑥
𝑗
), 𝑓

φ
(𝑥

𝑖
))) 𝑦

𝑖

equal to , or the query sample’s label matches one of the train samples label, we want to be𝑦
𝑗

𝑟
𝑖𝑡

1, remember this is squared. So, this overall quantity has to be positive. We want to be 1 in𝑟
𝑖𝑗

that scenario, because similar similarity is high and whenever the labels do not match, will be𝑟
𝑖𝑗

forced to go lesser than 1.

(Refer Slide Time: 15:18)

How is this used for few-shot or zero-shot learning? In the few-shot learning scenario, what we

described is exactly what is done, you have an element wise sum over the embedding module,

which gets your class feature map, we combine the class feature map with the query feature map,
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we just talked about the concatenation, and then we get the relation scores to finally get the

predicted label.

For Zero-shot, because you may not have any samples at all, for some of your classes. You need

what are known as semantic class embeddings. So, you get some Meta information about a class,

could be a set of attributes, could be any other textual description of a class label, or simply take

a Word2Vec representation of the class label itself or any representation, word level

representation of the class label itself. Now, the concatenation, and the embedding operator

compares the embedding of the class label with the embedding of each of those trained samples.

And that is used to get a similarity and be able to give the final outcome.

(Refer Slide Time: 16:39)

That is about Embedding Learning methods. Let us move now to the second kind of methods

data based methods, which are Hallucination or Feature Synthesis methods.

(Refer Slide Time: 16:52)
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The intuition with these methods is learning to augment. We saw learning to compare, now we

talk about learning to augment. Here, we learn a generative model to hallucinate new novel class

data for data augmentation. And by generating more data, we reduce few or the zero-shot

learning problem to a standard supervised learning problem. How do we do this? A standard

approach is to learn a generator that is conditioned on some Meta information using the data in

the base classes. And then we generate novel class features conditioned on unseen class Meta

information. And finally, we train a classifier on the base class samples and the generated novel

class samples.

So just to show this, you have your set of training samples in your meta learning episode, a test

sample, so using some meta information, and using the train samples themselves, you train a

generative model, which is then finally given to a classifier to be able to say, of course, you have

since its generative model, you may have an adversarial component there to decide whether the

generated features are real or fake. But you also have a classification component, which tells

how to classify these final generated features. Let us see a more concrete example.

(Refer Slide Time: 18:32)
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A popular method in this space is f-CLSWGAN. Here the goal is given a train set of seen

classes, we learn a conditional generator G, which receives as input Z, the random standard noise

that you give to a GAN and a class embedding corresponding to each class. Using these, the

generator learns to generate image features. We do not need to generate images here, because our

goal is not really to generate pretty looking images, our goal is to generate image representations

which can be classified and this makes it a more feasible problem.

To ensure that the features generated by this approach are good. There is also a discrimination

module, which minimizes classification loss over the generated features. So, you see here that

f-CLSWGAN tries to take some conditional, some attributes of belonging to different classes,

which are conditioned on to generate image features. And what kind of image features are

generated? These are image features that are outputs of CNN models on standard images.

So if you used a VGG or a ResNet as a CNN, you would get a certain representation of the

image. And we are now asking the GAN to generate similar vector features instead of generating

images. How do you extend this to Few shot learning? So, this would be the approach for Zero

shot learning, where there are no samples for certain classes, which is why we need the class

embedding.

However, in few-shot learning, you already have samples from some of the classes and they can

also be used to help with generation. So, you may not need the class embeddings for few-shot,
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you may instead use a generator with just noise itself as the input also, when you extend such an

approach to few-shot learning.

(Refer Slide Time: 20:53)

How is such a GAN trained? So, this method uses two components CLS and WGAN and that is

the reason for its name. The WGAN component uses a standard GAN loss, but uses a variant of a

GAN known as WGAN, or Wasserstein GAN, which is a variant that tries to mitigate the mode

collapse issue in GANs. That is the GAN loss that is used here. And there is a classification loss

that is used to classify the generated features. So, you can see here that you have some images in

your dataset, you have a CNN, whose output gives you some real features x.

On the other hand, you have your generator, which takes in a noise vector, and some class

information, and also generates some image features . A discriminator then takes an x and and𝑥
~

𝑥
~

the conditional information class and says whether these x and , or are real or fake. But there is𝑥
~

also another loss, which takes the generated features and tries to classify them into one of the

classes in your class universe. The final loss is a combination of the GAN loss and a

classification loss, which is weighted suitably using a coefficient beta.

So just to repeat, to train the classifier, you use a pre trained generator to generate samples of

novel and unseen classes conditioned on class embeddings. And the classifier is often a softmax

classifier that is trained on the train set, which gives you x’s and the generated unseen class
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image features. So, both x and are together used to train this classifier module in this𝑥
~

framework.

Hope that gave you an understanding of Hallucination or Feature Synthesis methods. Now let us

move to the third category, which are Parameter Initialization methods, which try to use prior

knowledge to alter the search strategy.

(Refer Slide Time: 23:23)

The key intuition here is learning to fine-tune. We saw learning to compare, we saw learning to

augment and now we talk about addressing few-shot using learning to fine-tune. What does that

mean? We learn a set of meta model parameters which are common to all classes. In this context,

we say classes are tasks, each class is a task. So, we learn a set of meta parameters that can be

applied to all classes or tasks in such a way that with very few samples for a given class, you can

fine tune those meta model parameters to learn the parameters for that class or task.

So, here is an overall intuition or method of how this works. For each meta learning episode, you

have and . You update some task specific parameters to minimize the loss of the𝐷
𝑡𝑟𝑎𝑖𝑛

𝐷
𝑡𝑒𝑠𝑡

Φ
𝑖

overall parameters for that class. Remember, you have , which is an overall set of modelθ

parameters, which you initialize your model with, then you fine tune that to solve only one

particular class in your current meta learning episode. Then, across all other tasks in a given meta
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learning episode, you now update the meta parameter theta to minimize the loss across all of

those classes.

So, you see here, is also here, you can see that is also here in this diagram, which is theΦ
𝑖

Φ
𝑖

model parameter for a specific task. is the model parameter for another specific task. is theϕ
3

ϕ
2

model parameter for another specific task, we want to learn a theta, which is here, which can

easily be fine tuned to get , or . Once you learn , , in a given meta learningϕ
1

ϕ
2

ϕ
3

ϕ1 ϕ
2

ϕ
3

episode, you now update theta as a weighted sum of each of these losses corresponding to each

of those tasks.

What happens at test time, if you have a few samples from one of those few-shot classes, you

have already learned theta, which are your meta model parameters, you can now fine tune theta

using those few samples to get the model for that particular few-shot class at test time.
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(Refer Slide Time: 26:04)

Let us see this in more detail. The most popular approach in this category is called MAML,

which stands for Model Agnostic Meta Learning. There have been several improvements of

MAML over these years. But we will talk about the basic method where the idea is very similar.

The task specific parameters, say are obtained through optimization. The overall formulationΦ
𝑖

goes like this. Remember, the goal of this category of methods is to learn a prior such that the

model can easily adapt to new tasks. Remember, we are talking about this in the context of

few-shot learning, where we expect a few samples to be there for those few-shot classes.

And by prior here, we mean a good parameter initialization, which is what or the meta modelθ

parameters try to achieve. So, your task specific update is you start by initializing , which withθ

any initialization, and in each meta learning episode, you update the task specific parameters,

which are , which are given by . So, that gives you the parameters forθ
𝑖
' θ − α∇

θ
𝐿(θ, 𝐷

𝑡𝑟𝑎𝑖𝑛
𝑖)

that specific class in that Meta learning episode.

Once this is done, the is then updated using . In the, of course, now youθ θ − β∇
θ

𝑖
∑(θ

𝑖
', 𝐷

𝑡𝑒𝑠𝑡
𝑖)

are getting your images from the test set. Visually, you can look at it as we just explained on the

previous slide, you are trying to learn a , which if fine tuned, can easily get you , and ,θ θ
1

* θ
2

* θ
3

*

which are the ideal model parameters for class 1, class 2 and class 3.
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So, by meta model parameters, we mean the theta, which can be easily fine tuned. So, if you

observe the task specific update, and the meta update, you would notice that you can now replace

, which is inside this loss, as . And when you substitute it that way, youθ
𝑖
' θ − α∇

θ
𝐿(θ, 𝐷

𝑡𝑟𝑎𝑖𝑛
*)

now see that you have .θ = θ − β∇
θ

𝑖
∑ 𝐿(θ − α∇

θ
𝐿(θ, 𝐷

𝑡𝑟𝑎𝑖𝑛
𝑖),  𝐷

𝑡𝑒𝑠𝑡
𝑖)

So in a sense, this becomes equivalent to almost doing second order derivatives on . However,θ

this gives us a efficient and effective way to be able to compute the updates to theta using this

meta learning approach.

(Refer Slide Time: 29:10)

Here is an Algorithmic view of the same methodology. You randomly initialize , you sample aθ

set of tasks in a given meta learning episode. For the tasks in that meta learning episode, you

sample a set of data points from each of those classes in that remember classes and tasks here

mean the same thing. You sample a set of data points from each of those classes in that meta

learning episode.

You evaluate the gradient of the loss with respect to each of those classes, and update the task

specific parameters , and then you sample a set of data points from the same classes for theθ
𝑖
'

meta update. And then you do the meta update based on these samples by combining the

gradients for all of the tasks specific losses, remember, each task is a class here. And that gives
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you your meta model parameter update. That completes one Meta learning episode. And then

you again repeat and take your next set of tasks, not here, here the next set of tasks and then you

repeat this process.

(Refer Slide Time: 30:29)

We said that MAML was for few-shot learning, can this be used for Zero-shot learning? A more

recent approach shows how this can be done. This is called Meta ZSL, or Meta Learning for

generalized Zero-shot learning. Here, the idea is to learn a GAN conditioned on class attributes,

and then train using the same Meta learning framework like MAML and then facilitate the

generalization to normal classes.

So, the key idea here is you use the meta learning framework where in each episode, you have a

set of training classes and test classes. But in each episode, we are going to simulate a Zero-shot

learning kind of a setup. Let us see how this is done. So, there is a GAN coupled with a classifier

module, which leads to 3 meta learners, you have a generator G, which is a meta learner learns

meta model parameters, you have a discriminator D, which again learns a meta model parameter,

and then you have a classifier, which checks the goodness of the generated features.

So, you can look at this as a combination of feature synthesis methods to do Zero-shot learning

and MAML for the meta learning based approach to achieve this achieve this approach. So, let
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the parameters for each of these modules D, G and C be , and . And we denote as theθ
𝑑

θ
𝑔

θ
𝑐

θ
𝑔𝑐

set of parameters combined for . Now, how is this learning done?[θ
𝑔
, θ

𝑐
]

You have given image and attributes for seen classes, you get X and a by passing the image

through a CNN, you would get a set of image features X. You have the corresponding attributes

a. Then given noise and attributes, you ask the generator to generate features . Given and a,𝑋
~

𝑋
~

the discriminator tries to say whether this is 0 or 1, real or fake. And then you have a classifier,

which then says whether the generated features belong to a particular class. So, this is similar to

the features synthesis framework.

(Refer Slide Time: 33:01)

But there is a key component here, which is the meta learning framework which differentiates

this and f-CLSWGAN, this is done by the objective now is to for the discriminator to maximize

the log likelihood of generating x and which are the true image features and the corresponding𝑎
𝑐

attributes. And minimize the generated image features or the corresponding attributes. On the

other hand, the generator tries to fool the discriminator by taking the attributes and noise and

generating an and we want the discriminator to call this real and you have the classification𝑋
~

loss. Beyond this, this objective, you have the meta learning episodes now.
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The basic updates, now, given a meta model parameter , you now get for each of your tasksθ
𝑑

θ
𝑑
'

or classes in a meta learning episode, very similar to MAML.
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(Refer Slide Time: 34:08)

And then you perform a meta update at the end of that meta learning episode, which combines

the losses for all of the tasks in that meta learning episode and updates , and so on. So, youθ
𝑑

θ
𝑔𝑐

have you put the f-CLSWGAN in a meta learning framework and you get meta ZSL.

(Refer Slide Time: 34:36)

Once this is done, the way inference is done is to generate unseen class samples. Using the

learned generator you get assuming that you can give the attributes of the unseen class as input𝑥
^

to condition the generator. And once the unseen class samples or the features of the unseen class
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samples are generated, you can use the classifier. You can also train any other classifier to predict

the class label for a Zero-shot class or any other class in that problem being considered.

(Refer Slide Time: 35:13)

Hope that gave you an overview of different kinds of methods for few-shot and zero-shot

learning. Although there are far more, if you would like to know more and understand more,

please go through this excellent tutorial, blog article on Meta Learning, Learning to Learn Fast

by Lillian Weng, a nice YouTube video on Few-shot learning with Meta Learning, a tutorial at

ICML 2019 on Meta Learning and a very nice introduction to Zero-shot learning.
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