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Few Shot and Zero Shot Learning – Part 01

In this last week of lectures, we will discuss a few advanced topics related to Deep Learning for

Computer Vision. We will start with a contemporary topic, Zero shot and Few shot learning.

(Refer Slide Time: 00:32)

Before we move forward, the question that we left behind in the last lecture on Applications for

Deep Generative Models to Video understanding, we saw methods that use videos as input for

generating videos. The question that we left behind was, can we generate a video from a Single

Image? You may have guessed the answer. The answer is yes, we are not going to discuss the

specific method now. But you can see the article linked on the slide and the corresponding paper

relevant to the article.

The core idea of doing this is through a method known as Single Shot learning, where using a

single instance, which in our case is an image, the network generates or learns to generate a

complete video. Interestingly, single shot learning is one specific setting of few shot learning,

and is the focus of this lecture. So, this becomes a nice segue into what we are going to discuss in
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this lecture. But for more details, please come back and visit this article to understand how a

video can be generated from a single image.

(Refer Slide Time: 02:05)

Deep learning models are known to be heavily reliant on large amounts of labeled data during

training. That is one of the reasons they work so well. But that is also one of their major

limitations. If you had only a few samples to learn from, deep learning models may not be that

effective in giving you a good model, and a good prediction performance. To a certain extent,

regularization methods are used to avoid over fitting in low data regimes, but they do not really

give you good performance on low data regimes. So, what do we do?

The solution is to be able to train models explicitly, that are capable to rapidly generalize to new

tasks with only a few samples, or perhaps no samples at all. And that is the focus of this lecture.

The objective is to enable models to perform under practical settings, where data annotation

could be infeasible, could be expensive, or new classes get added over time. So, illustrate

illustratively speaking, you have a few what are known as base classes, where you may have

many examples.

The goal is to use them and learn a classifier in such a way that if you have other classes, for

which you may have very few samples, or no samples at all, then the classifier can still work and
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be able to give you a good prediction. Let us see how this can be done over the rest of this

lecture.

(Refer Slide Time: 04:04)

So, this problem setting is called Few Shot learning or Zero shot learning. Let us review the

formulation first for both of these, if x was an image or a feature, you could assume that the input

to these models need not be an image per se, it could just be say a VGG feature or a ResNet

feature, which is obtained by passing the image through a VGG network or a ResNet network for

that matter. And y denotes the class label for that data point, then, Few shot learning is

formalized as, you have training data, given by your tuples. Let us assume there are𝐷
𝑡𝑟𝑎𝑖𝑛

(𝑥
𝑖
, 𝑦

𝑖
)

total of tuples, where for some of the classes there are only a few training samples.𝐼

Few shot learning is also characterized as an N-way-K-shot setting, for where for N of your total

number of classes, if you had total number of classes to be, say capital C, for N of those, N less

than C, you have only K samples, while for the rest of the classes, you have a lot of samples. The

rest of the classes are also called base classes, as you saw on the slide, in the earlier, on the

earlier slide. That is a Few shot learning.

What is Zero shot learning? Zero shot learning is when few becomes 0, what does that mean?

You have training data, x, y. But now, because you want to be able to classify a data point that

was never in your training set, that is the zero shot setting where you do not have for some of
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your classes, you have reasonable amounts of data for some of the classes, which are also called

zero shot classes, there is absolutely no label data at all.

In such a setting, your training data consists of x, y, and , which are some attributes related𝑎(𝑦)

to each class y. It could be some textual description for instance, so if you had images of all

animals, Let us say you have seen a Lion, Tiger, a Zebra, but you have never seen a horse. Let us

say that image was never available to you. But you know how the description of a horse looks

like in text or as a set of attributes. When we say a set of attributes, we mean whether the animal

has a tail, 4 legs, what colors can it assume, does it have a mane, so on and so forth. So, those are

what we refer to as attributes , you can look at them as metadata that are provided, even if𝑎(𝑦)

the data is not available.

So, that is the zero shot setting where , which is known as seen classes, , which are𝑥 ∈ 𝑋𝑠 𝑦 ∈ 𝑌𝑠

again the Labels of the seen classes, and are a set of attributes for all classes. And the test𝑎(𝑦)

time here in zero shot is a setting where you have x y, , where x comes from an unseen class𝑎(𝑦)

, y is the corresponding label and is the corresponding attribute. Importantly, is𝑋𝑢 𝑎(𝑦) 𝑌𝑢 ∩ 𝑌𝑢

the null set. So, the seen classes and unseen classes have no intersection.

(Refer Slide Time: 08:12)

Within few shot/zero shot, there are two further ways of categorizing them. One of them is what

is known as Conventional few shot or zero shot, where in the problem setting, the goal is to learn
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a classifier f such that the image or feature x to be recognized at test time comes only from the

unseen or Few shot classes, not from the base classes, or the scene classes. That is what is known

as a conventional few shot or zero shot. That is how the initial methods in the space were

developed about 4 or 5 years ago.

The other setting, which is the more challenging and more practical setting is Generalized Zero

shot and few-shot learning, where the goal is to still learn a classifier going from x to both seen

and unseen classes or base and few-shot classes. Where the image or feature x to be recognized

at test time may belong to either seen or unseen, or base or Few shot.

Clearly, the generalized zero-shot or few-shot learning setting is the more challenging and more

useful one. Because in the real world, you cannot predict whether your image at test time will

come only from an unseen class or only from a few shot class. It could come from any class in

your universe of classes.

(Refer Slide Time: 09:59)

At this juncture, Let us recall one of the fundamental tenets of Supervised Machine Learning,

which is Empirical Risk Minimization. If is a ground truth joint probability distribution of𝑝(𝑥, 𝑦)

input x and output y. The goal of supervised learning is given a hypothesis h or a model h, the

goal is to minimize the expected risk or loss measured with respect to the joint probability

distribution, which is then given by is integration of the loss, the loss is has two inputs,𝑅(ℎ) ℎ(𝑥)
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, the prediction of the model, and y, which is the expected output. So, the loss is computed

between these two quantities.

And you integrate this over the entire joint probability distribution, which is also denoted as the

expectation over the distribution of the loss. Unfortunately, in the real world, we cannot estimate

the joint probability distribution. So, this expectation is approximated as the empirical risk with

respect to the training data that is provided to us. So, the empirical risk is given by

.1
𝐼
𝑖=1

𝐼

∑ 𝑙(ℎ(𝑥
𝑖
, 𝑦

𝑖
))

(Refer Slide Time: 11:41)

Now, Let us assume that we have a family of models, you could assume we are solving a linear

problem. So, you could assume that, if it was a linear SVM, your family of models belong to

lines. So, that is what we denote by H depends on what algorithm what choice you are making.

But let us now assume that the family of models that you are trying to search for to address this

problem is given by capital H.

And let one of the hypothesis of the models be small h. Then we have 3 kinds of functions. One

is , which is the original function that minimizes expected risk that we are really looking for,ℎ
^

that is the ground truth function. Then we have , which is the function belonging to the familyℎ*

that we are searching for, within this family capital H, that minimizes the expected risk. And
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finally, we have , which is the function in H that maximizes the empirical risk, which is the riskℎ
𝐼

of the loss with respect to your training data.

Given these 3 terms, one could now define the gap or the generalization gap between what our

model with respect to the training data has learned, which is with respect to the original groundℎ
𝐼

truth model, . The loss between them can be decomposed into two parts one . Ifℎ
^

𝑅(ℎ*) − 𝑅(ℎ
^
)

you chose this family of models in capital H, and the best model in that to be , how close𝐻*

would that be to the actual model that could belong to any family of models. It need not be linear

model, need not be a quadratic model, it could be any model. So, is any model, is the bestℎ
^

ℎ*

model. In this family of models that we have chosen hypothesis and model here mean the same

thing.

And the second term is how close which is the model that we obtain from our training data isℎ
𝐼

close to , which is the ideal function which in the family of functions. So, the first componentℎ*

is denoted as approximation error, which measures how closely functions in this family H can

approximate your optimal hypothesis . And the second term here is the estimation error, whichℎ
^

measures the effect of minimizing the empirical risk with respect to the expected risk within the

family of functions H. Why are we talking about all of this now?

(Refer Slide Time: 14:55)

1574



We will come to that in the context of few shot and zero shot learning. The second term in the

previous slide can be reduced. If you had large amounts of data, then your empirical risk

minimizer becomes close to your expected risk minimizer. Because the training data when you

have large amounts, resembles, the overall joint probability distribution more closely. See, if you

had sufficient labeled data to train with, then your empirical risk minimizer gives a good

approximation to the best possible .ℎ*

Unfortunately, with few-shot learning, and zero-shot learning, we do not have the sufficient

amount of training data, especially for a certain set of classes. So, what is the problem? Let us

look at this illustration. So on the left, what you have now is when you have a large number of

data samples. You have , which is your optimal hypothesis denoted by the star here, then youℎ
^

have this ellipse, which represents the family of models capital H, that you are focusing on to ask

your machine learning algorithm to learn or pick one of them.

So, the best solution there would be the projection of onto this family of models, which weℎ
^

denote as . And finally, you now start your machine learning algorithm, somewhere here whereℎ*

the triangle is shown. And over the learning procedure, you converge to a model, which is given

by , which is fairly close to . So, if you have large number of samples, you get an that isℎ
𝐼

ℎ* ℎ
𝐼

close to .ℎ*

On the other hand, when you do not have a large number of samples, you may not be able to get

very close to , which is at least the best model that you can get in this family. So which means,ℎ*

the resultant , which is the empirical risk that you have from this particular model, is going𝑅
𝐼
(ℎ)

to be far from being good a good approximation of the expected risk and the resulting model ℎ
𝐼

may over fit to your training data.

(Refer Slide Time: 17:33)
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How do you address this problem? So we can look at addressing this problem from 3 different

perspectives: from a data perspective, from a model perspective and from an algorithm

perspective. Let us now see each of them. From a data perspective, one could simply augment

the training dataset, simply increase the number of samples to an , which is far, far greater than𝐼
~

I. And that should help you get a better estimate of the empirical risk minimizer. So, you can see

here, that by increasing the number of samples, which we call prior knowledge here, we now

push the model closer to , which is our ideal goal. And that would be by leveraging data.ℎ
𝐼

ℎ*

The second option is to do this by constraining the space of models to a smaller space, which is

less likely to push far away from . So, you can see here that using some kind of a priorℎ
𝐼

ℎ*

knowledge or domain understanding, we try to ensure that the space of hypothesis or models

capital H is now restricted to only this non-shaded region in the center. And any model here is

perhaps better than most of the models that are outside this non shaded space.

This is another way of addressing the setting where you may have only few samples from certain

classes. What are we doing here? We are constraining the complexity of H to a much smaller

hypothesis space, then you are hoping that even a small amount of training data will be sufficient

to train a reliable which is once again close to .ℎ
𝐼

ℎ*

(Refer Slide Time: 19:37)
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The third approach is to address this from an algorithmic perspective. We aim to search for

parameters of the best hypothesis in capital H. One way this can be achieved is by usingθ ℎ*

some kind of prior knowledge. We will see examples of methods later in this lecture, which

alters the search strategy, and can also help provide a good initialization. So, you can see here

that using some kind of a prior knowledge, you now have a start point, which is much better than

the start point that you had in this figure a, which helps you converge to a better . Each of theseℎ
𝐼

3 approaches are valid approaches to address this problem. Let us see methods belonging to each

of these kinds in this lecture.

(Refer Slide Time: 20:34)
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So, from an overall taxonomy perspective, one could look at constraining the hypothesis space

by prior knowledge, which is the model approach to solving few-shot, zero-shot learning.

Examples of methods here are known as embedding learning methods. The second category of

methods that are based on augmenting training Data the data approach are broadly grouped as

Hallucination or feature synthesis methods. And the third case of altering the search strategy in

hypothesis space by using some prior knowledge, the algorithmic approach are also sometimes

categorized as Parameter Initialization methods. Let us see each of them in detail now.
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