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For the last lecture of this week, we will talk about Applications of Generative Models in video
understanding. In particular, we will talk about three different methods which have done different

things in the scope of video understanding and generative modeling.
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Generating Videos with Scene Dynamics®

;’;‘Q Recall GAN objective (w.r.t corresponding G and D parameters):
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Can we use GANs to generate videos?

s minmax By oy, ) [log D{e; wp)] + By, ) log(1 = DIG(z;w6); wp))]

WG wp

G and D can take on any form appropriate for a task as long as they are differentiable w.r.t.
parameters wg and wp

Consider the output of G to be:
G(z)=m(2)® f(z) + (1 =m(2)) O b(2)

where f is Foreground, b is Background, and m is a Mask which indicates whether to use
foreground or background for a pixel

Vondrick et al, Generating Videos with Scene Dynamics, NeurlPS 2016
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Let us start by asking, can we use GANs to generate videos? We already answered the question
partly in the previous lecture, when we talked about using GANs for 3D object generation. In a
sense, videos are volumes too. More generally speaking, if you look at the GAN objective, your

min max objective, where your discriminator D is parametrized by weights wo, and your

generator is parametrized by weights w,.

G and D can take any form appropriate for a task as long as they are differentiable with respect to
the parameters under consideration and this minmax objective can be solved using this objective
function. Let us now see one method that extends GANs for video generation. However, with
one unique change. That unique change is this method called Generating Videos with Scene

Dynamics published in NeurIPS of 2016.

Considers the output of the generator to be given by m(z) © f(z) + (1 — m(2)) © b(2)
where z is the latent vector, which is the input to the GAN, to the generator. Here f is foreground,
b is background, and m is a mask, which is also learned, which indicates whether to use
foreground or background for a pixel. Let us see how this is used in a GAN architecture to

generate videos.
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So we have this function here that we just wrote. And we have an input noise vector to the
generator of a GAN which is 100 dimensional. Now, the noise is given as input to two branches,
one branch which is a foreground stream which generates a volume, a 3D volume. This volume
generator, this foreground stream forks into two parts at the end, where one part generates the
video foreground and the other part generates a mask for every pixel in every frame of that

video.

So the mask also has the same volume, same dimensions as the foreground. And the input noise
also goes through another stream which generates a static background. When we talk about
generating short videos, the background is not expected to change. And it is most likely that it is
the foreground that changes on a static background. So in this case, the second branch of the

generator generates a static image background.

And now, the foreground and the background are combined using this mask as, this mask
whatever values is output by the layer here, the layer shown in blue here,
mQ@© f+ (1 —m) © b. That is what leads to the generated output. As you can see, the

foreground stream captures the moving features.

The background stream captures the static features and the background is replicated over time at

every step in the frame which is the same background that is used all over again. And that leads

1547



to the final generated video which is a space-time cuboid. All of this corresponds to the generator

of this model. What about the discriminator?

(Refer Slide Time: 05:09)
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The discriminator is the standard discriminator in a GAN, where the generated video is down
sampled over a series of layers. And the last layer has a binary classifier which says whether the

video was real or fake. And the loss function remains the same as a standard GAN.
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o  Generating Videos with Scene Dynamics: Results®
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And now we are able to generate videos with scene dynamics. Here you see snapshot examples
of videos. On top, you can see a background scene that is generated, a foreground that is
generated, a mask that is generated along with the foreground and together, we see the final

generation to be a combination of the background and the foreground using the mask.

You see below another example, where if you observe carefully, you can see here that the waves
at the bottom here seem to be receding, which shows the movement across the frames generated
in the scene. If you would like to see more video examples, please go to the website of this paper

right here. And you should be able to see many more examples of videos generated through this

method.

1549



(Refer Slide Time: 06:34)

o The Pose Knows: Video Forecasting by Generating Pose Futures*

o GANs and VAEs in video forecasting generate video directly in pixel space = model all
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Solution

o Forecasting needs to be done first at a higher level of abstraction (pose)
o Exploit human pose detectors as (free) source of supervision, and break video forecasting
problem into two steps:
o Use a VAE to model the possible movements of human in pose space
o Use generated future poses as conditional information to a GAN to predict future frames in
pixel Space

“Walker et al, The Pose Knows: Video Forecasting by Generating Pose Futures, ICCV 2017
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Another interesting method for generating videos in fact, a different task by itself is video
forecasting. We will talk about one such method which was published in ICCV 2017, called The
Pose Knows. This work argues that when GANs and VAEs are used directly for video generation
they generate video directly in the pixel space each pixel is generated in every frame which

means the structure and the scene dynamics are captured at the same time.

And this could often lead to uninterpretable results. To avoid this problem, this method proposes
that one needs to forecast first at a higher abstraction, and then build the video based on that high
level abstraction. What is that high level abstraction in this method? This method uses human
pose as a high level abstraction. And it exploits human pose detectors as a free source of

supervision, and thus breaks the video forecasting problem into two steps.

One, it uses a VAE to predict the possible movements of humans in pose space. And these
predicted or generated human poses are used as conditional information to help the GAN predict
future frames in pixel space. The task here, is given a set of frames in a video, the model needs to
predict the next frame or the next set of frames. You could imagine multiple kinds of

applications, you could think of a sports application.

If somebody gave you a certain configuration of football players on a football field, and you saw

the last 10 seconds’ video, what would happen next, whom would the person pass the ball to
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could be one way of looking at it. It could also have applications from a security perspective if

you try to take it to a different context.

(Refer Slide Time: 09:11)
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So in this method, as we just mentioned, there is a first stage where the pose of a human involved
in the video is first predicted and the predicted pose or the skeleton human skeleton is then
passed as conditional information to a GAN to actually generate the frames of the video. Let us
first see the pose prediction part which is done using a VAE. So, in this pose prediction encoder

decoder model which is a variational auto encoder in their implementation.

1551



In the encoder, there are image features read in from X twhich is a particular frame at a time t,
corresponding past poses, which could be P 1till Pt, those were the poses until now and also the

velocities of the poses at different joint positions in each of these times 1 to t. What is velocity?
It is how much is each joint location likely to move by between one frame and the next frame.
You could consider these velocities as optical flow of joint locations in poses in or the skeleton

pose skeletons that we get to represent human pose.

So, once the encoder reads in these image features, corresponding past poses, which in our case
these past poses Plto Pt, are what you see here, Plto Pt and corresponding velocities Ylto ytgive
how the velocity each of the joint locations in each pose at a time t is moving towards the next
time step. And the output here is the decoder which replays the pose velocities in reverse order.
So, given the output of the encoder which is H o which goes to the decoder, the decoder now tries
to predict Y to Ylwhich are the pose velocities in the reverse order. What do we do with this?

Once such a model is trained, the decoder is taken away. Only the encoder is used to get these

hidden states H Jto H - What do we do with that? We now use that to go to a future encoder and a

future decoder.

(Refer Slide Time: 12:03)
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In a future encoder H tis given as input. H tis what we got out of the past encoder, the output of

the past encoder that is given as input to the future encoder. So, the future encoder receives past

H, future pose information Yt+ _.Twhich are your velocities and P which are the pose

1 t+1-T

skeletons that you see here. By pose skeletons you have to recall methods like deep pose which
give us an XY coordinate location for certain joint locations of a human skeleton. Since this is a
Variational Auto Encoder, the encoder outputs an approximate posterior Q which is shown here.

And what does the decoder do?

(Refer Slide Time: 13:06)
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The decoder samples from Q, not exactly Q, but from a prior that is close to the approximate

posterior Q which is how the VAE learns to reconstruct the motions Yt+ '_Twhich are your pose

1

velocities given past H tand posest + 1 --- T.

This is shown in the input of the future decoder. So, you get a sample from your approximate
from your prior sorry from your prior. Along with that you also get so, those samples here are

given by Z, s %, p 250 0n and so forth. Each of these red elements here are samples from a

t+2
Gaussian. Along with that you also have H twhich comes from the encoder and not the encoder

from the past encoder.
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And along with that, you also have Pt+1’ Pt+2to P.. Given these, the decoder of the VAE predicts
Yt+1“_Twhich are the velocities of each joint location for times ¢ + 1 --- T. Now, what happens

once you train such a VAE?
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Like any other VAE, the encoder is not used at inference, you only sample from the prior and

then let the future decoder predict how the poses will look given until a particular time H twhich
is given by chere. The decoder tries to predict what the pose will look like from ¢ + 1to T

using these velocities. Remember, given a pose, and given the velocities, one can construct the
pose in all of those time steps in ¢ + 1 -+ Tjust by adding the velocity to the current pose

location.
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s
Now coming to the second stage, once the pose information is obtained, remember we said that
the pose information is given as a conditional input to the generator which finally generates the
videos. Let us see that part now. So, this is the generator which, given a set of frames, which we

denote as input I at this time, and the pose information which comes from the previous module

that we just discussed.

The generator generates the next few frames which is the goal of video forecasting. Now, this is
a generator module. This is similar to a GAN module, so it has a loss for the discriminator and a

loss for the generator. Let us see each of them. So the discriminator loss has I[(D (Vi), lr). What is
Vl,? Viis the ground truth video. What is lr? Real label. So we would like the discriminator to
assign the real label to the ground truth video.

And on the other hand, we would like the discriminator to consider the generation of the input
and S Tdenotes the pose skeleton, I denotes the input, this is input, and this is STthe pose skeleton.

Given these two, the generator generates the future frames. And the discriminator’s job is to give
that a fake label. What are these summations here? These summations are over a mini batch

whose size is M.

So one half of the mini batch are real videos, ground truth videos and the other half of the mini

batch are generated videos which are given by this term. This is what the discriminator tries to
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do. Let us try to see what the generator tries to do. The generator which has a counter objective
wants the discriminator to look at the generator’s output and give it a real label. In addition to

this generator objective, we also try to minimize the L 1distance between the generated future
frames and the future frames that are provided to us in the ground truth Vl,and the therm is

weighted by a coefficient a.

This together helps train a model that can generate videos where in the first stage poses are

predicted and the poses are then passed on for the GAN to generate videos.

(Refer Slide Time: 18:15)
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So the final end to end architecture looks like this. There is a past encoder that would generate

the H. That Htis given as input to the future decoder along with poses Pt+1t0 P.. Now this
generates Yt+1t0 thhich are the predictions of the pose, which are given as input to the GAN

which finally uses that and the input so far to be able to generate the future frames.
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With this approach, this method shows interesting results. Here is an example of a person skiing
on a snow slope, snowy slope. You can see the pose skeleton here and the predicted movement
here. So these blue lines represent optical flow or the velocities at each of those joint locations
which also tells us if you see this red skeleton that is the skeleton where the person moves to

from this green skeleton in the current location.

Now using that skeleton to condition the generation of the next frame, the GAN generates this
image where the person moves to that location. Clearly, it is not very sharp in terms of the
generation considering the real world situation, but it gets a fairly good estimate of where the

person is likely to be in future of the video that is provided to us.
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A third method in Video understanding that we will discuss is an interesting one called
Everybody Dance Now, a recent work published in ICCV of 2019, where the objective is, given
a professional’s dancing video, and an amateur’s dancing video, can we generate a video of an
amateur dancing professionally? And one of the basic modules of this framework tries to have a
generator which captures the temporal coherence between frames using the ground truth

information and the generated information.
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So once we have this generated information, so you have G (xt), and G(xt+ 1); xtand X . are the
poses in two successive frames. G(xt)and G(xt+1)are the generations corresponding to those
poses. And ytand Y, are the actual ground truths for that person’s pose corresponding to the
skeleton X, X, 1 The job of the discriminator in this module of the framework is to look at the
generated frames, G(xt)and G (xt+1)and see whether they are temporally incoherent, which is

equivalent to fake here.

And for real data, the label given is temporally coherent or real. So it is no more real versus fake.
The discriminator tries to say, temporally coherent or temporally incoherent. So your standard
GAN loss looks like you have the log likelihood of discriminator looking at X, xt+1which are
the pose information of a frame at time t and the pose information at time t + 1, ytand Y, re
the expected frames the ground truth frames for the same pose locations and G (xt)and G(xt)are
the generated frames.

So this GAN module of this framework tries to ensure that consequent frames or successive

frames of the video being generated is temporally coherent, like a given input video. This is one

module of this work.
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Another module that is part of this work is to ensure that when you have a source person’s dance

moves, so in this case, you have yl', ., yt'which are the video frames of a source person, a
professional dancer. So the pose of the professional dancer is obtained to get x 1', ", xt'. Since
this has to be overlaid on the target persons pose. This is normalized to get the pose information

in the dimensions of the person that is being considered.

So different people may have different limp proportions. So this normalization step moves the
skeleton of the source person that is the professional dancer to the skeleton of the amateur dancer

in terms of sizes and distances between the joints. Given this xtox, the generator module in the

previous step we had trained a generator that could take pose information and generate frames.
Now the pose information is obtained using this architecture of coming from a professional’s
skeleton normalized into the dimensions of the target person and the generator now generates the

generator trained, as in the previous step now generates videos of the target person with the same

pose moves of the professional person.
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Finally, because in the process of transposing someone else’s moves on to a target person there
could be distortions and loss of detail on the face of the target person, this method also
introduces one module to refine the generated face. So this in this module, this is another GAN
within the overall framework. In this module, the face portion of the generated image. So this
G(x)that was generated in the previous step, a certain region around the face around the nose of

the person is cropped out which is given by G(x) .

And xFis also the pose drop cropped around the same area. These two are given to a new

generator module which outputs a residual that needs to be added to the original face to add more
detail. This residual is then added to the original generated face to give the final outcome which
is then transposed onto the final generation. This is a separate GAN by itself where the

discriminator tries to maximize the likelihood of XY

Where xFis the pose skeleton around the face, yFis the actual face region in the target image and
G(x) T ris the generated face through this generator where the residual is the output of the

generator. And this helps this GAN helps refine the face.
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Putting these together in stage 1 in this particular framework. The first GAN is trained and this
GAN has a few components. It has an \Lsmooth(G, D k), which is the standard GAN loss that we

already saw. So this is your standard GAN loss that ensured temporal coherence. LFMgives a
discriminator feature matching loss, very similar to pix2pix between the generated image and the
real image that comes from a discriminator.

And there is also an L Ploss, which gives a perceptual reconstruction loss, once again comes from
pix2pix. And this is for G (xt_l)matching to yt_land G(xt)matching to y.. Remember the

perceptual loss also tries to measure loss at an intermediate feature space feature space level.

And this is stage 1.
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Once this GAN is trained the stage 1 weights are frozen, and then comes stage 2, where the face
GAN is trained based on the L face which is the standard GAN loss for the face region and a
perceptual loss also defined for the face region. Once stage 2 is trained, stage 1 is again retrained.

And this goes on in iterations to be able to get the final generations.
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Now here are some interesting results. Here is a source subject and the source subjects

corresponding poses. And these poses are now translated to a target subject who now show the
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same pose in different scales, in different backgrounds with different body structures, including

male and female. A similar example is also seen on the right side here.
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!

The paper also shows interesting results of multi-subject synchronized dancing, where the source
subjects poses are transposed onto multiple different subjects of different backgrounds, different
sizes, different genders. And the same pose is now shown by all of those people to give a sense

of synchronized dancing.
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Your homework for this lecture is to check out this demo video from everybody dance now
paper, which is fairly interesting and also a very nice article on open questions on GANs to wrap
up our discussions so far on generative models. And of course, if you are interested, please do

read the papers on the respective slides.

Let us end this lecture with one question. Through this lecture, we saw methods that used videos
as input where the discriminator looked at the real video and the generated video and said
whether it was real or fake or temporally coherent or incoherent. Can you generate a video from

a single image? Think about it, and we will discuss soon.
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