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We have seen different variants of GANs over the last couple of lectures. We will now move on
to another important notion in Generative Models, which is called Disentanglement. This notion
is more closely associated with Variational Auto Encoders VAEs, and we will also discuss why

this is so as part of this lecture.
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o  What is Disentanglement?

F 65

§if§ o Isolating sources of variation in observational data

e o E.g. separating underlying concepts of “Big Red Apple": size (big), color (red) and shape
(apple)

o Can we isolate these factors using some representation learning method?

o Why do we need this? Useful to generate new images that are not in observed dataset

o E.g. Generate an image corresponding to “"Small Black Apple” using a model that was
trained on “Small Black Grapes" and “Big Red Apples”

z
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To start with, what is Disentanglement? Disentanglement is about isolating sources of variation
in observational data. If you had an image of a Big Red Apple, can you separate the generative
factors for such images as corresponding to size, big, color, red and shape or object apple? Can
we enforce Deep Learning Models, Deep Generative Models, in particular, to isolate these

factors while learning such a model? Why do we need such an approach?

If we could disentangle the generative factors, it allows us to generate new images that may not
be in an observed dataset. Suppose your training dataset had images of small black grapes and
big red apples. Can we generate an image corresponding to a small black apple? You may not

find such an image in a real-world dataset.

But using a deep generative model can hypothesize how this would look by setting the color to a
particular value, setting the size to a particular value and the object to a particular value. You
would be able to do this reliably only if the latent variables in your generative model isolate

these components of images.
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o Disentanglement: Example
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Images generated when latents (dimensions encoding generative factors) corresponding to
gender are changed; more control when latents are disentangled

Credit: Chen et al, Isolating Sources of Disentanglement in Variational Autoencoders, NeurlPS 2018
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Here is an example of face images. In this case, the latent variables could correspond to gender,
age, hair, and perhaps race so on and so forth. So if we knew which latent variable corresponded
to gender, one could manipulate that latent variable alone to generate different images of
different variations going from, say, female to the male gender, as you can see in the example

here.

(Refer Slide Time: 03:12)

e  Disentanglement: Why VAEs?

‘III” Recall VAEs:

Reconstructed
. Input - R .
i% X=X
7 Probabilstc Encoder
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Mean

Sampled
latent vector
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VAEs learn latent variables which can be used to generate data; if these latent variables are
disentangled, allows controlled generation of images

Credit: Lilian Weng
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Why Variational Auto Encoders? You perhaps know the reason already. We probably already
used the word latent multiple times. In GANSs, generative adversarial networks, the latents are
not learned per se. The latent vector is a noise from a Gaussian. In a Variational Auto Encoder,
the latent variables are learned. If one could now ensure that those latent variables are
disentangled, you may have a lot of control over what kind of images you can generate out of the

VAE. So recall the VAE overall architecture and formulation.

So you have your input data x, the encoder provides the mean and variance of an approximate
posterior, which over learning tries to become close to a pre-assumed prior. Then a vector is
sampled from the prior. The decoder reconstructs the data from that sample vector. These latent
variables could be a vector of multiple dimensions. If they are disentangled, you can generate

more control data.

VAE-GAN frameworks, such as Adversarial Auto Encoders, can benefit from disentangling this

latent variable in a VAE.

(Refer Slide Time: 04:56)

o BVAE!

o~ o A variant of VAE which allows disentanglement .[

D (4(2h)

33‘@ o Recall VAE loss: Lyae = — logpg(x) + DKL(qO(z|x)\ KL %

NPTEL o Another way of writing the VAE objective: <)
IR

Iléklex Exvp iIEz~<I,;,(z|x) 10:::" ]’0(7(‘2”
subject to DKL(qm(*z|x)Hpg(z]) <4

Maximize probability of generating real data, while keeping distance between real and
approximate posterior distributions small (under a small constant 4)

“Higgins et al, beta-VAE: Learning Basic Visual Concepts with a Constrained Variational Framework, ICLR 2017
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The first work that brought this notion to the community’s attention and developed a method to
allow disentanglement was 3-VAE. Their work was published in ICLR 2017. It is primarily a

variant of VAE itself. Let us see what kind of a variant. If you recall the variational autoencoder
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loss, there are two terms in your evidence lower bound, one term which minimizes the negative

log-likelihood.

In other words, it maximizes the log-likelihood of generating that kind of data that is in the
training set. The second part minimizes the KL-divergence between the approximate posterior
and the true posterior. It breaks down into two terms which we finally use while training the

VAE.

We finally use only the KL divergence between qq)(z | x) and the prior p e(Z) after applying the

evidence lower bound. This is the correct KL to start. But this gets simplified to the KL that is

written on the right side.

Now, this entire objective can be written in a slightly different manner. We can say that we would
like to maximize the log-likelihood of generating x from z. Subject to the constraint that the

approximate posterior q, and p e(z), the prior on z. The KL divergence between these two

quantities is as small as possible. We say that the KL divergence should be less than some

positive constant delta.

This is another way of writing out the same objective. You can say now that we are maximizing
the probability of generating the real data while keeping the distance between real and
approximate posterior distributions small, which boils down using the evidence lower bound to

keeping the distance between the approximate posterior and the prior small. How does this help?
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o [-VAE

et o VAE maximization objective can then be rewritten as a Lagrangian with a Lagrangian
multiplier 3 under KKT conditionssimilar to SVM):

(’ By, (2 oz pa(xlz) «{ 3Dk (g (2]%) [palz)) - 8)

9 =By (alx) 02 po(xlz) = Dk (qs(z(x) [po(2)) + 48

sl 2B, g, a0z po(x2) — BDx (a(zlx)||p(2)) since 3,6 > 0
k
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B-VAE!

o A variant of VAE which allows disentanglement f

&
iﬁf} o Recall VAE loss: Lyag = flogpe(X)+DKL(%(Z\xH D k"(%(l\’)
NPTEL o Another way of writing the VAE objective: " Pe -L)
max Exp By, o) l0g Po(X[2)]
00
subject to Diy (¢4(2[x)hpe(z)) < = %(D\(L‘ 8)

Maximize probability of generating real data, while keeping distance between real and
approximate posterior distributions small (under a small constant §)

IHiggins et al, beta-VAE: Learning Basic Visual Concepts with a Constrained Variational Framework, ICLR 2017
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Now, keeping this optimization problem in mind, we can write it as a Lagrangian. With the
Lagrangian multiplier using the KKT conditions. This is very similar to how one would write out
the support vector machine objective. So this would turn out to be maximizing the log-likelihood
and minimizing the constraint term that we had. This constraint term, when we have a

Lagrangian, would turn out to be D P 0.

And that would then go to the numerator, and you would have a Lagrangian multiplier 3, using

the standard Lagrangian approach to optimization. So here, we write the first term as it is the
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objective function minus 3, which is the Lagrangian multiplier into the constraint, which is
KL-divergence between approximate posterior and prior minus 6. If you expand this, the first
term stays as it is, the second term becomes minus 8 into the KL. When we say KL, we mean

KL-divergence plus § * 6.

Since both Band 6 are quantities that are greater than or equal to 0, that is how we define them.
So you are left with saying that this quantity will be greater than or equal to the log-likelihood
minus the KL-divergence. We are writing this is as a maximization problem. When we do

minimization, the sign will change.

(Refer Slide Time: 09:37)

. BVAE
|!l|_ o VAE maximization objective can then be rewritten as a Lagrangian with a Lagrangian
multiplier 3 under KKT conditions (similar to SVM):
{' By, (a1x) 08 po(x12) = B( Dy (g4(2[x) | [po(z)) - )
W =Ey g, 2l V08 pa(x|z) — 5Dkt (qa(zl) [po(2)) + A
L 2B,z oz po(x2) — BDx (ga(2lx)|po(2) since 1,0 > 0
o [-VAE loss hence given by:
Lgetald, B) = ~Eyey, (aix) log po(x[2) + BDky (g4 (2[x)[|po(2))

o When =1 - standard VAE
o When [ > | = stronger constraint on latent bottleneck, follow generative process and
thus encourage disentanglement
o Could limit representation capacity of z, creating a trade-off between reconstruction
quality and extent of disentanglement t
Credit: Lilian Weng
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One can now write the 3-VAE loss to minimize, minus log-likelihood, or negative log-likelihood
plus beta times the KL-divergence between approximate posterior and prior. It almost seems like
nothing changed from a standard VAE which is partly true. In this case, when 3 is equal to 1, you
would have the standard VAE. However, when {3 is made greater than 1, it introduces stronger

disentanglement in the generative model. Why is the so?

Between these two terms used to train a VAE, the first term recall, the goal is to improve the
reconstruction capability of the decoder. It is the second term that tries to learn the latents of the

variational autoencoder. So by giving it a stronger weight, we are trying to make the latents be
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learned better in a more disentangled way. The only problem now is this could limit the

representation capacity of z, thus causing reconstruction problems in the entire VAE.

(Refer Slide Time: 11:05)

o BTCVAR

Fo o Disadvantage of 5-VAE: Trade-off between disentanglement and reconstruction
ﬁf capability. How can we get both?

NPTEL

x

2Chen et al, Isolating Sources of Disentanglement in Variational Autoencoders, NeurIPS 2018
Vineeth N B (IIT-H) §11.3 VAEs and Disentanglement 7/14

That brings us to another question which almost looks like a tradeoff between disentanglement
and reconstruction capability. By increasing 3 in a B-VAE, we get better disentanglement, but the

training procedure now thinks that the second term is more important.

(Refer Slide Time: 11:28)

o BVAE

oot o VAE maximization objective can then be rewritten as a Lagrangian with a Lagrangian
multiplier 3 under KKT conditions (similar to SVM):
Byqy(alx) 108 po(X]2) = B(Di (35 2lx) po(2)) - 0)
=By (2 102 Pa(X|2) - Dkt (g5(2[) g (2)) + 66
2By (afx) l0g Po(X[2) — BDxo (15(2[x)l|po(2)) since 3,0 > 0

NPTEL

o (3-VAE loss hence given by:
Lgeta($: B) = =By, 2y log pa(x]2) + Dk (g5(2]x) [po(2))

o When 3 =1 — standard VAE
o When > 1 — stronger constraint on latent bottleneck, follow generative process and
thus encourage disentanglement
o Could limit representation capacity of z, creating a trade-off between reconstruction
quality and extent of disentanglement
Credit: Lilian Weng
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In this case, the second term is more important and the first term is slightly less important. So, if

the first term is slightly less important, this leads to lesser reconstruction performance.

(Refer Slide Time: 11:49)

o BTCVAR

L] 44(29|[p/®) 2

o Disadvantage of 5-VAE: Trade-off between disentangle

consﬂzmw

%\% capability. How can we get both? 3-TCVAE the
NPTEL o KL-divergence term can be decomposed as:
X e 7
Dict(4o(2[x)[[po(2)) [y(z,n) + D1 (44(2)| po(2))
N’ N— e
/) index-code mutual information (MI) ~ marginal KL to prior
A "QYI,. .. N

G2 - ()

2Chen et al, Isolating Sources of Disentanglement in Variational Autoencoders, NeurlPS 2018
Vineeth N B (IT-H) §11.3 VAEs and Disentanglement 7/14

So to address this issue, to be able to get good reconstruction and good disentanglement, there
was another method introduced in NeurlPS 2018 by Chen et al., B-TCVAE. Let us try to
understand this time. So the B-TCVAE looks at the KL-divergence term between the
approximate posterior and prior and then decomposes it into two parts. How is this
decomposition done? This decomposition is done by looking at the term, the approximate

posterior qq)(z | x), which could also be written as qq)(z | xn).

Now assume that you have a set of data points going from, say 1 to N, and each X, is one data
point where i comes from 1 to N. So that is the X, that we are talking about is each of the data

points. This is the same just expansion of writing the approximate posterior. So by standard

probability, we can now write this as the joint probability, qq)(z, xn) by the probability on X,
p(xn) . Assuming all data points are equally likely, the denominator here would be 1/N, which is

a constant.

So, you could now say that we could replace the approximate posterior with the joint probability

between the latent and each data point X . This means that the KL-divergence between the
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approximate posterior and the prior can be broken down into two parts. It can also be written as

KL between q(b(z, xn), the joint, with respect to the prior on z. The first term here, q, can be
broken down into two parts.
The first term would be the KL-divergence between the marginal on z with respect to the

approximate prior, and the second term would be a KL-divergence between the joint distribution

qq)(z, xn) and the product of the marginals q(z) * p(xn). This is given by the mutual information

between z and n; n denotes the indices of the data points on x. Note that mutual information is
defined as a constant factor of a KL-divergence between the joint distribution between two

random variables and the product of its marginals. Now how does this decomposition help?

(Refer Slide Time: 15:13)

o [-TCVAE?

o Disadvantage of 3-VAE: Trade-off between disentanglement and reconstruction

3:3;@ capability. How can we get both? -TCVAE the solution
NPTEL o KL-divergence term can be decomposed as: 11’(2")')

@ +DKL! po(z))

index-code MteetMormation (MI)  marginal KL to prior

Dt (qs(2[x) [po(2)) =

o Marginal KL to prior more important to learn disentangled representations; reducing MI
might be causing poor reconstruction. What to do?

2Chen et al, Isolating Sources of Disentanglement in Variational Autoencoders, NeurlPS 2018
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Once we have this decomposition, one notice is that the second term is the marginal KL; we will
call that marginal KL because the approximate posterior has now been marginalized. Earlier, we

had qcD(Z | x), but that got marginalized. The other term now came into the mutual information.

This marginal KL is the component responsible for disentanglement.

Hence, trying to penalize the mutual information may lead to poorer reconstruction. Keeping this
in mind, we now want to ensure that we focus on the marginal KL while learning a VAE; that is

the term that we want to weigh with a beta.
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o [-TCVAE®

o Further decompose marginal KL:

@ D (96(2) po(2)) = Diego(2)]| T 06(2:))+ Y Dol Ipo(z,)
NPTEL e~ !
Total Correlation Dimensipa-wise KL
IChen et al, lsolating Sources of Disentanglement in Variational Autoencoders, NeurlPS 2018
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Before we do that, we will do one more thing: decompose the marginal KL divergence even
further. The marginal KL divergence can be decomposed into a term that looks at the KL
divergence between z, the random variable, and the product of the marginals of each dimension
of z. This term is known as Total Correlation. Although the name is a misnomer, Total
Correlation is a concept from Information Theory which is a generalization of mutual

information to multiple random variables.

If you add two random variables z and n that we saw on the previous slide, you look at the joint
and the product of the marginals of the two random variables and take the KL divergence. In
total correlation, we do this for all the random variables involved in z in this particular context.
Those random variables for us are the different dimensions of the z. The second term here is the

dimension-wise KL-divergence and the sum of all of them.

So we have broken the overall KL divergence of z into dimension-wise quantities. Why is that
important? Because in disentanglement, we would like each dimension to have a unique

existence.
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o J-TCVAE®

o Further decompose marginal KL:

(‘;z) Dy (as(2)lpa(2)) = Dialas(a)] [ aolei)) + Y D lao(z)lo(z))

] 4

NPTEL

Tatal Correlation Dimension-wise KL

o Total Correlation important for learning disentangled representation
o Hence, final 3-TCVAE loss:

~Egegy(ai) 08 po(xl2) + Iy(z,m) + 8D (a5 (2)] [ [ao(zs) + ) D (gl Ipo(z;)
—_—— i ——

IChen et al, lsolating Sources of Disentanglement in Variational Autoencoders, NeurlPS 2018
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Now, suppose you look at this decomposition. In that case, one notices that total correlation is
perhaps most important for disentangled representations. That term is responsible for looking at
each dimension of z to the overall z. This leads us to the final loss for the B-TCVAE, which
simply puts together all the components that we have seen so far, the negative log-likelihood, the
mutual information, the total correlation, and the dimension-wise KL, which are the different

components we have seen.

What is different? Notice,  is only on total correlation and not on any other terms in the overall

objective.
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o  [-TCVAE?

feeases o Further decompose marginal KL:

@ Dk (a6(2) Ipo(9)) = D (a6()] [ 1s(2:)) + Y. Dice a6(2,)n(z)
NPTEL i -
Total Correlation Dimension-wise KL

o Total Correlation important for learning disentangled representation
o Hence, final 3-TCVAE loss:

~Bogyta oo (x1z) + Ly (2,m) + BDi (go(2)] [ aolz) + 3 Dicalo(;) ol
1 ] &
o Weight 5 > 1 to disentangle without affecting reconstruction

IChen et al, Isolating Sources of Disentanglement in Variational Autoencoders, NeurlPS 2018
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This allows us to focus 3 on disentanglement only on that term and not affect the reconstruction

capabilities of the VAE.

(Refer Slide Time: 18:47)

o  Disentangled Representation Learning: How to evaluate?

=== Mutual Information Gap (MIG)
~ o Use mutual information between generative factors (g) and latent dimensions (z) in some
ﬁfﬁ} way; how? r
NPTEL o Compute mutual information between each generative factors (g;) and each latent
dimension (z;)
o For each g;, take z;,2; that have highest and second highest mutual information with g; !
oMG= YK, mlgj(l(gi, zj) - I(g;,z/)) where H(g;) is entropy of g; and
0<1(g;,2j) < Hgy)
o Averaging by K and normalizing by H(g;) provides values between 0 and 1
o MIG — 0: bad disentanglement, MIG — 1 : good disentanglement

o Why not simply use MI? Why MI gap? Homework! (Hint: Read metric section in Chen et
al, Isolating Sources of Disentanglement in Variational Autoencoders, NeurIPS 2018)

Vineeth \ B (IIT-H) §1L3 VAEs and Disentang! o/1

Having seen B-VAE and B-TCVAE, one question that arises now is how do you evaluate whether
your generative model has learned to disentangle effectively? While one way is to generate
different images and check qualitatively whether those images represent different generative

factors, that can become a tedious exercise for many generative factors. One such metric that has

1521



been proposed in recent years is known as the Mutual information Gap (MIG). The idea is to use

the mutual information between generative factors, g and latent dimensions, z in some way.

What do we mean by generative factors? These are factors that we know exist in the dataset. If
we say, big red apple, size, color, and object represent the generative factors. The idea is to see if
the latent dimensions z that are learned capture these generative factors somehow. We would like
to use the mutual information between the random variables g and the latent dimensions z to
capture this.

How do we do this? We compute the mutual information between each generator factor, g, and
each latent dimension, z. You would then have an entire matrix of mutual information between
every pair, g 1and z,9 1and Z, 9 2and Z,, S0 on and so forth. What do we do with all of these

mutual information values? For each generator factor g, consider the latent factors that have the

top two mutual information values. Let us call them Z, and z,

Once we have this, we define the mutual information gap as the difference in the mutual

information values between these top two latent factors. So, the mutual information of g, with z,
and g, with zZ, will be the mutual information gap with some normalization factor on the outside.

What is the normalization factor? 1/H (gi), the entropy of g, intrinsically, i.e., entropy is

— ). p logp of that generative factor.

And this normalization takes care of averaging this across all of the generative factors. So
averaging by K and normalizing by H, entropy, provides us values between 0 and 1. If the mutual
information gap is zero, both these latent factors have high mutual information with the same
generative factor. It would be considered a bad disentanglement because both those latents are

learning the same thing. They are not disentangled.

On the other hand, when MIG is 1, it is good disentanglement. One question here is why do we

use the mutual information gap and not just mutual information itself? Think about it. It is
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homework for you. If you need to understand this better, read the paper “Isolating Sources of

Disentanglement”, NeurIPS 2018 paper, which defined this metric.
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Disentangled Representation Learning: How to evaluate?

DCI Metric?

33% 4Eastwood and Williams, A Framework for the Quantitative Evaluation of Di gled Rep ion:
b/ ICLR 2018

o Considers three properties of representations: D - Disentanglement, C - Completeness, | -
Informativeness

o Train a model (e.g. 3-VAE) to get latent representations

o (et latent representation of each image in a dataset

o Train k linear regressors (one for each g;), f1... fi. to predict g; given z

o From the regressors, we get 1¥;; (how much z; is important to predict g]-)

o Create a relative importance matrix R such that R; = W] X

Vineeth N B (IIT-H) §11.3 VAEs and Disentanglement 10/14

Another metric for checking disentanglement that has been recently proposed in ICLR 2018 is
known as the DCI Metric. DCI stands for Disentanglement, Completeness and Informativeness.
There is a quantity defined for each of these. To compute them, let us first train any model, say
Beta-VAE, to learn latent representations. Get the latent representation of each image in a
training dataset or the test dataset, for that matter, if that is where you would like to study for

disentanglement.
Then we train a linear regressor. So you learn k different linear regressors, f e f B that predicts

each generative factor g, given the entire latent vector z. So you have k different generative

factors, and hence k different linear regressors. How do you learn them? For each input image,
you would get a latent factor z, and you want to use that now to predict the gender here? Or what

was the color of this Apple?

That would be the value of each generative factor. Once we train these linear regressors, it will
give you a weighted combination of each latent factor. That is what linear regression does. So

you would now have an entire matrix,Wij, which tells us how much a latent factor z, 1s important
to predict a generative factor g, We will call this the relative importance matrix, which is the

absolute value of Wl_j’s, obtained through regressors.
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o  Disentangled Representation Learning: How to evaluate?

L]

DCI Metric: Disentanglement
. o Degree to which a representation disentangles underlying factors of variation
gi%ff} o Disentanglement score of i" latent: D; = (1 — H(P;)) where H is entropy and

NPTEL = Z%‘ importance of z; to predict g;

. R; . .
o Total disentanglement score: D =Y, p;D; where p; = %% relative latent importance
ij fvij
used to normalize the score

DCI Metric: Completeness
o Degree to which each underlying generative factor is captured by a single latent variable
o For each generative factor g;, C; = (1 — H(P;)) where the distribution P; is as above

o If a single latent variable contributes to g;'s prediction, score is 1 (complete); if all latent
variables equally contribute to g;'s prediction, score is 0 (maximally overcomplete)

Vineeth N B (IIT-H) §11.3 VAEs and Disentanglement Y 11/14

Once we get the relative importance matrix, there are quantities defined for disentanglement:
completeness and informativeness. Let us look at disentanglement first. This metric tries to
capture the degree to which representation disentangles underlying factors of variation. This is

obtained by defining Di as 1 — H (Pl_), where H is the entropy of Pl_. What is the probability
distribution Pi? PL_ is defined as a vector of Pl,j’s for each generator factor 9g; where each Pl,j 1s

given by Rij in that matrix divided by all the entries in that particular row i corresponding to that

latent factor.

. . .th . .
So, that is the disentanglement score of the i"" latent. So, we ideally want the latent to predict

only one generative factor and not predict all. So, the Total Disentanglement score is then given

. . th
by summation pl,Dl, , Where Di was the disentanglement score of only the i latent. So, the
overall disentanglement score is given by summation piDi , where the coefficient P, is given by

summation over j, Ri]_ divided by summation over ij, Rl,j , which is the normalization over the

column of that importance matrix.

The second metric is completeness, which is the degree to which a single latent variable captures

each underlying generative factor. For each generative factor g, the completeness is defined as

1525



1—-H (P],), where P,' is defined as above. If a single latent variable contributes to g},’s prediction,

the score would be 1. We only want one latent variable to correspond to a generative factor. If all

latent variables contribute equally to gj’s prediction, the score is 0 because that represents the

opposite of disentanglement. We call that situation maximally over complete, where all latent

factors correspond to just one generative factor in the data.

(Refer Slide Time: 28:00)

e  Disentangled Representation Learning: How to evaluate?

DCI Metric: Informativeness
o Amount of useful information a representation captures about underlying factors

o Useful for natural tasks which require knowledge of important attributes of data; e.g. for
classification task, representation should capture information about object of interest

o Informativeness of z about g; quantified by prediction error E(g;, g;) where g; =;(z)

o Note that [ value depends on capacity of model f; also
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The third metric is Informativeness. How informative are the disentangled latent representations?
This measures how useful, a representation is in capturing the underlying factors. This is
considered with respect to a specific task. For example, a classification task in which you would
like the latent representation to capture information about the object of interest. How do we

measure this?

The prediction error gives the Informativeness of z about a particular generator factor g,

between the original generator factor and the predicted generator factor. It is obtained using one
of those regressors that we had defined earlier. These metrics, including informativeness, depend

on the goodness of those regressors that we use in the first step.
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e  Homework

Q‘%} Readings

NPTEL o Lilian Weng, From Autoencoders to Beta-VAE
o Prashnna Gyawali, Disentanglement with VAEs: A Review
o (Optional) Papers on respective slides

Questions
o Why is MI Gap and not Mkused as a metric for disentanglement?
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(g

That completes our discussion of disentanglement. [ hope it provided you with an introduction to
the topic, a couple of methods that enforce disentanglement, as well as how to measure whether a
generative model is disentangled. As homework, please read this excellent blog, “From
Autoencoders to Beta-VAE”. Another blog on “Review of Disentanglement with VAEs” and

optionally, the papers that we referred to in the slides.

We left behind the question in the first mutual information gap metric: Why the gap and not just

mutual information itself? Think about it and we will discuss it next time.
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