
Deep Learning for Computer Vision
Professor Vineeth N Balasubramanian

Department of Computer Science and Engineering
Indian Institute of Technology, Hyderabad

Deep Generative Models Across Multiple Domains
(Refer Slide Time: 00:12)

In this lecture, we will talk about an interesting use case of GANs, which is Generating Images

across Domains.

(Refer Slide Time: 00:26)

1485

Before we get there, let us answer the questions that we left behind. One of the questions was

Minibatch standard deviation is used in Progressive GAN. Why is this useful? I hope you had a

chance to try to find this. The answer is, in Minibatch standard deviation, the standard deviation

at each spatial location in a feature map across a Minibatch is concatenated in a later layer of a

discriminator.

The standard deviation gives an idea of the diversity of the images generated in a given

Minibatch. If this diversity is significantly different from the diversity in the real images from a

real dataset, that would incur a penalty, and the generator would learn to generate diverse images.

And that is the main idea of including this in Progressive GAN. The second question was, why is

Orthogonal Regularization of weights used in BigGAN?

The answer comes from linear algebra. Multiplication of a matrix by an orthogonal matrix leaves

the norm of the original matrix unchanged. Why is this useful? You have to recall Weight

Initialization and Batch Normalization. It is useful and important to maintain the same norm

across all layers and orthogonal regularization is a method that tries to achieve this during

training.

(Refer Slide Time: 02:22)

With that, let us move on to using GANs for generation across Domains, a task known as

Domain Translation. The goal here is, given an image from a source domain, we would like to

1486

generate an image in a target domain. We would like to learn this function G, which takes us

from source to target. You could look at this as a variant of GANs, where the input is not a noise

vector but a source domain image. There is more to it than just changing the input. Examples of

use cases could be to take a Male image to change it to Female, to go from sketches to photos, to

take a scene, and transform a summer scene to winter, and so on.

(Refer Slide Time: 03:21)

Here are some examples of how Domain Translation can be used. Here is an example of going

from Semantic Segmentation Labels to a Street Scene. Similarly, Labels to a Facade, Black and

White to Color, Day to Night, could be very useful for Autonomous Navigation or Self Driving

datasets. Going from an Aerial View to a Google map, the output is from a Sketch to a Photo. All

of these are examples of domain translation.

1487

(Refer Slide Time: 04:01)

So, there are a few settings under which different methods have been proposed, which we will

focus on in this lecture. In the first setting, known as Paired Training or the supervised setting,

you are given images from both domains in a paired manner. The goal is to train a GAN to

translate for a new image from one domain.

So, for every sketch, you are also given its corresponding photo in your dataset. This is the first

and simplest setting. In the second setting, we will talk about Unpaired training or unsupervised,

where you have a set of sketches, and you have a set of photos. They are not necessarily paired.

So, you do not know if, for a given sketch, the corresponding photo is there in the dataset or not.

But you still have to learn to go from a sketch to a photo, and we call this Unpaired image to

Image Translation. Finally, we will talk about Multi-modal generation, where you can go

seamlessly between domains, where the popular methods are UNIT and MUNIT. Let us see each

one in detail.

1488

(Refer Slide Time: 05:27)

The first method is for Paired translation. The popular method here is Pix2Pix. Pix2Pix defines

an image to image translation task as predicting pixels from pixels, and that is why the name

Pix2Pix. It provides a framework to perform all such tasks.

(Refer Slide Time: 05:53)

Pix2Pix builds upon the standard GAN objective. Recall that the standard GANs objective is to

maximize the likelihood of the discriminator and minimize the fooling rate of the generator. In

1489

contrast, the generator tries to maximize the second term. However, when adapting this for the

image to image translation tasks, the objective changes slightly.

(Refer Slide Time: 06:23)

Pix2Pix defines this as a conditional GAN objective. Instead of just an image x coming from the

real domain, you have an image x and the corresponding image y from another domain. In a

standard GAN, given an image and given the generated image, one would have to see which is

fake and real. In Pix2Pix, given an image and given another image, which may not be exactly

similar to . The discriminator has to tell whether this is a correct translation or not. So, the𝐺(𝑥)

conditional GAN objective now is given by the discriminator, which has to maximize the

probability of x and y, assuming they are the correct paired images from sketches and photos to

be real. So, that is something the discriminator has to do.

And the second term is where given x, a sketch, for example, and z, a latent vector, 𝐺(𝑥, 𝑧)

generates a photo. So, you could consider to be given input from one domain. In this case,𝐺

sketch G generates an image from the other domain. The discriminator’s job is to take the

original sketch and the generated photo and see if both can be classified to be fake. The generator

would want a log of 1 minus that quantity to be high. That is the min-max game generator, and

the discriminator would play here. In addition to the Vanilla objective, you now have the x, y

tuples to manage inside the GAN objective.

1490

(Refer Slide Time: 08:34)

In addition to doing this, Pix2Pix also introduces an objective to ensure that the generated𝐿
1

image matches the original expected photo from the second domain. How is this done? The

generator also tries to minimize the loss, which is the sum of absolute values of each element𝐿
1

between y which is the image from domain two in our case, could be a photo and , x𝐺(𝑥, 𝑧)

again is a sketch, an input from domain one.

And z is the latent noise vector given as input to the generator. is the generated image𝐺(𝑥, 𝑧)

from domain two. We would like to match y as closely as possible, captured by this term in the

loss function. The overall objective now becomes the standard min-max GAN objective, which

is captured in the first term, represented as cGAN or conditional GAN plus some coefficient λ

times the loss that forces the generated images to be close to ground truth.𝐿
1

With this objective Pix2Pix, obtains fairly impressive results. A couple of examples are shown,

where the input is a Semantic Segmentation mask, which is one domain, and the aim is to

generate the scene image, which is the other domain. One can see that using only with the 𝐿
1

loss; the generation is very blurry. Using conditional GAN, the generation improves, and when

the two are put together, the generation has a fair good amount of detail and is close to the

ground truth image for this example. You see a similar observation even with the second image,

where one goes from the Semantic Segmentation mask to the Actual Facade picture.

1491

(Refer Slide Time: 10:51)

The generator architecture in Pix2Pix resembles a U-Net-based architecture. The encoder

reduces the dimensions of layers until a set of bottleneck features, which are then upsampled to

get the final dimension of the input image or the desired image as the output. Similar to U-Net,

there are skipped connections. These connections go from each layer in the encoder to its

corresponding mirror layer in the decoder, similar to what we saw in U-Net for Semantic

Segmentation.

(Refer Slide Time: 11:34)

1492

In addition, Pix2Pix also uses what is known as a PatchGAN Discriminator. In a standard

discriminator of a GAN, even if L1 or L2 loss is used as a regularizer the way Pix2Pix

introduced it. This ensures the crispness of low-frequency components of generated images. So,

you do get crispness in the output of certain large objects in the image. If one wanted finer

details, you need to do better than the L1 loss at the image level.

The PatchGAN Discriminator introduces L1 loss at a patch level between the generated image

and the original expected ground truth or the input. So, in this case, there is an enforcement of a

patch level classification of the generated image, comparing it to the ground truth and saying

whether it is real or fake. This is done for all patches in the generated image. The average is

taken to decide whether the generated image is real or fake, which is then used in the loss to

backpropagate and train the generator.

One could also look at PatchGAN as a form of texture or style aware generation so that finer

details or textures in the image can be generated better using a local patch wise discriminator

approach.

(Refer Slide Time: 13:21)

A second domain translation method or image to image translation method is Unpaired image to

image translation, an Unsupervised approach called CycleGAN, a popular approach again.

CycleGAN is premised on the observation that pair data from different domains can be

1493

challenging to collect. It is not very easy for every sketch to obtain its corresponding photo and

thus build a dataset. On the other hand, what may be more accessible is you could get large

amounts of Unpaired data where you have a set of sketches and a set of photos. You may not

necessarily have a paired photo for each sketch. They could just be loosely different sets. In this

case, it becomes challenging to learn domain conditional distributions the way Pix2Pix learned to

generate these images. The challenge here is you could have infinite possible translations for a

given source sample.

Because the pairing is not known in the training data. Given a sketch, there could be infinite

ways to transform this sketch into a photorealistic image. How do you handle this? That is where

CycleGAN comes into the picture. It uses two generators, G and F, which are intended to be

inverse functions of each other. It uses a concept called Cycle consistency, where the idea is that

the output from the target domain should also map back to the source domain and match the

input image. It uses adversarial training for generators and discriminators to achieve this.

(Refer Slide Time: 15:32)

Let us see what Cyclic Consistency mean. The name CycleGAN comes from this use. Cyclic

Consistency is similar to a concept from machine translation, where a phrase translated from

English to French should also translate back from French to English and get you back the

original sentence in English. This would ensure that the translation is complete and the generated

French sentence can recover from the original sentence.

1494

One would want the reverse process also to be true. If you start with French, go to English, then

the generated English sentence should get back the French sentence. It is shown pictorially in the

slide. So, given an image from one of the images from this input domain X, you can go to an

image from the second domain Y. If you generate back the image of the original domain from Y,

you should get back the original image you started with. This is the key idea of Cyclic

Consistency in CycleGANs.

(Refer Slide Time: 17:00)

The way this is implemented is, given an input image, coming from Domain 1, G generates the

version of the image in Domain 2, given by G(x). This input is given to F, F(G(x)), which should

be close to x. The L1 norm gives the loss function to minimize .||𝐹(𝐺(𝑥)) − 𝑥 ||
1

Similarly, if you start from the second domain, y, generate an image in the first domain, which is

given by . Then apply the transformation , the reconstruction error to be minimized𝐹(𝑦) 𝐺(𝐹(𝑦))

is given by , the L1 norm, which should be close to 0. These are the criteria|| 𝐺(𝐹(𝑦)) − 𝑦 ||
1

that help CycleGAN work, even with unpaired images.

(Refer Slide Time: 18:15)

1495

Adversarial losses give the loss functions. Let us elaborate on each of them. So, to go from

domain X to domain Y, the adversarial loss is to maximize the discriminator’s output on Y, and

the discriminator would want to go to 0 and the generator would want𝐷
𝑌
(𝐺

𝑋𝑌
(𝑥))

to go to 0 or to go to 1. So, this would ensure that the image1 − 𝐷
𝑌
(𝐺

𝑋𝑌
(𝑥)) 𝐷

𝑌
(𝐺

𝑋𝑌
(𝑥))

generated from X in the Y domain looks like a real Y to the discriminator .𝐷
𝑌

This is the first Adversarial loss. Similarly, one could have a reverse adversarial loss for an

image going from domain Y to domain X. The second loss is simply the converse or the

complement of the first loss function. The only difference is the input is an image from domain

Y, and the output is an image from X given by generator .𝐺
𝑌𝑋

While these two losses give domain specific losses to go from X to Y and Y to X. We then have

the Cyclic loss for domain X to Y, which, as we already mentioned, is given by , which𝐺
𝑋𝑌

(𝑥)

gives you output in domain Y and then considering , which is the generator going from Y to𝐺
𝑌𝑋

X of this value in domain Y. So, remember, this quantity gives you an element in domain Y, and

then applying the generator that goes from Y to X gives you back an element in domain x.

1496

You would want this final generated output to be close to the x that you started with. So, the L1

loss tries to minimize the loss between the final reconstruction in the original domain and the

ground truth that we started with.

(Refer Slide Time: 20:56)

We also need a similar cyclic loss to go from Y to X, which is a complement of the loss from X

to Y. These four losses are put together to help train the CycleGAN.

(Refer Slide Time: 21:10)

1497

And with this, Cycle-GAN gives impressive results, where given an input image, it gives an

output image from another domain. You can see different kinds of images.

(Refer Slide Time: 21:28)

To make this a little bit more tangible and clearer. Here is an input image, and the output image

shows the input image in different artist styles, such as Van Gogh, Monet, Cezanne, etc. You can

see here that the styles of the artists remain the same. But for the input image, which is translated

in that artist’s style.

(Refer Slide Time: 21:55)

1498

However, CycleGAN has one problem because it is possible to have multiple possible

translations for a given source image. This leads to what is known as Mode Collapse, where the

model may not be able to produce diverse images because CycleGAN could just generate one

image from which one can retrieve the original image from the source domain and still get a low

loss. It does not explicitly try to generate different kinds of images in the second domain or the

target domain, for that matter.

So, the solution to address the mode collapse problem in CycleGANs is to embed latent spaces

inside the GAN framework. How do we do that? By combining VAEs and GANs. Recall that

VAEs introduce a latent space that is learned through an encoder-decoder framework. So, we will

talk about these methods now that embed latent spaces inside the GAN framework to address

this Mode collapse problem.

What we ideally want is, given an input edge image or a sketch, we would want several kinds of

domain translations. You may want a Pink shoe, a Black shoe or a Beige shoe. Based on certain

changes in a latent variable, which is learned through a VAE. You can see applications of such an

approach in, say, Fashion and Apparel purchase so on and so forth.

(Refer Slide Time: 23:55)

One of the earliest methods in this direction is known as UNIT. UNIT stands for Unsupervised

Image to Image Translation Network, which was published in NeurIPS 2017. UNIT uses a

1499

VAE-GAN framework to learn latent spaces and domain translation simultaneously. So, in

addition to the cycle consistency that we saw with CycleGANs, UNIT-GAN introduces cycle

consistency, even at the latent space level.

Let us see this with the loss functions. But let us first try to understand the entire setup before we

go there. The UNIT architecture is based on this illustration. Given two inputs and , from𝑥
1

𝑥
2

the two domains, you have corresponding encoders and for each domain, which gives a𝐸
1

𝐸
2

latent vector in the same space. The dimension of the latent vector for both domains is the same.

Given a latent vector from that shared space, you have two generators, corresponding to𝐺
1

Domain 1 and corresponding to Domain 2. This gives us four possibilities of generations,𝐺
2

, where the input is from Domain 1 and the output generated is also from Domain 1. ,𝑥
1 → 1

𝑥
2 → 1

where the input is from Domain 2, but the output is from Domain 1. Similarly, and .𝑥
1 → 2

𝑥
2 → 2

All these images are then passed to a discriminator corresponding to each domain to say whether

the generation is true or false.

(Refer Slide Time: 25:56)

The loss functions are given by both the VAE loss and the GAN loss since UNIT is a VAE-GAN

framework. A KL-divergence gives the VAE loss for domain between the approximate𝑥
1

→ 𝑥
2
,

1500

posterior, and the log-likelihood of generating given using the generator𝑞
1
(𝑧

1
| 𝑥

1
 || 𝑝

η
(𝑧)) 𝑥

1
𝑧

1

. We take the negative log-likelihood, which needs to be minimized.𝐺
1
, 𝑙𝑜𝑔 𝑝

𝐺
1

(𝑥
1
| 𝑧

1
)

Similarly, you have the GAN loss, which corresponds to coming from , , which𝑥
1

𝑝
𝑥

1

𝑙𝑜𝑔 𝐷
1
(𝑥

1
)

is maximized by the discriminator and , which is a sample drawn from𝐷
1

𝑙𝑜𝑔(1 − 𝐷
1
(𝐺

1
(𝑧

2
)))

the second domain, but the generation is of the first domain is minimized by and maximized𝐺
1

by . You would have a similar loss for for VAEs and GANs to complete this picture.𝐷
1

𝑥
2

→ 𝑥
1

In addition, you also have a Cyclic loss for , given by a KL divergence between the𝑥
1

→ 𝑥
2

approximate posterior of given and the prior. Similarly, of given that translates𝑞
1

𝑧
1

𝑥
1

𝑞
2

𝑧
2

𝑥
1

from 1 to 2, and along with that the prior. Also, the negative log-likelihood of generating𝐺
1

𝑥
1

given . This would be the Cyclic loss from to , and one would again have the to𝑧
2

𝑥
1

𝑥
2

𝑥
2

𝑥
1

defined similarly. All of these can be carefully understood as extensions of GANs and VAEs.

Keeping in mind that one needs to ensure generation across domains.

(Refer Slide Time: 28:49)

An extension of UNIT-GAN is the MUNIT-GAN. In MUNIT-GAN, the image data, the latent

space of the image data, is divided into a content space and a domain-specific style space. The

1501

idea here is that each domain has a certain style. We talked about this with CycleGANs, where

you could have each artist's style be a different domain. The style encoder then tries to transfer

the content in a different domain to the style in that particular domain.

This is implemented using a within-domain autoencoder framework, as well as a cross-domain

framework. Let us see this in some more detail here. So, you have and , which are images in𝑥
1

𝑥
2

two different domains. The latent variable is now divided into two parts, and , which would𝑠
1

𝑐
1

have been in UNIT. corresponds to the Style Latent’s. So, you could now imagine a latent𝑧
1

𝑠
1

vector divided into two parts.𝑧

Not necessarily equal, so the latent vector could be, say, 100 dimensional, 40 dimensions could

correspond to the style, and 60 dimensions could correspond to content, just as an example. So,

corresponds to the style of the first domain, is a set of latent dimensions corresponding to𝑠
1

𝑐
1

the content of that particular domain. Similarly, and for the second domain. Otherwise, you𝑐
2

𝑠
2

could now consider these two as individual variational autoencoders for Domain 1 and Domain

2.

This is the Within-domain Autoencoder framework. In the Cross-Domain framework, one gives

as input, which now leads to , which is the content latent of . Similarly, the content latent𝑥
1

𝑐
1

𝑥
1

of is . is now combined with that forms a new latent. The decoder is applied to this𝑥
2

𝑐
2

𝑐
2

𝑠
1

new concatenated latent to get an , which is a translation from the second domain to the𝑥
2 → 1

first domain.

Similarly, the content variable of Domain 1 with the style variable of Domain 2 gives us ,𝑥
1 → 2

which is a translation from domain 1 to 2. Now, to complete the cycle in the latent variable

space, one could again take these x's and derive their latent variables through the encoder of a

variational autoencoder, which would give us , , and . Let us keep this structure and𝑠
1

^
𝑐

2

^
𝑐

1

^
𝑠

2

^

entire illustration in mind when we look at the loss functions.

1502

(Refer Slide Time: 32:13)

So, you have an Image Reconstruction Loss, given by loss, .𝐿
1

|| 𝐺
1
(𝐸𝑐

1
(𝑥

1
)) − 𝑥

1
||

1

Remember, gets us the content latent of the encoder of . Remember, this is the latent𝐸𝑐
1
(𝑥

1
) 𝑥

1

content of the latent variables of the encoder of the first domain. The generator of Domain 1 is

applied to that, which gives a reconstruction in that same domain, which we would like to be

close to . This is a simple Image Reconstruction Loss.𝑥
1

(Refer Slide Time: 32:57)

1503

We also have the Latent Reconstruction Loss, where we would like to ensure the latent’s

reconstruct themselves. This is given by loss, . Let us try to𝐿
1

|| 𝐸
2

𝑐(𝐺
2
(𝑐

1
, 𝑠

2
)) − 𝑐

1
||

1

understand this. Given the content from Domain 1 and the style from Domain 2, when one

applies G2, we get an output; what would that output be? That output would be . Now,𝑥
1 → 2

given this x, when the encoder of the second domain is applied, which is what corresponds𝐸
2

𝑐

to.

One would want the content variable to be close to the content of the first domain, which is given

by reconstruction loss. One would have a similar reconstruction loss for . Let us see that𝑐
1

𝑠
2

too. Given and , once again, one gets a construction of . When the second encoder is𝑐
1

𝑠
2

𝑥
1 → 2

applied to this, one expects to retrieve , given by if you recall in the earlier diagram.𝑠
2

𝑠
2

^

One would want this to be close to the original , and the L1 loss tries to capture this Latent𝑠
2

Reconstruction. You would similarly have terms for the corresponding reconstruction and𝑠
1

𝑐
2

reconstruction.

1504

(Refer Slide Time: 34:46)

Finally, Adversarial Loss also tries to ensure that is maximized by the discriminator .𝐷
2
(𝑥

2
) 𝐷

2

Similarly, is maximized by the discriminator and minimized by the(1 − 𝐷
2
(𝐺

2
(𝑐

1
, 𝑠

1
)))

generator in the second domain. This is the standard GAN loss for the second domain. One

would similarly define a GAN loss for the first domain, complementing the same loss function.

In case some of this is hard to follow, I would recommend going through these equations

carefully. This is an extension of Vanilla GAN across two domains, and there is no further

complexity.

1505

(Refer Slide Time: 35:40)

With these loss functions, MUNIT-GAN shows impressive results of translations from one

domain to the other. This time with more diversity and variety by changing the latent values,

given an input image from one domain, in this case, cats. If one wants to generate larger jungle

cats or big cats, you could now get several translations by playing with the latent vector with the

latent style vector of the second domain.

You can see that with different examples, you get several varieties of outputs in the second

domain for a given input, which can be obtained by changing the style vector of the second

domain. Remember, the style vector of the latent in the second domain can be interpolated to

change these kinds of outputs in the generation.

1506

(Refer Slide Time: 36:45)

And as wanted when we started, this also allows us to vary style and content gradually across the

generations. So, you can see an example that the content comes from these sketches, and the

style comes from these images. In each case, the colour and style are of the second domain,

while the content comes from the first domain. You can see in subfigures a and b that the first set

of images go from edges to shoes and the second set of images from big cats to house cats.

(Refer Slide Time: 37:31)

1507

That concludes this lecture. Each link provides more details of the paper and the code if you

would like to know more. The link at the end has a list of all image to image translation work if

you would like to understand them more.

(Refer Slide Time: 37:53)

Here are references.

1508

