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Having seen various kinds of Deep Generative Models like GANs, VAEs, Normalizing flows,

Autoregressive flows last week. We will now move on to the various ways in which GANs have

been improved over the last few years. We will talk a bit of disentangling of VAEs, and then

move on to applications of GANs to Images and Videos. Let us start with a few improvements

over Vanilla GANs.
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(Refer Slide Time: 00:50)

The first method that we will talk about is known as Stack GAN. This work was published in

ICCV 2017. The goal of this work was to generate reasonably good resolution 256 * 256

photorealistic images conditioned on Text Descriptions. So here is a high-level flow. The entire

GAN model is conditioned on a Text Description which could be a caption, for instance.

Standard NLP methods such as Word2Vec, GloVe, BERT, etc., are used to get an embedding of

this Text Description, which is provided as an input to the GAN.

With this input in the first stage, the GAN generates images, but perhaps a few64 * 64

high-level details or low-frequency details. These images are then provided as an input to the

next stage of the Stack GAN, which generates reasonably high detail photorealistic256 * 256

images and both these stages are conditioned on the same text input.
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(Refer Slide Time: 02:20)

Let us see the entire architecture now. So you have the Text description, which is given as input

to the entire Stack GAN. In this example, the text description reads, “This bird is grey with white

on its chest and has a very short beak”. So you obtain an embedding of this text, as I just

mentioned, using, say, Word2Vec or GloVe or BERT or any other embedding of your choice and

this embedding is added to the standard Gaussian noise is given to a GAN.

So, you can see that you get a mean and standard deviation from this embedding and this mean

and standard deviation is used to obtain a sample. The obtained sample is concatenated with a

sample from the standard normal, which becomes the entire input to the first stage generator. So

the first stage generator then goes through an Upsampling Generator Module, which generates a

image that you see here.64 * 64

The generated image and a set of real images form a minibatch. This minibatch is provided to the

discriminator, which downsamples these images. And before the final step of classifying this

input as real or fake, you also include the embedding phi t, again here. So you see here that an

arrow comes all the way and gets combined to this output of the Downsampling Module.

And the job of this Discriminator now is to classify this tuple of a generated image whose

representation we are considering, which is this blue block here, and the text embedding together

to be real or fake. This forms the first stage. In the second stage, the results of the first stage are
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given as input along with the embedding of the text again; both of these then go through the

second generator stage.

So, you can see here that the image goes through a Downsampling, then the Text embedding is

then concatenated to the Downsample representation. This then goes through a set of residual

blocks, which is then Upsampled to get the final output image, which is what you see256 * 256

here.

Now, that goes to the second discriminator, where you give the generated images and256 * 256

one of the real images. Once again, the output of the Downsample representation is256 * 256

concatenated with the text embedding, and the Discriminator has to classify each such tuple as

real or fake.

(Refer Slide Time: 05:33)

Now, let us understand how to, how the Discriminator can look at the tuple and classify Real or

Fake. So, there are three kinds of Scores the Discriminator has to obtain/provide in this case. So,

the first one is when the real image is provided with the correct text. Obviously, the discriminator

would want the score of such an input to be one, because both are correct. There is a real image

and the corresponding correct text. There is also another setting where you have a real image and

an incorrect text.
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In this case, the discriminator should ideally give a low score. Similarly, you have a fake image

with the correct text, which the discriminator should give a low score, but the generator should

try to increase this particular score. These are denoted by and . Now, let us try to𝑠
𝑟
,  𝑠

𝑤
𝑠

𝑓

understand how optimization actually works. So, the Stack GAN alternately maximizes the

discriminator loss and minimizes the generator loss.

Similar to what we saw with a GAN. In this case, the discriminator, as we just saw, would try to

maximize the log likelihood of the first score and minimize the log likelihood of the second and

third scores, which is what is given by the second and third terms here. We just saw that when we

understood the Scores. Similarly, the generator tries to maximize because that is the𝑙𝑜𝑔(1 − 𝑠
𝑓
)

job of the generator. It also tries to minimize the KL divergence between the output of the mu’s

and sigma’s that you see in the initial layer at the end of the text embedding with the standard

normal distribution.

(Refer Slide Time: 07:47)

Here are some results that are obtained from Stack GAN. What you see on the top row is a

baseline method called GAN-INT-CLS that was published in 2016. And the bottom row shows

the results of the Stack GAN. So you can see here in the first column, the caption says, this

flower has petals that are white and has pink shading. You can see here that the quality obtained
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by the Stack GAN is far more photorealistic than of earlier methods. And this holds for all these

images that you see at the bottom row.
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Another popular method that came in 2018 is known as the Progressive GAN. The Progressive

GAN is designed for generating high-resolution images up to . And the key idea is1024 * 1024

in the name of the method itself is the method progressively grows, the generator and the

discriminator. We will soon try to decipher what this means. This work was published in ICLR

2018. It also had a few other design decisions, such as using a standard deviation in a given

Minibatch, a concept of an equalized learning rate, and a Pixel wise feature vector normalization

in the generator, which we will also see soon.

(Refer Slide Time: 09:28)
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The idea of Progressive GAN is shown in the image on the left. The generator first produces a

image shown in the left-most part of this image. So, you have the latent vector that comes4 * 4

from a standard normal, a very simple network, which generates a image. This is provided4 * 4

to a Discriminator D, along with a real sample, to judge whether it is real or fake.

This then increases to in the next iterations of training. You can see here that compared to8 * 8

the image generated in the setting, the setting is still blurry but has some more4 * 4 8 * 8

details when compared to the setting. You can also notice here that there are some layers4 * 4

added in the generator and the discriminator when the next higher resolution is generated.

And this is repeated over and over again until we get the final generation of 1024 * 1024

image. The key idea that this allows is for stable training of GANs for generating high-resolution

images.

(Refer Slide Time: 11:02)
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Whenever the Progressive GAN goes from generating a certain resolution to the subsequent

higher resolution, as I just mentioned, there are new layers introduced. How are these layers

introduced? This procedure is very similar to ResNets. So, you can see that in subfigure b in the

image. You see now that while you had an initial resolution , when you step up to16 * 16

.32 * 32

The nearest neighbour interpolated version of the layer output; when you interpolate,16 * 16

you get a output added to the layer through a skip connection. How is that32 * 32 32 * 32

added? You can see an and . So, the new output layer is the final output is given byα 1 − α α

into the new output layer plus into the projected layer. By projected layer, we mean the1 − α

output of the nearest neighbour interpolation. This allows Progressive GAN to fade in new layers

organically to generate better images.

(Refer Slide Time: 12:31)
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As I mentioned, Progressive GAN also introduces a few other design decisions. One such

contribution is known as Minibatch standard deviation. Here, the standard deviation is computed

and averaged at each spatial location over a Minibatch, So, you can imagine that when the

generator generates a particular feature map, you take every spatial location, which is at every

pixel, you compute its average, across the entire Minibatch, you will get a certain standard

deviation for that value across the Minibatch.

That is concatenated to all spatial locations at a later layer of a discriminator. Why do you think

this is done? Think about it. It will be your homework for this lecture. Another contribution that

Progressive GAN brings to the table is known as the Equalized learning rate. In this case, the

weights in each layer of the generator network are normalized by a constant c, which is specified

per-layer.

So, this constant c is a per-layer normalization constant. Why is this done? This allows us to vary

c in every layer and thus help keep the weights at a similar scale during training. So, why is this

called Equalized learning rate? Because the value of the weight effectively affects the gradient

and hence the learning rate. While methods such as Adam, AdaGrad, and so forth adapt the

learning rate, they may have low values with the weights themselves very low or very high.

Normalizing by a constant allows these weights to be of a similar scale during training across all

layers. This allows better learning. Another contribution that Progressive GAN makes is a

pixel-wise feature vector normalization in the generator. For each convolutional layer of the
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generator, the normalization is defined by . Here, (x,y) is the pixel in feature map. It is𝑎
𝑥,𝑦

𝑎𝑡ℎ

divided by N, where N is the number of feature maps. The summation j goes from 0 to 𝑁 − 1

that is across the N feature maps, .(𝑎 𝑗
𝑥,𝑦

)2 + ϵ

The denominator here considers the pixel value at the same location across all of the feature

maps and normalizes the value at the feature map with this denominator. The here is for𝑎𝑡ℎ ϵ 

numerical stability to avoid a divide by 0 error. And the output is denoted as , which is the𝑏
𝑥,𝑦

normalized value.

(Refer Slide Time: 15:59)

With these contributions, Progressive GAN reports impressive results. The results are compared

with earlier works such as Mao et al. and Gulrajani et al., and one can see that with the

Progressive GAN approach, the result is fairly photorealistic and high resolution with more

details when compared to earlier methods.

(Refer Slide Time: 16:25)
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A third more recent improvement of GAN is known as StyleGAN, published in CVPR 2019.

Progressive GAN, also known as ProGAN, generates high-quality images but does not give the

capability to control specific features in the generation. For example, it is difficult to use a

Progressive GAN and say that you would like to take an image and add a specific colour or

change a particular attribute in the image.

StyleGANs objective is to be able to control the generation of an image using a particular

predefined style. How does this do it? It automatically learns unsupervised separation of

high-level attributes, could be like, could be examples could be pose and identity for face

images. Stochastic variation such as hair could have a lot of randomnesses and scale specific

control of attributes.
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(Refer Slide Time: 17:38)

The intuition for StyleGAN is that a Coarse-resolution in an image, if we consider face images,

could affect attributes such as pose, a general hairstyle, face shape, etc. Suppose you go to the

next level of resolution, anywhere between 162 and 322. In that case, this resolution throws in

final attributes such as facial features, more specific hairstyle, eyes being open, closed, so on and

so forth.

At the highest resolution, a Fine resolution anywhere between 642 and 10242 affects the colour

scheme, both for eye hair and skin, and introduces micro features on the face. StyleGAN tries to

address and introduce some style-specific components at each resolution to attain its desired

effect.
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How does it do this? Given a Random input vector, the same as in the Vanilla GAN, StyleGAN

first normalizes this vector and then sends this through eight fully connected layers without

changing the input dimension and obtaining a vector. Remember, the input latent was512 * 1

also . So, these eight fully connected layers do not change the dimension of the input.512 * 1

And this transformed vector which we call w, is given as input to the generator or the Synthesis

Network. Now, let us see how this vector w affects different resolutions in the generation.

(Refer Slide Time: 19:35)
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This is achieved by introducing a matrix A, which learns an affine transformation at different

resolutions. So, you can see here that the Synthesis Network or the generator in StyleGAN has an

Upsampling module and then has something called Adaptive Instance Normalization, which we

will see in a minute. A convolution layer follows it, and then another Adaptive Instance

Normalization Layer.

And this is then repeated over multiple blocks. Let us take a look at one of these combinations of

convolutional and Adaptive Instance Normalization layers. So, if you have a convolutional layer,

as seen on the top. In that case, a specific channel of the feature maps in that convolutional layer

is normalized by its mean and variance to get an Adaptive Instance Normalization.

In conclusion, the weight vector w is given as an input to each of these blocks. It is then

transformed by an affine map, which gives us a set of values and , which is used to𝑦
𝑠, 𝑖

𝑦
𝑏, 𝑖

change the scale and bias of the output of the convolutional layer. This is where Adaptive

Normalization comes into play. So, you can see here that this now becomes , which is𝑥
𝑖

− µ(𝑥
𝑖
)

normalization with respect to mean and variance.

So, this quantity here on the inside corresponds to subtraction by mean and division by variance.

It multiplies them by , which is a scaling value obtained as an output of the affine𝑦
𝑠, 𝑖

transformation A and then biased by , which is also the output of the affine transformation.𝑦
𝑏, 𝑖

Note that these values, and could be different in different blocks of the Synthesis𝑦
𝑠, 𝑖

𝑦
𝑏, 𝑖

Network. And each such transformation thus defines the visual expression of features in that

level. And that allows the input latent to have a different influence at different resolutions of

generation.
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Another method, the recent one, published in CVPR 2019 again, is known as SPADE. We will

see its expansion soon. And the key idea of SPADE is that previous methods directly feed the

semantic layout as input to the network. You have a certain image and the entire semantic layout

with the pixel configuration of the image. And in SPADE, which is given by Spatially Adaptive

Normalization. The input layout for modulating activations in normalization layers happens

through this spatially Adaptive Learned Transformation.

(Refer Slide Time: 23:08)
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Let us see how this happens. You could look at the output as going through an affine

transformation in the standard Batch Normalization layer. You scale up the value, and you add a

constant, which is an affine transformation. This is the standard batch norm operation, where you

have a value, you multiply it by gamma and add a beta which together defines an affine

transformation. However, in SPADE, a semantic segmentation map is given as input.

This semantic segmentation map goes through a convolutional layer, and the convolutional layer

outputs a gamma and a beta used to normalize the previous layer of the generator. So, as you can

see here, unlike blindly normalizing the output feature map in a specific layer, in this case, the

normalization is done in a spatially adaptive manner, where the gamma and beta come from the

spatial relationships in this Semantic Segmentation Map.

What is the Semantic Segmentation Map? Recall that a Semantic Segmentation Map has a

pixel-wise association of a class label. So, you can see here in the sample, you have a tree, you

have a sky, you have a mountain, you have grass, and you have a road, perhaps. That is used to

define the gamma and beta for normalization. A random latent vector can also be used to

manipulate the style of generated images.

But the semantic segmentation map gives a way of normalizing using spatial content at each

pixel. So, you can notice here that the normalization now is defined at each pixel. These gammas

and betas are defined at the pixel-wise level, denoted by the cross and plus, which are done

element-wise, which can allow each pixel to be normalised differently, based on the Semantic

Segmentation mask.
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Here are some interesting results. So, you can see here that the Semantic Segmentation output is

given as the input to SPADE. So, these are masks of Semantic Segmentation, Pixel-wise Class

Labeling, and this is the actual ground truth image corresponding to these Semantic

Segmentation masks. You can see here, while the third and fourth columns correspond to other

methods, SPADE gives a fairly photorealistic output close to the ground truth.

On the left side is the architecture of the generator in SPADE. It is similar to many other GAN

architectures, but the input of the semantic segmentation mask is coming in at each layer.
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Finally, the last method we will discuss in this lecture is a very popularly used one these days,

known as BigGAN, published in ICLR 2019. The focus of BigGAN was to scale up GANs for a

better high-resolution generation. It was designed for class conditional image generation, which

means the input is both a noise vector, similar to a Vanilla GAN and some class information.

For instance, it could be one hot vector, which together is given to the GAN to generate an image

corresponding to that class. BigGAN also introduces a few different design decisions, as we will

see in the following few slides.
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An important design decision in BigGAN is to use the idea of a Self-Attention GAN or a

SAGAN, an earlier work introduced in late 2018 and published in ICML 2019, which introduces

Self-Attention. We already saw Self-Attention in Transformers a week ago. It is the same idea

here, where you have a set of convolutional maps as the output of a particular layer in the

generator.

This output goes through multiple convolutions. Some of which transform and transpose to1 * 1

obtain an Attention map. These three branches are very similar to the query, key and value of the

transformer architecture. You could consider them to be similar. So, two of those branches

generate an Attention map, which is used to focus on a specific part of the convolutional map to

generate that component of the image in the next layer. Why is this required?

Self-Attention GANs were introduced because often GANs, while they generated crisp images,

would miss out on finer details. For example, in a Dog's image, they may generate the fur on the

dog but miss out on the legs of a dog. So, the idea of using Self-Attention is to focus on specific

parts of the image and generate every local detail more appropriately. In BigGAN, along with

Self-Attention GAN, Hinge Loss is used.

This Hinge Loss is similar to the Hinge Loss used in support vector machines, given by

, where t is the target output, and y is the predicted output. This is because𝑚𝑎𝑥 (0,  1 −  𝑡. 𝑦)
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BigGAN is class conditional. So, you also want the output image to belong to a particular class,

which is then used at the discriminator stage. Because the discriminator not only says real or fake

but also gives a class label whose loss, in this case, is given by Hinge Loss.

(Refer Slide Time: 30:04)

In addition, BigGAN also introduces Class-conditional Latents in a slightly different way.

Instead of a Class-conditional Latent, which could be a one-hot vector. Instead of giving that

directly to the generator’s input, the Class-conditional Latent is given as a separate input at

multiple stages of generation. It is concatenated with a certain input and then given to each of the

Residual blocks. What is done inside each of these Residual blocks?

The concatenated class label vector passes through two different linear transformations given to

the two batch norm layers inside each residual block.
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BigGAN also had Other Design Decisions, which helped its performance. One such was Spectral

Normalization, where the weight matrix in each layer was normalised to ensure that its spectral

norm was maintained. And it also satisfied the Lipschitz constraint, . You can see thisσ(𝑊) = 1

paper called Spectral Normalization for GANs ICLR 2018 for more details. The broad idea of

such a step is similar to Batch normalisation to constrain the weights with specific properties that

ensure that learning can be better and faster.

In this case, we try to constrain the highest singular value of the weight matrix. A second idea is

Orthogonal Weight Initialization, a well-known weight initialisation method. Each layer’s

weights are initialised to ensure or the weight matrix is orthogonal. It also introduced𝑊𝑇𝑊 = 𝐼

Skip-z Connections,  where the latent input z is connected to specific layers deep in the network.

It also introduces another method known as Orthogonal Regularization, which encourages the

weights to be orthogonal in each training iteration. This is done using a regulariser where beta𝑅
β

is a coefficient. The regulariser tries to ensure that the Frobenius norm between and𝑊𝑇𝑊

identity is minimised. So, this would be a way to ensure the is close to identity , and𝐼 𝑊𝑇𝑊 𝐼

hence the matrix is Orthogonal. Why would we want Orthogonal Regularization? Think about

it; this is another homework for you for this lecture.
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Other Hacks employed in BigGAN were: 1. They updated the Discriminator model twice before

updating the Generator model in each iteration. 2. The model weights were finally averaged

across a few training iterations using a moving average approach. Progressive GAN also did this.

3. BigGAN also observed that using very large batch sizes, such as 256, 512, 1024, and 2048.

By batch sizes, we mean minibatch sizes while performing Minibatch SGD. They observed the

best performance with the largest minibatch size of 2048. 4. They also doubled the model

parameters or the number of channels in each layer.

5. They employed a trick known as the Truncation Trick, where the generator initially receives a

latent vector from a Gaussian during training time. At test time, you sample a latent from a

Gaussian. If that value is less than a threshold, you discard it and sample another value. So, this

is called a Truncated Gaussian. You could now imagine that this Truncated Gaussian is

something like this, where you are ensuring that something sampled below a threshold is not

considered an input to the GAN. So, that way, all inputs to the GAN come from the shaded part

of the PDF. The main idea is not to get anomalous generations using these latent vectors, but you

get generations that belong to the core part of the PDF of that Gaussian.
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Your homework for this lecture is to go through this excellent survey of GANs recently released,

Chapter 20 of the Deep Learning book. And here are the code links for most of the GANs

discussed in this lecture. Suppose you would like to see them and try them out. We left behind

the questions: Why is Minibatch standard deviation used in Progressive GAN, and Why is

Orthogonal Regularization used in BigGAN? Think about it and we will discuss it next time.
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