
Deep Learning for Computer Vision
Professor Vineeth N Balasubramanian

Department of Computer Science and Engineering
Indian Institute of Technology, Hyderabad

Lecture 67
Beyond VAEs and GANs:

Other Methods for Deep Generative Methods - 02

(Refer Slide Time: 00:12)

The second kind of Deep Generative model that we will discuss in this lecture is Autoregressive

flows. Autoregressive flows come, as the name suggests, from Autoregression. Autoregressive

models are used in time series data in standard machine learning to look at the past n steps of a

time series data and predict the next value. For example, if you look at the stock price for the last

ten days, can you predict the stock price on the 11th day? It can be solved by using

autoregressive models such as ARMA, ARIMA NARIMA, so on and so forth.

These are popular time series models for this scenario. What we are talking about here is an

extension of that thought process. However, now, we want to generate data and not just predict

an outcome. Once again, this is a transition from supervised learning to unsupervised learning.

So let us see how to use Autoregression for a generation. So we decompose the task of finding

the PDF of the real-world data as , which is the probability density function of the𝑝(𝑥
!
, 𝑥

2,
.... 𝑥

𝑛
)

1439

real data given to us. It is written as into conditional , and so on, till𝑝(𝑥
!
) 𝑝(𝑥

2
 | 𝑥

1
)

.𝑝(𝑥
𝑛
 | 𝑥

1
,...., 𝑥

𝑛−1
)

So, while calculating a conditional probability at a certain level, the model can only see inputs

occurring prior to it. Let us see how this would work. So, if you had , to , as different𝑥
1

𝑥
𝑛

dimensions have an input, is used as input to a second network , predicting the probability𝑥
1

𝑥
2

of given . Remember that probability, depending on the values can take, can be learned𝑥
2

𝑥
1

𝑥
2

using a mean squared error or cross-entropy or any other loss that we have seen so far. and𝑥
1

𝑥
2

contribute to the third network to learn the probability of given , , so on and so forth. For𝑥
3

𝑥
1

𝑥
2

a later given to , and finally, given to .𝑥
𝑖

𝑥
1

𝑥
𝑖−1

𝑥
𝑛

𝑥
1

𝑥
𝑛−1

So, you could consider that autoregressive flows are a special case of normalizing flows, where

each intermediate transformation masks certain inputs. You are not going to look at all inputs in

every step. But in each, if you assume that network 1 through network n were different functions,

similar to normalizing flows. Each of these networks looks at only a certain part of the input and

not the complete input. You could look at it that way, although that is not exactly the way it is

implemented.

(Refer Slide Time: 03:30)

1440

So, one of the popular methods for autoregressive models is called NADE. NADE stands for

Neural Autoregressive Distribution Estimation. Here is how NADE works. You have inputs to𝑥
1

in dimensions of every input vector. Similarly, you have , - the probability of𝑥
𝑛

𝑝(𝑥
1
) 𝑝(𝑥

2
 | 𝑥

<2
)

given all the random variables less than 2, , so on and so forth till .𝑥
2

𝑝(𝑥
3
 | 𝑥

<3
) 𝑝(𝑥

𝑛
 | 𝑥

<𝑛
)

We are trying to understand the probability density function of the real-world data, which is a

product of all of these. So, we provide all of these inputs to a shared neural network with as

many layers as you choose. The output of that neural network is then passed on to a layer of

hidden representations obtained over masked inputs. That is , which is one of the nodes here,ℎ
𝑛

depends on all the x's, which is less than n.

So, here is how it is done. So, will only be considered to get , and will be considered𝑥
1

ℎ
2

𝑥
1

𝑥
2

to get and , and so on, all the way till will be considered to get . So one wouldℎ
3,

𝑥
1

𝑥
2

𝑥
3

𝑥
𝑛−1

ℎ
𝑛

have to mask the inputs to ensure that the corresponding inputs reach the corresponding nodes in

the hidden layer.

(Refer Slide Time: 05:17)

What happens after this? Each of these to are passed through different networks to getℎ
1
'𝑠 ℎ

𝑛
'𝑠

, , etc.𝑝(𝑥
1
) 𝑝(𝑥

2
 | 𝑥

<2
)

1441

(Refer Slide Time: 05:31)

What happens at inference time? How do you generate? So once you have trained such a

network, remember in GANs, we knew how you could generate an image after training a GAN,

you would just sample a vector from a Gaussian, send it through a generator and get an image.

How do you do this with NADE? It is similar. We are going to assume that is equivalent to zℎ
1

in sample generation. You could now assume that comes from a Gaussian; you sample a valueℎ
1

from there, send it through the first network, you would get a specific .𝑥
1

(Refer Slide Time: 06:09)

1442

That is now.𝑥
1

(Refer Slide Time: 06:11)

fed to get ℎ
2

1443

(Refer Slide Time: 06:16)

That is used to get , then and together is fed to get , which is used to get ,𝑝(𝑥
2
) 𝑥

1
𝑥

2
ℎ

3
𝑝(𝑥

3
)

then fed in to get. You continue this process until the last network predicts . You can𝑝(𝑥
𝑛
 | 𝑥

<𝑛
)

keep repeating this until the complete data sample is generated.

(Refer Slide Time: 06:43)

A variant of NADE, which is an improvement over NADE, is called MADE. MADE stands for

Masked Auto Encoder for Distribution Estimation, which improves upon the idea of NADE in a

different way. In this case, we use an autoencoder to achieve the same effect as NADE. So you

1444

have , , , you have , , , so on and so forth till the last𝑥
1

𝑥
2

𝑥
3

𝑥
4

𝑝(𝑥
1
) 𝑝(𝑥

2
| 𝑥

<2
) 𝑝(𝑥

3
| 𝑥

<3
)

random variable.

So how do we adapt NADE to this kind of architecture? There is an interesting methodology for

this. Firstly, you give an order to each of your input nodes and your output nodes. In this case,

we will keep it simple and say 1234 and 1234.

(Refer Slide Time: 07:48)

Once you do this, you also give an ordering for each hidden layers nodes. However, each hidden

layers nodes should get an ordering less than ‘n’. So, for example, in this hidden layer, n is 4. So

this means each node should get a number 1, 2 or 3. It has to be less than 4. Similarly, in the next

hidden layer, also each node gets a random number between 1, 2, and 3. It has to be less than 4.

Why do we do this? What do we do with this? Let us see that now.

1445

(Refer Slide Time: 08:22)

So, now, we do retain weights that connect node number ‘i’ to ‘j’, such that for all hidden𝑖 ≤ 𝑗

layers. What do we mean here? If you have a hidden node 1, it should be connected to an input

node less than or equal to 1, which means only 1 will connect to 1. So, the second node is 3. It

will be connected by 1, 2 and 3. Similarly, the hidden node labelled with 2 will be connected

with 1 and 1 and 2, so on and so forth.

(Refer Slide Time: 09:07)

1446

So we retain only those weights and discard all other weights of those layers. We also do this for

the last layer, where we only retain weights that connect node ‘i’ in output such that𝑝(𝑥
𝑖
 | 𝑥

<𝑗
)

‘i’ is less than ‘j’. So, if you have 2, you only connect that with 1. Similarly, 3 is connected with

all 1s and 2s, so on and so forth.

(Refer Slide Time: 09:38)

And once again, you eliminate all other weights. What did we achieve through this process?

(Refer Slide Time: 09:46)

1447

We ensured that if you had , all the other random variables less than that value ‘i’𝑝 (𝑥
𝑖
 | 𝑥

<𝑖
)

depends only on inputs less than . So this procedure ensured that if you had . You𝑥
𝑖

𝑝(𝑥
2
 | 𝑥

<2
)

notice the blue arrows that it is connected to only nodes labelled 1. It is not connected to even a

node with label 2, which was our goal in the first place, ensuring that only input influences𝑥
1

, given all the other random variables less than 2.𝑝(𝑥
2
)

(Refer Slide Time: 10:32)

Similarly, you can say it for , which depends only on all nodes labelled 1 and 2.𝑝(𝑥
3
 | 𝑥

<3
)

1448

(Refer Slide Time: 10:38)

And for , which depends on nodes labelled 1, 2, and 3.𝑝(𝑥
4
 | 𝑥

<4
)

(Refer Slide Time: 10:45)

In the end, the autoencoder has only a few weights saved, and it appears when you implement

that you have a full autoencoder. Still, you use a mask only to retain a certain set of weights and

discard the other set of weights while forward propagating or doing backpropagation. That gives

you MADE, and through this process. At the same time, you train this network. You are

1449

automatically learning each of these functions, your , , and so on, which𝑝(𝑥
1
 | 𝑥

<1
) 𝑝(𝑥

2
 | 𝑥

<2
)

together gives us the real density function of the given data.

(Refer Slide Time: 11:29)

Another class of models for Autoregression are known as PixelCNNs. These were developed in

NeurIPS 2016. Given an image, our overall idea would be to send it through a CNN without

disturbing the shape and get a pixel-wise softmax distribution to generate the same data. But the

way we are going to do it is to introduce a pixel masking filter to say which pixels should be

used to predict the value at a specific pixel in the output.

For example, to predict a specific pixel here, you may not need all the pixels to predict the pixel

value at one specific location. You may only need a certain set of pixels in that neighbourhood

around the pixel you are predicting. That is the idea for pixel CNNs. It is very fast to compute.

As you can see, it is not a very complex procedure. However, pixel CNNs may not make use of

the full context.

For example, pixel masking is done to predict a particular pixel. It may look at a set of pixel

values that occurred before its presence. So, in this case, if you are trying to predict this red pixel

here, you may be using all these blue pixels, which is a sense of a local context. But it is also

missing the other pixels in this region, which also form a local context. So it could lose some

information, while generation, although it is extremely fast to compute.

1450

(Refer Slide Time: 13:18)

A variant of this by the same authors, which came in ICML 2016, is known as pixelRNNs and

pixelRNNs have a very similar idea. However, the generation is done using LSTMs instead of

CNNs. It is an autoregressive model, where images are generated pixel by pixel. Each pixel

depends on previous pixels based on a directed graph. So you have the overall joint distribution

given by, i is equal to 1 to , assuming an image, probability of given all the other𝑝(𝑥) 𝑛2 𝑛 * 𝑛 𝑥
𝑖

pixels until that particular pixel.

So you can see here that for any specific pixel, you look at all the other pixels that came before it

to influence the generation of the value at that pixel for any specific pixel. So these dependencies

between pixels are modelled using LSTMs. That is why the name pixelRNN. The learning is

very similar to other models that we have seen in this lecture, maximising the likelihood of using

gradient descent.

The likelihood is tractable because we are using an LSTM. We know how it works. We just have

to structure it accordingly. An LSTM is trained the same way that we saw LSTMs earlier. The

image generation in pixelRNNs can be slow because you have to use an LSTM to generate each

pixels value. Unlike GANs, where the entire image is generated in one shot.

1451

PixelRNNs can also be considered as an example of a fully visible model. There are no latent

variables. pixelCNN is also an example of that. For that matter, most Autoregressive models turn

out to be fully visible models, where you do not model any latents per se as part of the method.

(Refer Slide Time: 15:31)

Let us look at how the method works. The PixelRNN has two variants; one is known as a Row

LSTM, where each LSTM generates an entire row of pixels at a time.

(Refer Slide Time: 15:52)

1452

So when you have to generate a specific row ‘t’, let us see how to generate one specific value in

that row ‘t’, which would be the output of a one-time step of the LSTM to generate that

particular row. Where should the LSTM look? How should the LSTM operate to generate a

particular pixel ‘i’? We consider the set of pixels before that pixel in that row to be and the𝐾𝑖𝑠

pixels just above that row in the immediate neighbourhood of ‘i’ to be .𝐾𝑠𝑠

They both become hidden state contexts, very similar to LSTM to generate the current pixel. So

you would have the hidden states and cell states to be given by some weight

, a sigmoid that will give you all your different gates. The rest of it is very𝐾𝑠𝑠 * ℎ
𝑖−1

+ 𝐾𝑖𝑠 * 𝑥
𝑖

similar to how an LSTM operates. So your inputs are based on you and . Those are the𝐾𝑖𝑠 𝐾𝑠𝑠

values you get to generate ‘i’.

One could look at this as if you are generating a particular pixel, say the red pixel. You get the

context from the previous pixel in the same row and the top 3 pixels in the previous row.

However, those top 3 pixels received inputs from the 5 pixels in the previous row. Hence, you

could look at this red pixel that you generate to have a triangular context in its generation.

When you look at this model, it will be far slower than pixel CNNs because of its approach to

generation.

(Refer Slide Time: 17:52)

1453

Another variant that was proposed in PixelRNNs is known as the Diagonal BiLSTM. In

Diagonal BiLSTM, the approach is similar to what is known as a Bidirectional RNN. A

Bidirectional RNN is an RNN where, if you had your traditional RNN to be this way, let us

assume three timesteps. A bidirectional RNN is where your inputs are , , and the outputs𝑥
0

𝑥
1

𝑥
2

are , , . We know from a standard Vanilla RNN that influences , and influence𝑦
0

𝑦
1

𝑦
2

𝑥
0

𝑦
0

𝑥
0

𝑥
1

, , , and influence .𝑦
1

𝑥
0

𝑥
1

𝑥
2

𝑦
2

That is your standard RNN. In a bidirectional RNN, you also go the reverse way. All these

arrows can also operate reversely, which means you can reverse the entire RNN. You can now

say is generated based only on , is generated based on and , and is based on ,𝑦
2

𝑥
2

𝑦
1

𝑥
1

𝑥
2

𝑦
0

𝑥
0

, and altogether.𝑥
1

𝑥
2

How do you learn such an RNN? You will learn the weights in both directions. You would get

two different sets of outputs , , and . You can average those outputs, which may give you𝑦
0

𝑦
1

𝑦
2

a better sense of what your output should be, especially when the direction in the sequence may

not matter when there could be context from both directions. So that is the idea used in the

diagonal BiLSTM variant of Pixel RNNs.

(Refer Slide Time: 19:46)

1454

In this case, the image is filled diagonal-wise. So you can see here that each diagonal is filled at a

time and when you fill one pixel at that particular location.

1455

(Refer Slide Time: 19:57)

(Refer Slide Time: 20:00)

Those are the values that are given us context to fill that ‘i’. In turn, these 2 pixels are denoted in

blue squares dependent on the previous pixels, so all of them would eventually influence the

generation of the value at this pixel ‘i’.

1456

(Refer Slide Time: 20:20)

We now repeat this process for the diagonal from the other side, very similar to a Bidirectional

RNN. So now, let us see if you had to generate this particular pixel ‘i’ here. What are the pixels

We would consider?

(Refer Slide Time: 20:35)

You would say the immediate neighbours, which means the pixel on top and the pixel to the

right.

1457

(Refer Slide Time: 20:42)

Unfortunately, you cannot use the pixel to the right. It has not been generated yet, according to

rasterization of the image. When we say rasterization, we mean this exact pattern involved in

generating an image, first row, then the second row, third row, and so on. So you cannot use this

pixel. So how do we overcome this?

(Refer Slide Time: 21:06)

So in a Diagonal BiLSTM approach, when you come from the other diagonal, you use these top

2 pixels as the context to generate this particular pixel ‘i’. That is the only change that occurs.

1458

(Refer Slide Time: 21:20)

You now combine the context you get from both of these and then get your generation at the

value ‘i’, which we talked about for a Bidirectional RNN. So now you can look at this pixel, the

red pixel in the middle, using the complete context from both directions. So to generate the red

pixel, you consider all the dark blue pixels that come from 1st diagonal and these light blue

pixels that you populate from the other direction, which give us the complete context. Once

again, here, you can see that these would be slower than pixel CNNs.

1459

(Refer Slide Time: 22:07)

So your homework for this lecture is a very nice blog on “Flow-Based Deep Generative models”

by Lilian Weng. Please do read it. If you are interested in knowing each of these methods, please

read the respective papers linked here. There are also newer methods, such as Glow for

Normalizing flows, which are also covered in this blog if you would like to know more.

(Refer Slide Time: 22:32)

And here are the references.

1460

