
Deep Learning for Computer Vision
Professor Vineeth N Balasubramanian

Department of Computer Science and Engineering
Indian Institute of Technology, Hyderabad

Lecture 66
Beyond VAEs and GANs:

Other Methods for Deep Generative Methods - 01

(Refer Slide Time: 00:15)

Although VAEs and GANs are the most popular kinds of Deep Generative models, other

methods have also been successful over the last few years. Let us see a few of them in the last

lecture for this week.

1419

(Refer Slide Time: 00:34)

These models are generally known broadly as Flow-based models. How do they differ from

GANs and VAEs? There is a significant difference between them and GANs and VAEs. Both

GANs and VAEs do not explicitly learn the probability density function of the real data. In the

case of GANs, we already saw that the density estimation is implicit. You do not explicitly

assign a probability density function and try to estimate it in a GAN.

In the case of VAEs, we get an approximate density estimation by optimizing your evidence

lower bound using variational inference. In both cases, you do not get the exact density function.

However, the exact PDF of your real data may be useful for many tasks, such as missing𝑝(𝑥)

values, sampling data, or even identifying bias in data distributions. Knowing the density

function could be handy for these kinds of tasks.

So, the methods that we will discuss in this lecture are methods that estimate the real density of

the provided training data. These can be categorized into two different kinds: Normalizing Flows

and Autoregressive Methods or Autoregressive Flows.

1420

(Refer Slide Time: 02:13)

Let us start with normalizing flows. Recall that in the first lecture for this week, we tried to ask

this question, that if we had a dataset of N data points coming from an underlying distribution 𝑝
𝐷

(x), we wanted to find a belonging to a family of distributions M in such a way that theθ

distance between and is minimized by that choice of parameterization in M. We also noted𝑝
θ

𝑝
𝐷

at that time, that if the distance here was replaced by KL-divergence, this turns out to become a

maximum likelihood estimation problem, or by minimizing the negative log-likelihood. Why is

this important?

All methods that we have covered so far while training neural networks can be looked at to

minimise negative log-likelihood. Whether training a neural network using mean squared error

or training a neural network or an LSTM using cross-entropy loss for a classification problem,

one can show that both of these finally amounts to minimizing the negative log-likelihood.

So we are now saying that we could use a similar approach even in an unsupervised learning

setting. Where do we go from here?

1421

(Refer Slide Time: 03:54)

So what Flow-Based models trying to do here is if you could look at GAN as a discriminator and

the generator, where the discriminator is the one that distinguishes between real and fake data.

The generator takes you from a latent to a generated image , which is then provided as input to𝑥𝑃

the discriminator along with the real data x. Similarly, VAE is an encoder-decoder model, where

the encoder captures the approximate posterior q parameterized by parameters , which are theϕ

weights of the encoder.

Similarly, the decoder captures , where are the parameters of the decoder. So, in this𝑝
θ
(𝑥 | 𝑧) θ

case, it is an approximate density estimation, as we just mentioned. In flow-based generative

models, we do what should have been obvious but not very simple. Given x, find the function f

to get us a latent representation, which if we invert, we get back or the reconstruction.𝑥𝑃

So, the challenge here is how do you find these functions f, which are exactly invertible to get

back your original data? That is the challenge.

1422

(Refer Slide Time: 05:27)

So, the first class of Normalizing Flows methods is to identify a transformation f, which takes

you from Z to X.

(Refer Slide Time: 05:43)

If you recall, Z is once again the latent very similar to VAE. The main difference between VAE

and Flow-based models is in VAE, the encoder captures an approximate posterior with the

different parameterization, and the decoder captures itself. So, we know that is an𝑝
θ

𝑞
ϕ

1423

approximation of the true posterior , whereas, in flow-based models, the functions are𝑝
θ
(𝑧 | 𝑥)

an exact inverse.

(Refer Slide Time: 06:16)

So here, we identify a transformation f that goes from Z to X. The transformation is a series of𝑓

differentiable bijective functions in such a way that x can be written as ,(𝑓
1
, 𝑓

2
,.... 𝑓

𝐾
) 𝑓(𝑧)

which in turn can be written as , composition, , composition, so on and so forth until𝑓
𝐾

𝑓
𝐾−1

. Conversely, z can be written as , which in turn can be written as composition,𝑓
1
(𝑧) 𝑓−1(𝑥) 𝑓

1
−1

, so on and so forth, till the final composition, .𝑓
2

−1 𝑓
𝐾

−1(𝑥)

Diagrammatically given a latent variable z, which could be a Gaussian, very similar to GANs,

you pass this vector input vector sampled from z through a neural network. At this point, we will

just call it a function, which outputs , which goes through , and so on, till , which we𝑧
1

𝑓
2

𝑓
𝐾

finally expect to output the original data distribution that x comes from.

1424

(Refer Slide Time: 07:43)

Let us see this in more detail before going to the implementation. For any invertible function f

from Z to X, using change of variables of probability density functions, we can write as𝑝
𝑋

(𝑥)

into the determinant of . Why? It is not difficult to show it; if z belongs to𝑝
𝑍
(𝑧) ∂𝑓−1(𝑥)/∂𝑥

distribution, is a random variable, and x is equal to such that f is invertible.π(𝑧) 𝑓(𝑧)

So, z would be given as . From the definition of the probability distribution, we have𝑓−1(𝑥)

integral is equal to 1. It would also be integral is equal to 1. So from this equality,𝑝(𝑥)𝑑𝑥 π(𝑧)𝑑𝑧

we can say that can be given as into the gradient of , the absolute value. But𝑝(𝑥) π(𝑧) 𝑑𝑧 / 𝑑𝑥

we already know that z is , so we will put that here. We would have into the𝑓−1(𝑥) π (𝑓−1(𝑥))

gradient of , which we are writing as to into where prime here𝑓−1(𝑥)/𝑑𝑥 π(𝑓−1(𝑥)) (𝑓−1)'(𝑥)

stands for the gradient.

In vector form, this would be is equal to into a determinant of , or𝑝(𝑥) π(𝑧) 𝑑𝑧 / 𝑑𝑥 π(𝑓−1(𝑥))

into determinant, , which is what we wrote here in the first place.𝑑𝑓−1(𝑥)/𝑑𝑥

1425

(Refer Slide Time: 09:42)

If we took the same expression here, and if we expanded it and applied log on both sides, we

would then get , which is the log-likelihood of the density that we are looking for𝑙𝑜𝑔 𝑝
𝑋

(𝑥)

would now become the log-likelihood of z plus summation going from equal to 1 to ,𝑝
𝑋

(𝑥) 𝑖 𝐾

log of the determinant of . How did this come? This came by substituting with a∂𝑓
𝑖
−1/ ∂𝑧

𝑖
𝑓

composition of functions, through , the composition while taking log becomes a𝑓
1

𝑓
𝐾

summation. That is how we got this expression here.

So the intuition of these two terms in estimating the log-likelihood of the probability density

function is the first term here that can be looked at as the transformation moulds the density

into , that is what it would like to do. The second term here quantifies the relative𝑝
𝑍
(𝑧) 𝑝

𝑋
(𝑥)

change of volume of a small neighbourhood around . Remember that is what gradient𝑑𝑧 𝑧

measures. That is what determinant would also measure. You can look at it as capturing the

volume of the space that you are trying to measure.

1426

(Refer Slide Time: 11:18)

Here is an illustration to understand how normalizing flows work. Assuming that you sample

from a Gaussian initially, which is you apply a function get , then you would apply𝑧
𝑜

𝑓
1

𝑧
1

another function, so on and so forth, till you get , . Finally, you keep applying many𝑧
𝑖−1

𝑧
𝑖

functions until you get when the probability density function transforms this way, which is the𝑧
𝐾

density function of x that we are looking at.

(Refer Slide Time: 11:52)

1427

Why did we say we want a differentiable bijective function? Why should each of the f's be a

differentiable bijective function? It should be fairly straightforward. We already saw how the

inverse was being used. But let us define it more formally. Such a bijective function, the way we

are using it, is called a Diffeomorphism. Diffeomorphic functions are composable, which means

given two transformations and , the composition is also invertible and differentiable, which𝑓
1

𝑓
2

is very important when working with neural networks. So any complex transformation from a

Gaussian to a complex probability density function of the real-world data can be modelled by

composing multiple instances of simple transformations.

What do we need for normalizing flows? We want the transformation function to be

differentiable, so that should give us the answer. If each of those functions that take you from z

to x is a layer of a neural network, or an LSTM, or a set of layers of a neural network, they are

differentiable, and we have met the first prerequisite. The second is that the function must be

easily invertible.

How do we do this? We will see in a moment, and the last is the determinant of the Jacobian

should be easy to compute, why because that is 1 of the terms in your loss function, and you

want that to be easy to compute so that you can train the entire network using gradient descent.

(Refer Slide Time: 13:46)

1428

Let us see one of the earliest efforts in implementing Normalizing flows. This is known as NICE

Non-Linear Independent Components Estimation. This work was published in 2015 by Lauren

Dinh et al. The idea here is to introduce known as Reversible Coupling layers. Let us see what

those transformations are. So the coupling layer operation used was was the same as . So if𝑦
1

𝑥
1

, are the different dimensions of the data x. , so on and so forth, are the different𝑥
1

𝑥
2

𝑦
1

𝑦
2

dimensions that you're trying to generate, which you would like to match x in principle.

So is equal to , is given by some function . So you can see here pictorially𝑦
1

𝑥
1

𝑦
2

𝑔(𝑥
2
; 𝑚(𝑥

1
))

is given by function g, which is applied on and . Note that in this particular𝑦
2

𝑥
2

𝑚(𝑥
1
)

formulation, does not depend on , but depends on . In this case, the Jacobean will be a𝑦
1

𝑥
2

𝑦
2

𝑥
1

lower triangular matrix. Why do you say so? Because does not depend on . So, all these𝑦
1

𝑥
2

upper triangular elements of the Jacobean matrix would become 0’s.

Let us take a moment to recall a Jacobean matrix. A Jacobean matrix is the matrix of all partial

derivatives. So, if you had an output vector y, which contains to , and if you had an input𝑦
1

𝑦
𝐾

vector x, which was , to , all the pairwise gradients, , , , so on𝑥
1

𝑥
𝑑

∂𝑦
1
/ ∂𝑥

1
∂𝑦

2
/ ∂𝑥

1
∂𝑦

3
/ ∂𝑥

1

and so forth, till .∂𝑦
𝐾

/ ∂𝑥
1

And similarly, , so on and so forth will form the rows and the columns of the∂𝑦
1
/ ∂𝑥

2
∂𝑦

1
/ ∂𝑥

3

Jacobean matrix. So, it is a matrix of first partial derivatives between a vector and a vector. So, in

this case, you can see that all the upper triangular elements, because of the construction of the

operation, would depend on , but would not depend on or anything till .𝑦
2

𝑥
1

𝑦
1

𝑥
2

𝑥
3

𝑥
𝑑

Similarly, would depend on and , but not on , to , which means all those upper𝑦
2

𝑥
1

𝑥
2

𝑥
3

𝑥
𝑑

triangle elements here would become 0.

You will be left with a lower triangular matrix, and the determinant of a lower triangular matrix

is simply the product of the diagonal elements. So, the determinant becomes easy to compute in

this construction. What would the inverse mappings be? The inverse mappings would be 𝑥
1

1429

would be. Of course, would be and which would be the inverse operation in this𝑥
2

𝑔−1(𝑦
2
)

particular case.

1430

(Refer Slide Time: 17:27)

In case you would like all data to be considered, so, in the previous construction,

(Refer Slide Time: 17:33)

We considered that could depend on , but cannot depend on .𝑦
2

𝑥
1

𝑦
1

𝑥
2

(Refer Slide Time: 17:42)

1431

If we want all the output elements to depend on all the input elements, it can be done, but you

may have to flip the inputs after each layer. So that way, in the next iteration, next function,

remember it is a series of layers or composition of functions, you can have dependent on ,𝑦
1

𝑥
2

and you can continue this process to ensure that all the output variables depend on all the input

variables.

(Refer Slide Time: 18:13)

So, you can now write this as Additive Coupling Operations also. In additive coupling

operations, you can say that is equal to and is equal to plus . So, in this𝑦
1

𝑥
1

𝑦
2

𝑥
2

𝑚(𝑥
1
)

1432

particular case, it is not a function. Still, you just have is equal to plus . The inverse𝑦
2

𝑥
2

𝑚(𝑥
1
)

operation here would be is equal to itself, and is equal to minus . In such𝑥
1

𝑦
1

𝑥
2

𝑦
2

𝑚(𝑦
1
)

construction in an additive coupling layer in the previous case, you had a g function here. Still, in

the additive coupling layer, the Jacobian determinant will always be 1.

Why do you say so? You can look at the two equations and give the answer; because it is

additive coupling, you would have will be 1, will also be one because the∂𝑦
1
/∂𝑥

1
∂𝑦

2
/∂𝑥

2

second term here is additive and does not depend on . So, all those diagonal elements of𝑥
2

Jacobian, what are the diagonal elements in your Jacobian matrix? You would have ,∂𝑦
1
/∂𝑥

1

, so on and so forth till . For the moment, let us assume both are the same∂𝑦
2
/∂𝑥

2
∂𝑦

𝐾
/∂𝑥

𝐾

dimensions.

If you look at these equations, all these values will be 1 product of the diagonal elements will be

1. The Jacobian determinant will be one; this is called a volume-preserving operation.

(Refer Slide Time: 20:05)

Remember, we said, the Jacobian determinant is an estimate of how much the volume changes.

For example, if you have a random variable x, which has a certain density, say between 0 and 1,

in this case, a uniform density.

1433

If you add another random variable, say z, which goes from say 0 to 3. If its volume was like

this, you can see that the gradient would give you an answer to be 3. So for every 1 unit that you

move in x, you will move three units in z. So this tells you that the volume between x and the

PDF of z triples. The determinant of the gradient, , also gives you the answer 3, which∂𝑧 / ∂𝑥

intuitively tells you how much is the volume changing in the new PDF.

So, when the Jacobian determinant is always 1, you have an additive coupling layer. It is a

volume-preserving operation. So, in this case, the log-likelihood becomes very simple. You

simply have the determinant of the Jacobian term is always 1. So that term would disappear, and

you would have the log-likelihood of be the log-likelihood of itself.𝑝
𝑋

𝑝
𝑌

(Refer Slide Time: 21:31)

An improvement over NICE was another normalizing flow method, a popular one known as Real

NVP, Real-Valued Non-Volume Preserving Normalizing Flow. As the name states, it is

non-volume preserving. So we have to do something beyond additive coupling. What do we do?

We have an affine coupling operation. What does the affine coupling operation do? We say 𝑦
1

equals , and equals into this Hadamard product, which says it is an element-wise𝑥
1

𝑦
2

𝑥
2

product, so is a vector.𝑥
2

1434

And the second term here is also a vector, and it is an element-wise product into an exponent of

plus . So there is a translation component, and there is a scale component, which𝑠(𝑥
1
) 𝑡(𝑥

1
)

together becomes an affine transformation. The Jacobian of such a transformation would be, it

would still be a lower triangular matrix because does not depend on , , so on and so forth.𝑦
1

𝑥
2

𝑥
3

Similarly, does not depend on , , and so forth.𝑦
2

𝑥
3

𝑥
4

So the Jacobian will have the upper triangular entries to be 0. You would then have in the lower

triangle entries, . The diagonal entry, in this case, would be because∂𝑦
2
/∂𝑥

1
𝑑𝑖𝑎𝑔(𝑒𝑥𝑝[𝑠(𝑥

1
)])

that is what the differentiation of will be. In this case, the Jacobian need not be one, and∂𝑦
2
/∂𝑥

2

hence, the transformation may not be volume-preserving, which perhaps is more likely in

real-world data.

For example, if we gave z, the random variable that we considered for normalizing flow to be a

unit Gaussian, expecting that any real-world data distribution will also have the same volume as

that unit Gaussian may not be a correct assumption. So in that sense, real NVP is more realistic.

The inverse operation, what would it be here, would be , equality, would be minus𝑥
1

𝑦
1

𝑥
2

𝑦
2

into an exponent of minus .𝑡(𝑦
1
) 𝑠(𝑦

1
)

Remember this exponential function. When you go to the other side, it becomes an inverse

exponential function, which this term denotes.

(Refer Slide Time: 24:11)

1435

Figuratively speaking, this is how a real NVP affine coupling would look like. So you have your

depends on , and depends only on . How does depend on and ? A𝑦
2

𝑥
1
, 𝑥

2
𝑦

1
𝑥

1
𝑦

2
𝑥

1
𝑥

2

translation and a scale component. The inverse looks something like in subfigure b. would𝑥
2

depend on a scale and a translation component from and the contribution from . So how are𝑦
1

𝑦
2

all of these networks train?

So the rest of it should work like any other neural network, so it is about maximizing the

likelihood. You can use standard error functions like mean squared error, cross-entropy to learn

the networks depending on what you are trying to reconstruct the output of each of these

networks. And each layer corresponds to one of these functions that you are trying to model.

(Refer Slide Time: 25:15)

1436

For example, is equal to , would be one of the layers of the neural network. The second𝑦
1

𝑥
1

layer would be this, where the scale and the translation are learned by the neural network, so on

and so forth. That is how the network learns.

1437

(Refer Slide Time: 25:29)

(Refer Slide Time: 25:29)

1438

