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(Refer Slide Time: 00:15)

Having discussed GANs and VAEs so far, let us not talk about methods that have attempted to

combine GANs and VAEs in a single framework.
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(Refer Slide Time: 00:31)

Before we go there, let us try to recall the questions we left behind in the last lecture. One of the

questions was, why does the encoder of a VAE map to a vector of means and standard

deviations? Why does it not map to a vector of means and an entire covariance matrix? I hope

you had a chance to think about it. In this case, by design, we are explicitly learning a set of

independent Gaussians.

That is the reason you only need standard deviations per each dimension of the Gaussian. We are

not going to go with learning an entire covariance matrix. Technically speaking, it is possible

also to learn a complete covariance matrix, but that does complicate how VAE learns.

Importantly, this approach works, and it is easy to learn, relatively speaking, and compared to a

complete covariance matrix. And that is the reason we went ahead with that choice.
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What about the decoder? If we assumed a Mean Squared Error for the reconstruction loss, if you

recall, VAE had two terms in its objective function: reconstruction loss, which is about

maximizing one of a conditional probability and then a KL divergence term. If we used a mean

square error for the reconstruction loss, what would be the covariance of , assuming it is𝑝 (𝑥 | 𝑧)

a Gaussian. If you thought carefully about this, this particular case of assuming a mean squared

error would be equivalent to modelling as a Gaussian with identity covariance.𝑝 (𝑥 | 𝑧)

In which case, you only need to learn the means; the standard deviations are given to be one. So,

the decoder output would be the mean alone, and identical variance would be a given. So, in this

case, the reconstruction loss would become , where t is, say, each dimension. If−  𝑙𝑜𝑔 𝑝(𝑥
𝑖
 | 𝑡

𝑖
)

you expand the Gaussian formula in this particular case, you will notice that because you have an

identity matrix as a covariance matrix.

Minimizing this negative log-likelihood term simplifies minimizing the mean square error. Inside

this, the first term here would become a constant. It does not depend on the minimization term

minus log and exponential are inverse operations. You will be left only with this mean square

error term. So, using the mean square for the reconstruction loss in a VAE is equivalent to

assuming that your distribution is a multivariate Gaussian but with an identity𝑝 (𝑥 | 𝑧)

covariance matrix.
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Let us try to look at the positives and negatives of VAEs and GANs before we discuss methods

that combine them. In VAEs, the biggest positive is learning a very strong inference mechanism

or machine by mapping data to a latent space with the distribution of choice with a fast, effective

inference step. The negative, however, is because of the use of KL divergence, VAEs tend to

distribute the probability mass diffusely over the data space may not cover the entire space,

which is one reason for VAEs to result in blurry or low-quality image samples.

The other reason is that by sampling from a distribution, there is always an averaging effect that

could also result in blurry generations rather than having sharp image generations from the latent

space of a VAE. On the other hand, GANs do not have an inference step. You do not try to learn

a latent from data. Recall that for GANs, you just give a Gaussian vector this input without

worrying about whether that is the real latent manifold, which captures the data distribution.

You learn a generative model that produces high-quality samples at a good sampling speed. That

is the objective of GAN. The negative is that GAN slacked that inference mechanism, which

could prevent reasoning about data at an abstract level. For example, you cannot look at the

latent variables and attach semantics to each latent variable. For example, you may not be able to

say that the first latent variable corresponds to identity. The second latent variable corresponds to

expression pose, and so on. It is difficult to do with a GAN. Whereas with a VAE, that procedure

is implicit in its design.
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Now, the question that we try to ask is, can we try to combine a VAE, and a GAN, to be able to

get high-quality samples, as well as have an effective inference network to be able to reason at

the level of latent variables. So you see here, that furbished variational autoencoder at training

time, you have an encoder, you learn a latent space, which then feeds into a decoder, and a test

time you sample from that latent space and pass to a decoder.

A GAN has a generator, which competes with the discriminator and a test time, you provide

random noise to the generator, and the generator can generate images. So what we are going to

see whether these two pipelines can be combined in some ways.
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To do that, let us first discuss a few limitations of VAEs in more detail. Recall the VAE objective,

which is given by the conditional distribution, the log-likelihood, and a KL divergence term that

matches the approximate posterior with the prior. If you look at these terms, this can be the first

term that a reconstruction loss can replace. And the second, you can view it as a certain kind of a

prior loss.

The first term is implemented, perhaps through a mean squared error, the second term is

implemented using the same KL divergence. Suppose you look at Mean Squared Error as a

reconstruction loss. Mean squared error is inherently limited by its capabilities. Why is this so?

Mean square error is an L2 distance between two images pixel-wise.

The moment you do that, you are assuming that the reconstruction fidelity or the signal fidelity

in the in our case, the signal is the generated 2d image is independent of spatial or any temporal

relationships across the pixels, which is not true for images, images do have a lot of local spatial

correlation. The element-wise metric of finding a mean square error between every pixel in the

same location does not model human perception of image fidelity and quality.

We will see an example soon. This could also lower the image quality in VAEs. Finally, the same

pixel-based last metric mean squared error does not respect semantic preserving transforms. So

you could have two images, which have the same object, but in one image, it is rotated from the
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other. Semantically, this is still the same image, but pixel-wise, this could result in a huge mean

square error.

(Refer Slide Time: 09:35)

A very nice study in this work known as “Mean Squared Error: Love it, or Leave it ?” shows a

few tangible examples. Here you see an image of Albert Einstein. So you have an image a here,

and you can see images b through i. If you took these images and observed the ones from b to g,

these images are in the first and second row. If you compare them to a, you can see that they

have significant differences.

You can see some images to be very sharp, some images to have a blur, a certain noise, a

significant blur, so on and so forth. But it happens that each of those images from b to g has

almost the same mean square error from the first image a. On the other hand, if you consider

those images from h to i, they all look the same to the human eye. But they all have very high

large mean square error values to the original image. That talks about mean square error as a

metric for capturing the goodness of reconstruction.
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In addition to this, VAEs have a couple of other problems also, by using the KL divergence to

match the approximate posterior to the prior on the latent variables, z. Inherently KL divergence

focuses on encouraging , the approximate posterior in our case, on picking the .𝑞(𝑧) 𝑝(𝑧) 𝑚𝑜𝑑𝑒𝑠

So if you had to be a distribution, something like this, what it tries to do is try to ensure that𝑝(𝑧)

it matches p in these points where there is a high density because that is what would give it a low

KL divergence score between q and p. And by doing that, q may not completely match the entire

distribution of p.
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That could leave spaces or holes in the learned latent space of z, which may result in failing to

capture the data manifold. It could also miss several local regions in the data space, affecting

generalization capability of generating examples out of a VAE. Lastly, even the prior considered

in VAEs could become a limitation. Remember that VAE is required you to assume a certain

functional form of a prior such as a unit Gaussian.

And sometimes, for different kinds of priors, VAEs may be difficult to optimize. You may not get

a closed-form solution. In our case, because we assumed the approximate posterior and the prior

to be Gaussian, the KL divergence term became a closed-form, there was a closed-form

expression for a KL divergence between two Gaussian distributions, which turned out to be

differentiable, which allowed us to use it for training the VAE.

That may not be true for other kinds of priors. And this limits us to choices of priors that can be

used in a VAE. How do you address these limitations of VAEs? That is what we will talk about

by integrating elements of GANs in a VAE to help improve its performance. We will talk about a

couple of seminal methods in this context in this lecture.
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And one of the first efforts here is known as an Adversarial Autoencoder. This illustration on the

left gives the adversarial autoencoder. So on the top row, here is a standard variational

autoencoder. As you can see, x going to z, a latent variable is a sample from that latent space.

You have a decoder that gives you a reconstruction. The bottom part of an adversarial

autoencoder has a discriminator. The discriminator’s job is to not look at images and say whether

they are real or fake.

But to look at the latent space and see whether the latent space came from the real distribution,

the latents corresponding to the real distribution, which you may have got from a GAN, for

instance. The latent code that comes out while learning the VAE. Why do we do this? This has a

very important meaning here. The goal here is to make the VAEs prior match the original prior of

the data distribution.

This is important now because no more are you asking the approximate posterior to match a unit

Gaussian, but you are asking it to match a data prior that is known, which would allow the VAE

to be more powerful in its functioning. So this allows you to render a more continuous learned

latent space, which allows you to capture the data manifold well. Through this process, we are

converting the data distribution to prior distribution.
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And the decoder learns a deep generator model that maps that imposed prior to data distribution.

So instead of using a KL divergence between the approximate posterior and the unit Gaussian,

we now use an adversarial objective to match that approximate posterior to the prior of the data

generating distribution.

(Refer Slide Time: 15:57)

So if you look at the original objective of VAE, we had two terms, the reconstruction term and

the KL Regularizer. Now in an Adversarial Autoencoder, the KL Regularizer is replaced by an

adversarial loss of a discriminator. That is trying to classify the latent code as belonging to the

VAE or belonging to the original data distribution. So in the reconstruction phase, you introduce

a latent variable with a simple prior, you sample z and pass it through a generator. Remember

that we need to introduce a mechanism to ensure is .𝑝
𝐺

𝑝
𝑑𝑎𝑡𝑎
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And in the adversarial autoencoder, this is done by matching the aggregated posterior, the one

from the variational autoencoder, to an arbitrary prior using adversarial objective-based training

that comes from your GANs discriminator objective.

(Refer Slide Time: 17:07)

And by doing so, adversarial autoencoders give a very strong performance. Here is an example

using a model for an adversarial autoencoder and comparing it against the variational

autoencoder on the MNIST dataset. And what you see on top here is where a prior based on a
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spherical 2D Gaussian is used. And the bottom is where the prior is a mixture of 10 2D

Gaussians. And you can see here from the top that the adversarial autoencoder learns a more

continuous latent space, whereas the VAE has many discontinuities in that latent space. And

suppose you look at the bottom image. In that case, the adversarial autoencoder learns a fairly

smooth, multimodal distribution, all those modes along with those different directions, whereas

the VAE still struggles even in that setting.

(Refer Slide Time: 18:11)

This particular work for adversarial autoencoders also showed that you could also use more

complex priors if you choose to. Here is an example of where a latent space of an adversarial

autoencoder was trained on MNIST, with the prior being a Swiss roll distribution, as you see

here. So, you can now sample from this distribution by walking along the axis here in this

particular case. The samples were generated by walking along the Swiss roll axis, passing it to

the VAEs decoder and generating samples.

And you can see here that you have a fair good amount of variety in the generation of samples in

the MNIST dataset by walking along with such a prior. So this entire idea of adversarial

autoencoders replaces the KL divergence term in the objective of a variational autoencoder with

an adversarial learning term. When we say adversarial learning, we mean the loss corresponding

to the discriminator calling an item fake or real.
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And the nice part of this approach is there is no functional form of a prior required; whatever

prior is provided is what q tries to match.
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A second popular method tries to look at the objective of a VAE from the other perspective. So

while adversarial autoencoders replaced the KL divergence term with an adversarial objective.

VAE-GANs try to replace the reconstruction loss with a different term, what do they replace it

with? Instead of a pixel-wise mean square error, VAE-GANs replace it as a feature-wise distance

in the discriminator’s representation space between outputs that come from a VAE and original

data.

This approach combines the advantage of GAN as a high-quality generator model and VAE as a

method that can produce an encoding of data into a latent space and then further reasoning at the

latent space level.
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So the loss formulation in this particular case is based on representations of the discriminator.

Remember, the discriminator is yet another neural network. So you can take a certain layer of the

discriminator given by , which denotes the layer of the discriminator. Let us assume that𝐷𝑖𝑠
𝑙

𝑙𝑡ℎ

the output of that discriminators layer is given by , which are the feature𝑙𝑡ℎ 𝐷𝑖𝑠
𝑙
(𝑥)

representations that we are going to compare between a VAEs generated output and real data

input.

So, is assumed to be a Gaussian distribution, where is an output of the decoder𝑝 (𝐷𝑖𝑠
𝑙
(𝑥) | 𝑧) 𝑥

~

obtained using a VAE. So, the first loss term is given by , which is the first term𝐿
𝐷𝑖𝑠

𝑙

𝑟𝑒𝑐𝑜𝑛−𝑐𝑜𝑛𝑡𝑒𝑛𝑡

of your VAE objective given by the expectation of samples coming from the approximate

posterior, , which is very close to the first term that we had in the VAE𝑙𝑜𝑔 𝑝 (𝐷𝑖𝑠
𝑙
(𝑥) | 𝑧)

objective.

The second term comes from a GAN-based objective , . So if the data𝐿𝐺𝐴𝑁
𝑟𝑒𝑐𝑜𝑛−𝑠𝑡𝑦𝑙𝑒

𝑙𝑜𝑔 𝐷𝑖𝑠 (𝑥)

comes from the real distribution, which is x, the GAN or the discriminator tries to maximize

and . So, z is latent that comes from the VAEs latent𝑙𝑜𝑔 𝐷𝑖𝑠 (𝑥) 𝑙𝑜𝑔 (1 −  𝐷𝑖𝑠 (𝐺𝑒𝑛(𝑧)))
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space. Finally, you have your prior loss, which tries to match the approximate posterior to the

.𝑝(𝑧)

Recall the main difference now is that the first term is based on the features of the discriminator.

So the total loss is given by the addition of these three losses.

(Refer Slide Time: 23:03)

So the overall training algorithm for the VAE-GAN is given. You sample a mini-batch of

samples from your training dataset. You get an encoding of X using the encoder in a variational

autoencoder. You have your prior loss, which tries to match the approximate posterior obtained

through your encoder part of your VAE with . is obtained through the decoder of the VAE𝑝(𝑍) 𝑋
^

when Z is given as input, Z is a latent variable.

Coming to the discriminator, we already saw that one of the last terms is a minus expectation,

. There is one other component that VAE-GAN adds while training. It improves𝑝(𝐷𝑖𝑠(𝑋) | 𝑍)

the performance and lets the user sample from a unit normal prior which is given as . It is𝑍
𝑝

passed through a decoder to get the reconstruction . In addition to minimizing the likelihood of𝑋
𝑝

fooling the discriminator, the GAN loss also tries to minimize the likelihood of fooling the𝑋
^

𝑋
𝑝

discriminator.

1414



So, that is the loss of the GAN. Finally, the encoder, decoder and discriminator are updated using

the corresponding gradients that affect each output. So obviously, each of those networks only

uses the losses that are relevant for that particular network. So if you observe, you would notice

here that the discriminator loss should not try to minimize the reconstruction content loss, which

is the first term here, as that would collapse the discriminator to give a 0 at all times.

This is very similar to GANs, where we talked about training the discriminator fully initially. As

we just mentioned, the VAE-GAN model also allows using samples , which are obtained from𝑋
𝑝

a unit normal prior. In addition to , which are generated as output of the VAE. Finally, each of𝑋
~

these recon-content and recon-style losses, which are the first two losses, are weighted to control

a tradeoff between reconstruction quality and fooling the discriminator.

(Refer Slide Time: 26:00)

Here are some examples of results. You can see here that when you train a VAE on face images,

you see that there is no complete clarity while you get an overall sense of a face image. In

contrast, the centre of the image has a certain acceptable degree of the face. You can see this as

you go away to the periphery. The clarity keeps dropping down as you keep going away from the

centre. Again, you see that the VAE gives a fairly good performance of obtaining the sharpness

and clarity of the face images.
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While GANs also do a good job, GANs suffer from some artifacts that miss global information.

These are excellent at retaining global information but miss finding sharpness. GANs, on the

other hand, do have local sharpness but at times miss global content and can sometimes place

different parts in different locations. And VAE-GANs bring the best of both worlds together to

generate globally relevant content and keep each of the pixels and each of the local areas sharp in

terms of perception.
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Another thing that you can do with these kinds of models, which was shown with the VAE again,

is conditional generation. In this particular example, in VAE-GANs, the authors concatenated the

face attribute vector. So you could, for example, have these attributes such as the white, fully

visible forehead, mouth closed, male, curly hair, eyes open, pale skin, frowning, pointy nose,

teeth not visible, and no eyewear, for instance.

So this can be represented as an attribute vector. So you can put 0s and 1s for different attributes,

for instance, and that is appended to the vector representation of the input in the encoder-decoder

and discriminator modules while training and this trained model is used to generate faces, which

are conditioned on some held-out test attributes. So, a test time, a new face attribute vector,

which is held-out which was not used before, is concatenated to the input representation, and

now, the model can generate faces that satisfy these requirements in the attributes.

So all these images here are generations of a face conditioned on these attributes. And you see

that for most of them, certain attributes such as the fully visible forehead, white, male, so on and

so forth, are met to a reasonable extent, justifying this kind of an approach. Compared to VAE,

the VAE GAN gives significantly good results for such conditional generation experiments.
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Your homework for this lecture will be to go through this excellent link on “A wizard’s guide to

adversarial autoencoders, Part 1 and Part 2”, as well as an excellent tutorial on VAE-GANs and

a nice video on YouTube on VAE-GANs, if you are interested, go through them.
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