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1
Having discussed GANs and VAEs so far, let us not talk about methods that have attempted to

combine GANs and VAEs in a single framework.
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{;i; Review: Questions
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Questions
o Why does the encoder of a VAE map to a vector of means and a vector of standard
deviations? Why does it not instead map to a vector of means and a covariance matrix?
We are explicitly learning a set of independent*Gaussians, which makes the
learning easier - and of course, it works!
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Before we go there, let us try to recall the questions we left behind in the last lecture. One of the
questions was, why does the encoder of a VAE map to a vector of means and standard
deviations? Why does it not map to a vector of means and an entire covariance matrix? [ hope
you had a chance to think about it. In this case, by design, we are explicitly learning a set of

independent Gaussians.

That is the reason you only need standard deviations per each dimension of the Gaussian. We are
not going to go with learning an entire covariance matrix. Technically speaking, it is possible
also to learn a complete covariance matrix, but that does complicate how VAE learns.
Importantly, this approach works, and it is easy to learn, relatively speaking, and compared to a

complete covariance matrix. And that is the reason we went ahead with that choice.
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° Questions

|I|| o What about the decoder? If we assume a Mean Squared Error for the reconstruction loss,

what is the covariance of the p(z|2) Gaussian?

Equivalent to modeling p(z|z) as Gaussian with identity covariance; in this case,
decoder output is mean y(t) and, therefore, for an example z;, you get the
following reconstruction loss:
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This is MSE!
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What about the decoder? If we assumed a Mean Squared Error for the reconstruction loss, if you
recall, VAE had two terms in its objective function: reconstruction loss, which is about
maximizing one of a conditional probability and then a KL divergence term. If we used a mean
square error for the reconstruction loss, what would be the covariance of p (x | z), assuming it is
a Gaussian. If you thought carefully about this, this particular case of assuming a mean squared

error would be equivalent to modelling p (x | z) as a Gaussian with identity covariance.

In which case, you only need to learn the means; the standard deviations are given to be one. So,
the decoder output would be the mean alone, and identical variance would be a given. So, in this

case, the reconstruction loss would become — log p(xl, | t, ), where t is, say, each dimension. If

you expand the Gaussian formula in this particular case, you will notice that because you have an

identity matrix as a covariance matrix.

Minimizing this negative log-likelihood term simplifies minimizing the mean square error. Inside
this, the first term here would become a constant. It does not depend on the minimization term
minus log and exponential are inverse operations. You will be left only with this mean square
error term. So, using the mean square for the reconstruction loss in a VAE is equivalent to
assuming that your distribution p (x|z) is a multivariate Gaussian but with an identity

covariance matrix.
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|!I| VAE GAN
0 +ve Learns an inference machine by )
mapping data to a latent space with o tve: Eypass inference and learn ,
distribution of choice enabling generative model that produces high
fast /efficient inference quality samples without sacrificing

sampling speed
o -ve Tends to distribute probability mass o
diffusely over data space resulting in o -ve: Lakks an effective inference

blurred/low quality image samples mechanism preventing from reasoning
about data at an abstract level
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Let us try to look at the positives and negatives of VAEs and GANs before we discuss methods
that combine them. In VAEs, the biggest positive is learning a very strong inference mechanism
or machine by mapping data to a latent space with the distribution of choice with a fast, effective
inference step. The negative, however, is because of the use of KL divergence, VAEs tend to
distribute the probability mass diffusely over the data space may not cover the entire space,

which is one reason for VAEs to result in blurry or low-quality image samples.

The other reason is that by sampling from a distribution, there is always an averaging effect that
could also result in blurry generations rather than having sharp image generations from the latent
space of a VAE. On the other hand, GANs do not have an inference step. You do not try to learn
a latent from data. Recall that for GANSs, you just give a Gaussian vector this input without

worrying about whether that is the real latent manifold, which captures the data distribution.

You learn a generative model that produces high-quality samples at a good sampling speed. That
is the objective of GAN. The negative is that GAN slacked that inference mechanism, which
could prevent reasoning about data at an abstract level. For example, you cannot look at the
latent variables and attach semantics to each latent variable. For example, you may not be able to
say that the first latent variable corresponds to identity. The second latent variable corresponds to
expression pose, and so on. It is difficult to do with a GAN. Whereas with a VAE, that procedure

is implicit in its design.
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VAE-GAN \

Now, the question that we try to ask is, can we try to combine a VAE, and a GAN, to be able to
get high-quality samples, as well as have an effective inference network to be able to reason at
the level of latent variables. So you see here, that furbished variational autoencoder at training
time, you have an encoder, you learn a latent space, which then feeds into a decoder, and a test

time you sample from that latent space and pass to a decoder.

A GAN has a generator, which competes with the discriminator and a test time, you provide
random noise to the generator, and the generator can generate images. So what we are going to

see whether these two pipelines can be combined in some ways.
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2y VAE Limitations

TEE T Let's recall the VAE objective: \
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Mean-Squared Error
o Assumes signal fidelity is independent of temporal /spatial relationships — does not hold
for images
o Element-wise metric unable to model human perception of image fidelity and quality —
low image quality
o Pixel-based loss metric does not respect semantic-preserving transforms, e.g.
scaling/translation
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To do that, let us first discuss a few limitations of VAEs in more detail. Recall the VAE objective,
which is given by the conditional distribution, the log-likelihood, and a KL divergence term that
matches the approximate posterior with the prior. If you look at these terms, this can be the first
term that a reconstruction loss can replace. And the second, you can view it as a certain kind of a

prior loss.

The first term is implemented, perhaps through a mean squared error, the second term is
implemented using the same KL divergence. Suppose you look at Mean Squared Error as a
reconstruction loss. Mean squared error is inherently limited by its capabilities. Why is this so?

Mean square error is an L2 distance between two images pixel-wise.

The moment you do that, you are assuming that the reconstruction fidelity or the signal fidelity
in the in our case, the signal is the generated 2d image is independent of spatial or any temporal
relationships across the pixels, which is not true for images, images do have a lot of local spatial
correlation. The element-wise metric of finding a mean square error between every pixel in the

same location does not model human perception of image fidelity and quality.

We will see an example soon. This could also lower the image quality in VAESs. Finally, the same
pixel-based last metric mean squared error does not respect semantic preserving transforms. So

you could have two images, which have the same object, but in one image, it is rotated from the
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other. Semantically, this is still the same image, but pixel-wise, this could result in a huge mean

square Crror.
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o MSE values of all distorted images -
images (b)-(g) relative to (a) - are nearly
identical, even though images are
perceptually different

o Images with small geometrical
modifications - images (h)-(i) - present
large MSE values relative to (a), yet show
negligible change in perceived quality
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Wang and Bovik, Mean Squared Error: Love It or Leave It? IEEE Signal Processing Magazine, 2009
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I1b o

A very nice study in this work known as “Mean Squared Error: Love it, or Leave it ?”” shows a
few tangible examples. Here you see an image of Albert Einstein. So you have an image a here,
and you can see images b through i. If you took these images and observed the ones from b to g,
these images are in the first and second row. If you compare them to a, you can see that they

have significant differences.

You can see some images to be very sharp, some images to have a blur, a certain noise, a
significant blur, so on and so forth. But it happens that each of those images from b to g has
almost the same mean square error from the first image a. On the other hand, if you consider
those images from h to 1, they all look the same to the human eye. But they all have very high
large mean square error values to the original image. That talks about mean square error as a

metric for capturing the goodness of reconstruction.
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In addition to this, VAEs have a couple of other problems also, by using the KL divergence to
match the approximate posterior to the prior on the latent variables, z. Inherently KL divergence
focuses on encouraging q(z), the approximate posterior in our case, on picking the p(z) modes.
So if you had p(z) to be a distribution, something like this, what it tries to do is try to ensure that
it matches p in these points where there is a high density because that is what would give it a low
KL divergence score between q and p. And by doing that, ¢ may not completely match the entire
distribution of p.
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3%} VAE Limitations
N;’TH
KL Divergence

U
“I_Ill o Focused on encouraging ¢(z) to pick modes of p(z) — unable to match ¢(z) to whole
o distribution of p(2) well

o 'Spaces' or 'holes' in learned latent space — may fail to capture data manifold

o May miss saveral local regions in data space — adversely effect generalization capability

Form of Prior
o Requires access to exact functional form of prior

o Difficult to optimize; not computable in closed form always for all priors — limits choice
of priors that can be used

How to address? Integrate with GANSs to use its positives to overcome limitations!
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That could leave spaces or holes in the learned latent space of z, which may result in failing to
capture the data manifold. It could also miss several local regions in the data space, affecting
generalization capability of generating examples out of a VAE. Lastly, even the prior considered
in VAEs could become a limitation. Remember that VAE is required you to assume a certain

functional form of a prior such as a unit Gaussian.

And sometimes, for different kinds of priors, VAEs may be difficult to optimize. You may not get
a closed-form solution. In our case, because we assumed the approximate posterior and the prior
to be Gaussian, the KL divergence term became a closed-form, there was a closed-form
expression for a KL divergence between two Gaussian distributions, which turned out to be

differentiable, which allowed us to use it for training the VAE.

That may not be true for other kinds of priors. And this limits us to choices of priors that can be
used in a VAE. How do you address these limitations of VAEs? That is what we will talk about
by integrating elements of GANs in a VAE to help improve its performance. We will talk about a

couple of seminal methods in this context in this lecture.
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(Top) Standard VAE
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whether a sample arises from hidden code of autoencoder or input imposed prior to data
training distribution distribution
2Makhzani et al, Adversarial Autoencoders, ICLRW 2016
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And one of the first efforts here is known as an Adversarial Autoencoder. This illustration on the
left gives the adversarial autoencoder. So on the top row, here is a standard variational
autoencoder. As you can see, X going to z, a latent variable is a sample from that latent space.
You have a decoder that gives you a reconstruction. The bottom part of an adversarial
autoencoder has a discriminator. The discriminator’s job is to not look at images and say whether

they are real or fake.

But to look at the latent space and see whether the latent space came from the real distribution,
the latents corresponding to the real distribution, which you may have got from a GAN, for
instance. The latent code that comes out while learning the VAE. Why do we do this? This has a
very important meaning here. The goal here is to make the VAEs prior match the original prior of

the data distribution.

This is important now because no more are you asking the approximate posterior to match a unit
Gaussian, but you are asking it to match a data prior that is known, which would allow the VAE
to be more powerful in its functioning. So this allows you to render a more continuous learned
latent space, which allows you to capture the data manifold well. Through this process, we are

converting the data distribution to prior distribution.
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And the decoder learns a deep generator model that maps that imposed prior to data distribution.
So instead of using a KL divergence between the approximate posterior and the unit Gaussian,
we now use an adversarial objective to match that approximate posterior to the prior of the data

generating distribution.

(Refer Slide Time: 15:57)

Training AAE
Objective:
O
(1] £ = E; [Byuje)| - logp(z[2)]] +E [KL(g(2[z) lp(2))]
bt Y 4 : Y &
Reconstruction Error KL Regularizer
Replaced by adversarial loss in AAE >
Reconstruction Phase:
gledt)  z~qCln) p(zf) o Introduce latent variable z with simple
‘ prior p(z) (e.g. Gaussian)
2 ‘ 1§ Sample 2 it through
T Encofer/ GAN Generater Decoder 3 dmpieizieep (Z)’ pass 1t throug]

Generator & = G(z); where & ~ pg

o Introduce mechanism to ensure pa & P
X

Vineeth N B (IIT-H) §10.4 VAE-GAN Hybrids 10/19

So if you look at the original objective of VAE, we had two terms, the reconstruction term and
the KL Regularizer. Now in an Adversarial Autoencoder, the KL Regularizer is replaced by an
adversarial loss of a discriminator. That is trying to classify the latent code as belonging to the
VAE or belonging to the original data distribution. So in the reconstruction phase, you introduce
a latent variable with a simple prior, you sample z and pass it through a generator. Remember

that we need to introduce a mechanism to ensure p c isp data:
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And in the adversarial autoencoder, this is done by matching the aggregated posterior, the one

from the variational autoencoder, to an arbitrary prior using adversarial objective-based training

that comes from your GANSs discriminator objective.
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And by doing so, adversarial autoencoders give a very strong performance. Here is an example
using a model for an adversarial autoencoder and comparing it against the variational

autoencoder on the MNIST dataset. And what you see on top here is where a prior based on a
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spherical 2D Gaussian is used. And the bottom is where the prior is a mixture of 10 2D
Gaussians. And you can see here from the top that the adversarial autoencoder learns a more
continuous latent space, whereas the VAE has many discontinuities in that latent space. And
suppose you look at the bottom image. In that case, the adversarial autoencoder learns a fairly
smooth, multimodal distribution, all those modes along with those different directions, whereas

the VAE still struggles even in that setting.
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o Left: Latent space of AAE trained on MNIST dataset with Swiss roll distribution as prior
p(2)
o Right: Samples generated by walking along the main Swiss roll axis

o For AAE, only require sampling from prior distribution in order to induce\q(:) to match
p(2); exact functional form of prior is not required
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This particular work for adversarial autoencoders also showed that you could also use more
complex priors if you choose to. Here is an example of where a latent space of an adversarial
autoencoder was trained on MNIST, with the prior being a Swiss roll distribution, as you see
here. So, you can now sample from this distribution by walking along the axis here in this
particular case. The samples were generated by walking along the Swiss roll axis, passing it to

the VAEs decoder and generating samples.

And you can see here that you have a fair good amount of variety in the generation of samples in
the MNIST dataset by walking along with such a prior. So this entire idea of adversarial
autoencoders replaces the KL divergence term in the objective of a variational autoencoder with
an adversarial learning term. When we say adversarial learning, we mean the loss corresponding

to the discriminator calling an item fake or real.
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And the nice part of this approach is there is no functional form of a prior required; whatever

prior is provided is what q tries to match.
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Figure 1. Overview of our network. We combine a VAE with a
GAN by collapsing the decoder and the generator into one.

o Replace element-wise MSE in pixel space with feature-wise metric between discriminator's
hidden representations

o Combines advantage of GAN as high-quality generative model and VAExas a method that
produces an encoding of data into latent space z

#Larsen et al, Autoencoding beyond Pixels using a Learned Similarity Metric, ICML 2016
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A second popular method tries to look at the objective of a VAE from the other perspective. So
while adversarial autoencoders replaced the KL divergence term with an adversarial objective.
VAE-GAN:Ss try to replace the reconstruction loss with a different term, what do they replace it
with? Instead of a pixel-wise mean square error, VAE-GANSs replace it as a feature-wise distance
in the discriminator’s representation space between outputs that come from a VAE and original

data.

This approach combines the advantage of GAN as a high-quality generator model and VAE as a
method that can produce an encoding of data into a latent space and then further reasoning at the

latent space level.
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So the loss formulation in this particular case is based on representations of the discriminator.

Remember, the discriminator is yet another neural network. So you can take a certain layer of the

C e . . . th . ..
discriminator given by Dis P which denotes the [ layer of the discriminator. Let us assume that

the output of that discriminators " layer is given by Disl(x), which are the feature

representations that we are going to compare between a VAEs generated output and real data

input.

~

So, p (Disl(x) | z)is assumed to be a Gaussian distribution, where x is an output of the decoder

Dis

obtained using a VAE. So, the first loss term is given by L , which is the first term

recon—content
of your VAE objective given by the expectation of samples coming from the approximate

posterior, log p (Disl(x) | z), which is very close to the first term that we had in the VAE

objective.

The second term comes from a GAN-based objective L log Dis (x). So if the data

recon—style’
comes from the real distribution, which is x, the GAN or the discriminator tries to maximize

log Dis (x) and log (1 — Dis (Gen(z))). So, z is latent that comes from the VAEs latent
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space. Finally, you have your prior loss, which tries to match the approximate posterior to the
p(2).

Recall the main difference now is that the first term is based on the features of the discriminator.

So the total loss is given by the addition of these three losses.
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So the overall training algorithm for the VAE-GAN is given. You sample a mini-batch of
samples from your training dataset. You get an encoding of X using the encoder in a variational

autoencoder. You have your prior loss, which tries to match the approximate posterior obtained

through your encoder part of your VAE with p(Z). X is obtained through the decoder of the VAE

when Z is given as input, Z is a latent variable.

Coming to the discriminator, we already saw that one of the last terms is a minus expectation,
p(Dis(X) | Z). There is one other component that VAE-GAN adds while training. It improves

the performance and lets the user sample from a unit normal prior which is given as Zp. It is

passed through a decoder to get the reconstruction X > In addition to minimizing the likelihood of

X fooling the discriminator, the GAN loss also tries to minimize the likelihood of XP fooling the

discriminator.
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So, that is the loss of the GAN. Finally, the encoder, decoder and discriminator are updated using
the corresponding gradients that affect each output. So obviously, each of those networks only
uses the losses that are relevant for that particular network. So if you observe, you would notice
here that the discriminator loss should not try to minimize the reconstruction content loss, which

is the first term here, as that would collapse the discriminator to give a 0 at all times.

This is very similar to GANs, where we talked about training the discriminator fully initially. As

we just mentioned, the VAE-GAN model also allows using samples X » which are obtained from

a unit normal prior. In addition to X, which are generated as output of the VAE. Finally, each of
these recon-content and recon-style losses, which are the first two losses, are weighted to control

a tradeoff between reconstruction quality and fooling the discriminator.
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Here are some examples of results. You can see here that when you train a VAE on face images,
you see that there is no complete clarity while you get an overall sense of a face image. In
contrast, the centre of the image has a certain acceptable degree of the face. You can see this as
you go away to the periphery. The clarity keeps dropping down as you keep going away from the
centre. Again, you see that the VAE gives a fairly good performance of obtaining the sharpness

and clarity of the face images.
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While GANs also do a good job, GANSs suffer from some artifacts that miss global information.
These are excellent at retaining global information but miss finding sharpness. GANs, on the
other hand, do have local sharpness but at times miss global content and can sometimes place
different parts in different locations. And VAE-GANSs bring the best of both worlds together to
generate globally relevant content and keep each of the pixels and each of the local areas sharp in

terms of perception.
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o Compared to an ordinary VAE, the VAE/GAN
model yields significantly better images visually

Another thing that you can do with these kinds of models, which was shown with the VAE again,
is conditional generation. In this particular example, in VAE-GANS, the authors concatenated the
face attribute vector. So you could, for example, have these attributes such as the white, fully
visible forehead, mouth closed, male, curly hair, eyes open, pale skin, frowning, pointy nose,

teeth not visible, and no eyewear, for instance.

So this can be represented as an attribute vector. So you can put Os and 1s for different attributes,
for instance, and that is appended to the vector representation of the input in the encoder-decoder
and discriminator modules while training and this trained model is used to generate faces, which
are conditioned on some held-out test attributes. So, a test time, a new face attribute vector,
which is held-out which was not used before, is concatenated to the input representation, and

now, the model can generate faces that satisty these requirements in the attributes.

So all these images here are generations of a face conditioned on these attributes. And you see
that for most of them, certain attributes such as the fully visible forehead, white, male, so on and
so forth, are met to a reasonable extent, justifying this kind of an approach. Compared to VAE,

the VAE GAN gives significantly good results for such conditional generation experiments.
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(Refer Slide Time: 29:33)

g?@ Homework

NPTEL

U
|!!|, Readings
o A wizard's guide to Adversarial Autoencoders: Part 1, Autoencoder

<o Awizard's guide to Adversarial Autoencoders: Part 2, Exploring latent space with
Adversarial Autoencoders

o What The Heck Are VAE-GANs?

o (YouTube video) VAE-GAN Explained

€ y,
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Your homework for this lecture will be to go through this excellent link on “A wizard's guide to
adversarial autoencoders, Part 1 and Part 27, as well as an excellent tutorial on VAE-GANSs and

a nice video on YouTube on VAE-GAN:S, if you are interested, go through them.
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