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Let us move on from GANs to another kind of Deep Generative Models called Variational Auto

Encoders, popularly known as VAEs, before we talk about Variational Auto Encoders. Let us

briefly recall autoencoders, which we covered last week.

(Refer Slide Time: 00:34)
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Autoencoders are neural networks used for unsupervised learning, where the network attempts to

reconstruct the input itself as the output. Autoencoders have an architecture such as shown,

where the input is compressed into a bottleneck layer, where a certain representation of the input

is available, which is also called a Latent code, which is then used through a decoder to

reconstruct the output, which we would ideally like to assemble the input itself.

The question we would like to ask in the context of this week's topic is, how can we use such an

approach to generate images automatically? Remember, when we spoke about autoencoders, we

generally discard the decoder once you train an autoencoder. Given an input, we use the encoder

alone to get a low dimensional representation of your data. Let us try to see now if we can

reverse this idea.

At the end of the training, Can we discard the encoder instead of the decoder? Using some

vector as code, we can generate images close to the training data distribution. As you can see, the

goal is close to what GANs were trying to achieve but achieved with a different perspective.

(Refer Slide Time: 02:27)

The idea of variational autoencoders was introduced simultaneously by two groups of

researchers, Kingma and Welling, in a paper “Auto Encoding Variational Bayes” published in

ICLR 2014. Also by Rezende, Mohamed, and Wiestra called “Stochastic Backpropagation and

Variational Inference in Deep Latent Gaussian models”, which was published in ICML 2014.
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(Refer Slide Time: 02:58)

Let us try to understand variational autoencoders now. At the crux of VAEs is about learning

what is known as a latent variable model. In a latent variable model, our objective is to learn a

mapping from some latent random variable z to a possibly complex distribution on x, which we

assume is the real-world training distribution that we would like to generate data similar to.

Mathematically speaking, you would then write is equal to the integral of the joint𝑝(𝑥)

distribution where is equal to into We assume that the prior or the𝑝(𝑥, 𝑧) 𝑝(𝑥, 𝑧) 𝑝(𝑥 | 𝑧) 𝑝(𝑧)

marginal distribution on z, the latent variable, is something simple.

How would you get ? We assume there is some function of an input vector z. So, that𝑝(𝑥 | 𝑧)

would be the simple mathematical construction here. Given training data, assuming here it is

unsupervised learning, so only x. The question that we are asking is can we learn to decouple the

true explanatory factors or the latent variables underlying the data distribution, which is perhaps

generating the data?

For example, in face images, you may want to assume a latent random variable called identity, a

latent random variable called expression. So, if we say person A is happy, you should generate a

facial image of person A in a happy mood. So, in this case, identity and expression would be

latent variables. And those latent variables may assume different values, identity may assume

values of different people like ABC, and expression may assume different values like happy, sad,

angry, so on and so forth.
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And the combination results in the generation of specific kinds of images. So, we are talking

about a latent set of variables, in this case, represented as , , and a function g that takes us𝑧
1

𝑧
2

from this latent space to the original data space. How do we learn such a function g that takes us

from z to x?

(Refer Slide Time: 05:45)

We will assume that we are going to use a neural network to learn such a function that takes us

from z to x. So, this conditional distribution here. So, given a vector z, we ideally should use a

neural network to give us a vector x. The question now remains, where does that come from?

Computing the posterior is intractable because we do not know what z looks like that is𝑝(𝑧 | 𝑥)

not available to us. Unfortunately, we need that to be able to train the G of z model. Without

values of z, we cannot train the model, also. So, how do we get around this problem?𝑔(𝑧)
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(Refer Slide Time: 06:34)

So, as you can see so far variational autoencoders offer a Bayesian spin on an autoencoder. So, if

we assume that our data is generated using this generator process, where z is a set of latent

random variables, which we assume belong to a certain prior distribution, we sample from a true

conditional distribution, which results in x, which is the training data distribution that we see.

The intuition here is, x could be an image, which is generated from some latent attributes, such

as a class label, and orientation, attributes, so on and so forth.

So, we could say that the class label is a person's face, the orientation is in which direction they

are looking, attributes could be the color of the face, the color of the eyes, the color of the hair,

etc. And the problem now for us is, without knowing what these z’s are, we need to estimate the

parameters of this conditional distribution, . The parameters is something that we𝑝(𝑥 | 𝑧) θ

would like to estimate without having access to z. How do we do this is the core idea of VAEs.
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To start this process, let us assume now that there is a prior distribution on the random variable z,

which for convenience, we are going to assume is a unit Gaussian. And the moment you have z,

you can now construct a neural network, which we call the decoder network with certain

parameters theta, which are the weights of those layers in the decoder network.

And the decoder outputs a set of means and variances, which can then be used to sample and get

data similar to x. So, the conditional distribution, is assumed to be a diagonal Gaussian𝑝
θ
(𝑥 | 𝑧)

for simplicity. One could assume a multivariate Gaussian with a certain covariance matrix, but

the procedure gets a bit complex. We will keep it simple as a diagonal Gaussian, whose means

and variances are predicted by the decoder network. Each dimension of that multivariate

Gaussian, the mean and the variance is predicted.
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From Bayes rule, we know that , which is our posterior, is given by into𝑝
θ
(𝑧 | 𝑥) 𝑝

θ
(𝑥 | 𝑧) 𝑝

θ
(𝑧)

by . Now, if we observe the terms on the right-hand side, , we just talked about𝑝
θ
(𝑥 ) 𝑝

θ
(𝑥 | 𝑧)

how you can obtain it. Assume that your z’s are a unit Gaussian and learn a decoder network to

give you the output x. So, that gives you . What about ?𝑝
θ
(𝑥 | 𝑧) 𝑝

θ
(𝑧)

We just said we are going to assume that to be a Gaussian. So, that is an assumption. What about

the denominator ? Unfortunately, that is an intractable integral to find out what distribution𝑝
θ
(𝑥 )

and parameterization of that distribution that x comes from. It is something we do not know at

this time. So, what do we do to get around this? We will now assume that there is some other

distribution .𝑞
ϕ

(𝑧 | 𝑥)

We will now call as an Approximate posterior. So, this is obtained using an encoder network.

What does the encoder network do? It takes in your training data distribution, so that is where

your neural network takes in all the inputs from your training data. It has a set of layers

parameterized by some weights, which we denote as to . It outputs a set of means and variancesϕ

of a multivariate diagonal Gaussian distribution. That is given by the approximate posterior

.𝑞
ϕ

(𝑧 | 𝑥)
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Putting all the pieces together, we have an encoder at the bottom and the decoder on top. The

encoder takes x and gives out a set of means and variances for this approximate posterior

distribution . Once you have the distribution, you can sample a z from that distribution𝑞
ϕ

(𝑧 | 𝑥)

and that sample z is given as input to your decoder network. The decoder network outputs a set

of means and variances corresponding to .𝑝
θ
(𝑥 | 𝑧)

Given these means and variances, you can sample from to get your output images or𝑝
θ
(𝑥 | 𝑧)

reconstructions. We assume that both and are multivariate Gaussians, with a certain mean𝑞
ϕ

𝑝
θ

and a diagonal covariance. Each dimension is independent. Now, how do we train such a

network? Let us try to understand that. We would ideally like to train the decoder network, just

like the normal autoencoder.

So, because it will give us an output x, we would ideally like to use something like a

reconstruction loss, something like a Mean Squared Loss to ensure that this reconstruction here

is as close as possible to x itself. That should be one term of our loss function. What else do we

need to do? We also want to ensure that this approximate posterior should be close to𝑞
ϕ

(𝑧 | 𝑥)

the prior of z that we assumed.
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We assumed for the decoder network that z comes from a unit Gaussian prior. So, we would

ideally like to be close to the distribution, , which, in our case, we assume to be a𝑞
ϕ

(𝑧 | 𝑥) 𝑝
θ
(𝑧)

Gaussian with mean zero and identity matrix as it is a covariance matrix.

(Refer Slide Time: 13:46)

Let us try to put these together and get the formal loss function to train such a variational

autoencoder. Remember, the goal is to do a maximum likelihood estimation. We have a training

dataset given by ’s. We ideally like to learn the parameters , which are the parameters of the𝑥
𝑖

θ

decoder, in such a way that you maximize the likelihood of that distribution, generating your

training data points.

That is your maximum likelihood estimation for your dataset. We will convert that to a

maximum log-likelihood maximum estimation where the product gets converted to sum. Then

you have , which makes things a bit simpler mathematically. Now, , which is this𝑙𝑜𝑔 𝑝
θ
 𝑝

θ
(𝑥)

internal term here, can be given by integral by definition, and this can be expanded𝑝
θ
(𝑥,  𝑧) 𝑑𝑧

as .𝑝
θ
(𝑥 | 𝑧) * 𝑝

θ
(𝑧) 𝑑𝑧

Unfortunately, we are once again left with an intractable integral in this particular case. So, let us

try to see how to solve this maximum likelihood estimation problem. We are going to solve it

with a twist.
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So, let us rewrite the maximum log-likelihood estimation problem. We have the log-likelihood

, which can be given by, expectation over z vectors sampled from the approximate𝑙𝑜𝑔 𝑝
θ

posterior of . So, if we sample z vectors from your approximate posterior and give𝑙𝑜𝑔 𝑝
θ
(𝑥)

them as input to the decoder, the likelihood of generating samples similar to the training

distribution must be high. That is what the first sentence means.

Now, can be written using Bayes theorem, as by . That is𝑙𝑜𝑔 𝑝
θ
(𝑥) 𝑝

θ
(𝑥 | 𝑧) * 𝑝

θ
(𝑧) 𝑝

θ
(𝑧 | 𝑥)

just the Bayes theorem written differently. To this particular expression, we are going to multiply

and divide the approximate posterior. It is just a simple multiplication and division by constant.

Once we have this expression equivalent to the maximum likelihood estimation setting for this

problem, we can group terms to write this differently. The first term, , stays the same𝑝
θ
(𝑥 | 𝑧)

way, and we write that as the first term here, expectation over z, . You have another𝑙𝑜𝑔 𝑝
θ
(𝑥 | 𝑧)

term here, and . Ideally, you would be able to write that as plus expectation over𝑞
ϕ

(𝑧 | 𝑥) 𝑝
θ
(𝑧)

z, .𝑙𝑜𝑔 ( 𝑝
θ
(𝑧) / 𝑞

ϕ
(𝑧 | 𝑥)

Now, instead of adding it, we are going to subtract it and write it this way. So, we have a minus

expectation over z, . It is just the reciprocal, with the sign change in the𝑙𝑜𝑔 ( 𝑞
ϕ

(𝑧 | 𝑥) / 𝑝
θ
(𝑧)
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beginning. The remaining terms are these two terms here, in the denominator and in𝑝
θ
(𝑧 | 𝑥) 𝑞

ϕ

the numerator, which is what the third term gives us. So, it is just grouping terms and writing

them differently.

Now, if you observe the second and third terms here, you will notice that the second term is the

KL divergence between , the approximate posterior and , the prior on z. The third𝑞
ϕ

(𝑧 | 𝑥) 𝑝
θ
(𝑧)

term is the KL divergence between the true posterior, and the approximate posterior,𝑝
θ
(𝑧 | 𝑥)

. We will write the second term as a certain KL divergence and the third term as a𝑞
ϕ

(𝑧 | 𝑥)

certain KL divergence.

Now, if you observe here, KL divergence is a non-negative quantity. So, the third quantity will

be greater than or equal to 0; because this is a log-likelihood estimation problem, we would

ideally like to maximize this quantity. So, to maximize this quantity comprised of these three

terms, where the third term is greater than or equal to 0. It can be achieved by maximizing the

first two terms by itself.

(Refer Slide Time: 19:18)

So, we are saying now that we have a lower bound, which is given by the first two terms.

Remember, the third term is non-negative and is added to that. So, this entire log-likelihood will

be lower bounded by these first two terms. So, if we would like to maximize the log-likelihood,
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we can maximize this lower bound. This lower bound is also known as Evidence Lower bound

or Elbow. It is read out as Elbow, and that is why it is written like this, but it is ELBO. Evidence

Lower BOund is also known as the Variational lower bound.

And this entire procedure of optimization is known as a method called Variational Inference,

where we introduce a variational distribution. In this case, the variational distribution for us is

the approximate posterior and using that, we try to learn the parametrizations of the𝑞
ϕ

distribution. So, our goal is to find and , which maximize this evidence lower bound. That isθ* ϕ*

what we would like to do.

(Refer Slide Time: 20:40)

1387



So, let us put this together. We now are saying that we have introduced an inference model

, the approximate posterior that tries to approximate the original posterior by optimizing𝑞
ϕ

(𝑧 | 𝑥)

the variational lower bound that we saw.

Remember, these two terms here are exactly what we had as the two terms here: expectation over

z, minus the KL divergence between approximate posterior and prior on z. We𝑙𝑜𝑔 𝑝
θ
(𝑥 | 𝑧)

parameterize using our encoder network. So, we now have an encoder and a decoder𝑞
ϕ

(𝑧 | 𝑥)

network.

Let us see them individually before we put them together in this context. Given training data x,

provided as input to an encoder, the encoder outputs means and variances of an approximate

posterior distribution. We would like to have it as close to the prior on z. Then we sample from z

and use the decoder to generate x, which we would like to have as close to the training data

distribution.

(Refer Slide Time: 22:06)

1388



So, how are we going to train this? If you look at the loss by itself, the overall loss. In this case,

we will maximize, so not perhaps a loss, just the objective function. But there is one problem

with this training procedure. If you noticed, what we said was, we give the input distribution to

the encoder, the encoder gives out a parameterization of the approximate posterior. We sample

from a prior, which is then given to the decoder, and then you get your final output.

This means we now have an encoder-decoder model, an autoencoder. We will sample a vector

rather than forward propagate a vector in the middle step or the bottleneck layer step. Why is this

a problem? That sample may not be deterministic, and we would not know how to pass the

gradients through that bottleneck layer to the encoder. That is a challenge. What do we do?

We ideally want to ensure that the sample that we get becomes independent of the encoder

output. Suppose it becomes independent of the encoder output. In that case, you can simply

backpropagate your gradients through your decoder and encoder and assume that the randomness

is coming from some external quantity. How do we separate the randomness from the encoder

output?

(Refer Slide Time: 23:49)
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This is done using a trick known as the Re-parameterization trick. This was one of the main

contributions of the Variational Auto Encoder method, a simple trick that solves the problem of

back-propagating through this network. So, remember that we will sample z from, say, some

approximate posterior distribution, which was given by a Gaussian distribution with mean at a

certain with variances, so standard deviations are given by .µ
𝑧
(𝑥) σ

𝑧
(𝑥)

Now, a sample that is drawn from such a distribution can be rewritten slightly differently. We can

parameterize that sample z. You randomly sample a vector from a unit standard normal

distribution multiplied by the standard deviation learned by the encoder network and add the

mean learned by the encoder network, and now this becomes a sample. How did this get around

the real problem?

Remember, while in the earlier steps so far, you could now consider this something like this. So,

you have a set of layers in a neural network. In the earlier version of the variational autoencoder,

one of the layers became stochastic, so you had to sample a vector. It was not forward

propagated through a neural network, as we have seen so far. So, because that was a sample, we

would not have known how to backpropagate through that layer to the earlier layers, in our case,

the encoder.

So, the parameterization trick suggests that let us fix that layer as the previous layer’s output.

Instead, it brings in the stochasticity from a different variable from the outside and not that layers
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output itself. If you see here, the new sample is given by and , which are outputs of theµ(𝑧) σ (𝑧)

encoder into , which you could almost consider now like a bias vector, which is coming fromε

noise.

It does not affect backpropagation into earlier layers. It is an external input given in that

particular layer. And now, you can backpropagate through the entire network using gradient

descent, the way we have seen it before. So, you now have given x in the encoder. You generate

mu’s and sigma’s, then you sample z using the Re-parameterization trick, go through the decoder

and generate mu’s and sigma’s at the output from which you can sample and get any generations.
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(Refer Slide Time: 26:58)

So, with the Re-parameterization trick, the entire variational autoencoder becomes back

propagable. You can use gradient descent and backpropagation to update the weights in the VAE

and train the network. So, as before, the objective function here is given by minus KL divergence

of and plus the expectation of . Now, turns out to be a simple𝑞
ϕ

𝑝
θ

𝑙𝑜𝑔 𝑝
θ
(𝑥 | 𝑧) 𝑙𝑜𝑔 𝑝

θ
(𝑥 | 𝑧)

reconstruction loss. We would like this to be close to your training distribution.

So, you can use even a Mean Square Error to maximize this likelihood in the second term. What

about the first term? How can we make that differentiable? How can we get the gradient for it to

you for backpropagation? The key here is that we have assumed to be a Gaussian with certain𝑞
ϕ

means and variances, which the encoder provides; we also assumed to be a unit Gaussian.𝑝
θ

And the KL divergence between Gaussians is a well-defined formula that is differentiable. So,

that helps us ensure that we can compute the gradients and backpropagate and train this network

end to end.
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(Refer Slide Time: 28:28)

So, that completes our discussion of how VAEs are learned. To summarize and differentiate from

autoencoders. Traditional autoencoders are learned by reconstructing input, and they are often

used to learn features, the low dimensional representations, which could then be used to train

another neural network or an SVM or to train any other supervised models. On the other hand,

variational autoencoders conceptually are a marriage between Bayesian learning and Deep

learning.

And after training a variational autoencoder, you could discard the encoder, just sample from

your prior , a unit Gaussian. And now your decoder has learned to generate images, taking𝑝
θ
(𝑧)

a unit Gaussian as input to generate images that look close to your input data distribution. That is

what allows VAE to become a generative model.
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What can VAE’s do? Here are a couple of examples where a VAE was trained on the MNIST

data set, and the Frey Face dataset. Here, you can see the MNIST dataset when small values

modify the latent variables that are the z’s in your VAE. Remember, we will be sampling some

vectors. You can see that the generated images, that is, the output of the decoder, gradually varies

as the z value is varied.

That shows us that the variational autoencoder has indeed learned latent variable values are

capable of generating data smoothly on the manifold on which it lies. Similarly, just like how we

saw for GANs on the Frey Face dataset, you can learn latent variables such as expression and

poses. As you change the values of those corresponding latent random variables, you end up

getting generations of face images with different poses and different expressions.
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What else can be VAEs be used for? They have plenty of applications, and we will see some of

these in the next week in detail. But here are a few examples, image and video generation,

super-resolution, forecasting from static images, image inpainting many more, and we will see

some of them next week.

(Refer Slide Time: 31:19)

VAEs have also been extended in numerous ways over the last few years. While we may not

have the scope to cover all of these in this course, here are a few pointers if you would like to
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know more about the original author's extended VAEs to get a semi-supervised variant to use

labelled and unlabeled data to learn the VAE.

Another popular extension, rather a powerful extension was conditional VAE, where you could

generate given a particular class label for instance. So, in the example that we have seen so far, in

the construction that we have seen so far, we considered it to be an unsupervised learning

problem. And just assumed only data was given and we were generating more data, you could

modify that to assume that label data was given to us.

And at inference, if you give a certain class label, the VAE would generate data points belonging

to that class label. Those issues are discussed in conditional VAE. Another variant known as

Importance-Weighted VAE weights the latent random variables differently to get more powerful

generations. Then there is a Denoising VAE, which you could consider as an extension of the

Denoising Auto Encoder to a VAE setting.

Then VAEs have also been used for graphics. A popular network is called the inverse graphics

network, which uses a VAE like strategy to learn latent variables that can give you control in

generating various kinds of objects, 3D objects, etc. You could control the light angle, the

rotation, the kind of object, so on and so forth using an inverse graphics network, which

effectively uses a VAE strategy. And finally, another kind of network called Adversarial Auto

Encoders, which brings together GANs and VAEs, will be a topic that we discuss immediately

next lecture.
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Your homework for this time is to go through “Tutorial on Variational Auto Encoder”, as well as

go through this VAE example in PyTorch. It may also be worthwhile going through the original

paper on Variational Auto Encoders if you are interested. There are a couple of questions for you

to think about. Why does the encoder of a VAE map to a vector of means and standard

deviations?

Why does the encoder not map to a vector of means and a covariance matrix? This encoder gets

you the approximate posterior. A similar question What about the decoder? If we assumed a

Mean Square Error for the reconstruction loss? The second term in your objective for VAE,

remember can use the Mean Square to get a reconstruction loss. What is the covariance of the

Gaussian distribution? What do you think it will look like? Think about it and we will𝑝(𝑥 | 𝑧)

discuss it soon.
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